Top Banner

of 11

Development and Whirl Tower Test of the Smart Active Flap Rotor

Apr 06, 2018

Download

Documents

donnycolins7995
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    1/11

    1

    DevelopmentandwhirltowertestoftheSMARTactiveflaprotor

    FriedrichK.Straub,DennisK.Kennedy,AlanD.Stemple,V.R.Anand,andTerryS.Birchette

    TheBoeingCompany,Mesa,Az85215

    ABSTRACT

    AfullscaleSmartMaterialActuatedRotorTechnology(SMART)systemwithpiezoelectricactuatedbladeflaps

    wasdevelopedandwhirltowertested.Thedevelopmenteffortincludeddesign,fabrication,andcomponenttesting

    ofrotorblades,trailingedgeflaps,piezoelectricactuators,switchingpoweramplifiers,andthedata/powersystem.

    Simulationsandmodelscalewindtunneltestshaveshownthatthissystemcanprovide80%vibrationreduction,

    10dBnoisereductionforahelicopterpassingoverhead,andsubstantialaerodynamicperformancegains.Whirl

    towertestingofthe34-footdiameterrotordemonstratedthefunctionality,robustness,andrequiredauthorityofthe

    activeflapsystem.

    Theprograminvolvedextensivedevelopmentworkandriskreductiontestswhichresultedinarobust,high

    performanceactuatorandatightlyintegratedactuator,flap,andbladesystem.Theactuatordemonstratedexcellent

    performanceduringbenchtestingandhasaccumulatedover60millioncyclesunderaspectrumofloading

    conditions.TheflightworthyactiveflaprotorbladeswerebasedonamodifieddesignoftheFAAcertifiedMD900

    Explorerproductionrotorblade.Whirltowertestingwasconductedwithfullrotorinstrumentationanda5-

    componentbalance.Therotorwastestedfor13hoursunderarangeofconditions,including7hoursofflap

    operation.Flapinputsincludedopenloopstaticanddynamiccommands.Theflapsshowedexcellentauthority

    withoscillatorythrustgreaterthan10%ofthesteadybaselinethrust.Variousflapactuationfrequencysweepswere

    runtoinvestigatethedynamicsoftherotorandtheflapsystem.Limitedclosedlooptestsusedhubaccelerations

    andhubloadsforfeedback.

    Provingtheintegration,robustoperation,andauthorityoftheflapsystemwerethekeyobjectivesmetbythewhirl

    towertest.Thissuccessdependedontailoringthepiezoelectricmaterialsandactuatortotheapplicationand

    meetingactuator/bladeintegrationrequirements.Testresultsdemonstratethefeasibilityandpracticalityofapplying

    smartmaterialsforlimitedauthority,activecontrolonahelicopterrotor.Follow-onforwardflightdemonstrations

    areneededtoquantifytheexpectedsignificantimprovementsinvibrations,noise,andaerodynamicperformance.Extensionsofthistechnologyareaprimecandidateforon-bladeflightcontrol,i.e.eliminationoftheswashplate.

    ThisprogramwasperformedaspartofDARPAsSmartMaterialsandStructuresDemonstrations.Fundingwas

    providedbyDARPA,TheBoeingCompany,NASA,andtheU.S.Army.Additionalcostsharefundswereprovided

    bytheUniversityofMaryland,MIT,andUCLA.

    Keywords:Smartmaterials,piezoelectric,actuator,helicopter,blade,flap,vibrationcontrol,noisecontrol

    1.INTRODUCTION

    Vibration,noise,andaerodynamicdesigncompromisescontinueasbarrierstofurtherimprovementsineffectivenessandpublicacceptanceofthehelicopter.Bladetrailingedgeflapsactuatedbyin-bladesmartmaterialactuatorshave

    emergedasprimarycandidatetodynamicallyalterthebladestructureandapplylimitedauthorityactivecontrolto

    achievesignificantimprovementsinrotorcraftperformanceandmissioncapability[1-5].Simulationsandmodel

    scalewindtunneltestshaveshownthatthissystemcanprovidemorethan80%vibrationreduction,10dBnoise

    reductionforahelicopterpassingoverhead,andsubstantialaerodynamicperformancegains.Resultingbenefits

    includeajetsmoothride,improvedcommunityacceptance,aswellassignificantlyimprovedlifecyclecost,

    productivity,andfleetreadiness.

    PresentedatSPIEsIntl.SymposiumonSmartStructuresandMaterials,SanDiego,CA,March14-18,2004.

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    2/11

    2

    Theoverallprogramobjectivewastodevelopthetechnologyanddemonstratethatsmartmaterialactuatedflapsare

    feasibleandpracticalforhighbandwidth,limitedauthorityactivecontrolofahelicoptermainrotor.TheMD900

    Explorertwinengine,lightutilityhelicopterwasselectedasdemonstrationvehicle.Itsstate-of-the-art5-bladed

    composite,bearinglessmainrotorsystemwasmodifiedtoincludein-bladepiezoelectricactuatorsandtrailingedge

    flaps,Figure1.

    ConceptdevelopmentanddesignsupporttestswereconductedduringPhaseIofthisprogram[6].Thecurrent

    PhaseIIeffortincludeddesign,fabrication,andcomponenttestingofflightworthyhardwareandwhirltowertesting

    oftheintegratedsystem.Primarycomponentsofthesystemincludetheblades,flaps,piezoelectricstacksand

    actuators,switchingpoweramplifiers,anddata/powersystem.Theirdevelopmentandresultsofthewhirltowertest

    arepresentedhere.AdditionaldetailsoftheworkperformedunderPhaseIIcanbefoundinReferences7-17.

    2.ROTORBLADEANDFLAPDEVELOPMENT

    ThebasiccharacteristicsoftheSMARTrotorareshowninTable1.Primarydesignobjectivesforthemodified

    bladeandtheflapweretominimizeactuationrequirements,matchthebaselinebladedynamics,andminimize

    weight.Akeyconstraintwastousetheproductionbladetoolingwithonlyminormodifications.Secondarydesign

    objectivesweresimplicity,modularity,andtheflexibilityofthebladetoserveasatestbedforalternateactuators.

    Thebladedesignwasmodifiedtocarrytheactuatorinsidethesparcavityandtoaddprovisionsformountingtheflap.Ashortlinkconnectstheactuatorandflap.Detailsoftheblade,flap,andactuatorintegrationareshownin

    Figures2-4.TheoveralllayoutofthehardwarecomponentsisshowninFigure5.Severalchangesweremadeto

    thebladeconstruction,includingreplacementofthreeglassplyswithtwographiteplysinthespar,eliminationof

    theouterveilply,anduseoflightweighthoneycombcoreinthemid-sectionoftheblade.Reinforcementswere

    addedtoprovideattachmentsfortheactuatorcavityaccesscover,Figure6,theactuatormounts,andtheflap

    supports,Figure7.Leadingedgeweightwasaddedtomaintainchordwisebalance,Figure8.Bladeinternalwiring

    wasprovidedforactuatordataandpower.

    Theflapparameters,Table2,werechosentominimizeactuationrequirements.Becauseoftheflaplength,three

    intermediateflapsupportsarerequiredtocarrytheflaploads.Theflapisaerodynamicallybalancedinorderto

    lowertheaerodynamichingemomentandthustheactuatorforcerequired.Theflapisalsomassbalanced.For

    maximumtorsionalstiffnesstheflapisconstructedusing45deggraphiteplys.Theradiallocationwaschosento

    providebothvibrationandnoisereduction.Centrifugalloadsaretransmittedtothebladeusingatension-torsionrod.Aflexiblelinkandarodendbearingtransmittheactuatoroutputtotheflaphorn.Aseriesoftestswere

    conductedontheflap,flaplink,andtension-torsionrodtoconfirmpropertiesandtoprovidequalificationdata.

    Aprototypeblade,flap,andactuatorwerefabricatedandusedtoconfirmfitandfunction.Integratedtestingofthe

    assemblytogetherwithaswitchingamplifierprototypeestablishedthevalidityofthedesign.Actuator/flap

    performanceunderarangeofbladedeformationsshowednodegradation.Bladestiffnessandfree-freefrequency

    testsconfirmedthatthecompletebladeassembly,includingflapandactuator,closelymatchedthebaselineblade.

    3.PIEZOELECTRICACTUATORANDAMPLIFIERDEVELOPMENT

    Actuatordesignconsiderationsincludeahighenergydensity,highbandwidthsmartmaterialtomeetactuation

    requirements,anefficientmechanismtoprovidestrokeamplificationandminimizelosses,andlowvolume.Inparticulartheactuatorheightmustbesmalltofitinsidethebladespar.Furthermore,theactuatormustberobustand

    withstandthebladeelasticdeformationsanddynamicloadingof650gsteadyand30gcyclic.Modelscalerotor

    testswereconductedandestablishedthefeasibilityandbenefitsofusingpiezoelectricactuatedbladeflaps[7,8].

    Aeroelasticsimulationsshowedthat2degflapdeflectionaresufficientforvibrationreductionathighspeedandfor

    noisereduction[6,9,10].Thiscorrespondstoanactuatoroutputof43lband0.032in,includingsomeallowance

    forlosses.Fordesignpurposesanominalflapdeflectionof4degwithanactuatoroutputof63lband0.062in

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    3/11

    3

    wereused.Maximumoperatingfrequencywaschosenastherotor(N+1)/rev,i.e.6/revor40Hzforthis5-bladed

    rotor,asrequiredforvibrationreduction.

    Piezoelectricstackactuatorswereselectedasthedrivingelement.Severallowandhighvoltagestacksweretested

    [11-15].Thelatterprovidedbetterperformanceandmoreflexibilitywithrespecttofabricationofdifferent

    geometries.Acustommade,highvoltagestackwasselected.Anumberofthesestackswereextensivelytested

    underarangeofelectrical,mechanical,andthermalconditions.Bothperformanceandfatiguetestsupto150

    millioncycleswereconducted.Fatiguetestswererunatelevatedfieldlevels(2.9kV/mm)andmechanicalpreloads

    (6ksi)withoutputs75%largerthancommerciallyavailable.Thesetestsdemonstratedthatdomainwallmovement

    withinthepiezoelectricceramicscanbeusedwithoutanysignificantdegradationover150millioncyclesof

    operation.

    Theactuatormechanismwasbasedonthex-frameconcept[7]withtwoactuatorsworkinginparallel,thusthe2x-

    frameactuator.Thetwox-framesareactuated180degout-of-phaseinapush-pullmode.Theactuatorstructure

    providesstrokeamplification,ameansforpreloadingthepiezo-ceramicstacks,andprovisionsformountinginthe

    blade.Threeprototypeswerefabricatedandtestedtooptimizeperformanceanddurability.Thefirstprototypeused

    lowvoltagestacksandvalidatedtheconcept[17].Ithadmarginalperformancebutshowedexcellentrobustness

    duringspintesting.Thesecondprototypewasscaledupby15%andusedcustomhighvoltagestacks,Figure9.

    Severalfeatureswereaddedtofacilitateassembly,enhancewearcharacteristics,andimprovemountingintheblade.

    Athirdprototypewithimprovedstructuralcharacteristicswasdeveloped,Figure10.Itdemonstratedexcellent

    performanceduringbenchtesting,Table3,andaccumulated66millioncyclesunderrepresentativeelectricalandmechanicalloadconditions.Thiscorrespondsto560hoursofoperationat5/rev.Theactuatorandbenchtestrigare

    showninFigure11.

    Aswitchingpoweramplifierwasdevelopedtodrivethepiezoelectricactuator.IGBT(Insulated-GateBipolar

    Transistor)switchingat20kHzandcapacitiveenergystorage[18]providedtheefficiencyrequiredtomeetthe

    volumeandweightconstraintsforflighttesting.Intermsofpowerdensityitrepresentsafour-foldincrease

    comparedtopreviousmodels.Theamplifiermaximumoutputwas-300/+1200Vand3Aforcapacitiveloadsof

    4 F.Aprototypeamplifierwasdevelopedandusedtodrivetheflapsystem.Basedontestresults,thedesignwas

    enhancedbyaddingnoisesuppressionfilters,providingbetterthermalprotectionforflighttestingonhotdays,and

    improvingmodularity.

    4.FLIGHTHARDWAREFABRICATIONANDTESTING

    Acompletesetof5flightworthyblades,flaps,actuators,andamplifierswasfabricatedforwhirltesting.Inaddition

    aspareactuatorandasparebladeforfuturepressureinstrumentationwerefabricated.Fiveactuatorsweretestedon

    thebenchtoestablishperformance,stiffness,andnaturalfrequencies.Inadditiontheywererunforonehourtoseat

    thecomponents,letthepreloadsettle,andbreakintheflaplinkrodendbearing.Afterinstallationintheblade,the

    actuator/flapsystemwasruntoestablishbaselineperformance,naturalfrequencies,andtobreakintheflapbearing

    surfaces.Thebladeinstalledactuator/flapsystemnaturalfrequencywas98Hz.Thepitchinertiasofallflapsand

    thefree-freefrequenciesandpitchinertiasofthemassbalancedbladeassemblieswerealsodetermined.Theoverall

    bladeweightincreasedby5lb,anincreaseof9%inweightand15%inspanwisemomentcomparedtothebaseline

    blade.ThechordwiseCGremainedunchangedat27.4%.ThecompletedbladeassemblyisshowninFigure12.

    5.WHIRLTOWERTEST

    WhirltestswereconductedatMesainawhirlcageusingtheLargeRotorTestStand(LRTS).TheLRTSincludesa

    1500HPmotor,transmission,strutassembly,a5-componentrotorbalance,andtherotorflightcontrols,Figure13.

    Thisteststandhasbeenusedinanumberofwhirltowerandwindtunneltestsofseveraldifferentrotors.

    Testsetupstartedwithinstallationoftheteststand,motor,rotorbalance,androtorhubinthewhirlcage.Forthe

    SMARTrotortestahubmounteddataacquisitionandmultiplexingsystem,Figure14,andaslipringforrotordata

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    4/11

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    5/11

    5

    normalforceresults,Figure22,showthatwithharmonicflapinputstherotoractsasafilterandonly5/revbalance

    loadsareseen.Applying450Vat5Presultsina5Pnormalforceof550lb,orabout10%ofthenominalsteady

    thrust.Thislevelofauthorityatamediumvalueofdrivingvoltageexceedsrequirementsandindicatesthattheflap

    systemshouldbeabletoprovidetheexpectedvibration,noise,andaerodynamicimprovementsinforwardflight.

    Oneadvantageoftheflapsystemisthatitiscompletelyindependentoftheprimarycontrolsystemandisnotflight

    safetycritical.Varioustestswereruntoinvestigatethesystembehaviorwithoneflapinoperativeoratfullstatic

    deflection(hardover)withtheotherflapsoperatingnormally.Noproblemswereobserved,butairframevibration

    levelswouldcertainlyincreaseshouldsuchaneventoccuronanaircraft.Tofurtherdemonstraterobustness,the

    flapsystemwasruncontinuouslyforovertwohourswithoutanyissuesandnodegradationinperformance.After

    completionofthewhirltesttheflapsystemwasbenchtested,disassembled,andinspected.Performancematched

    datatakenbeforethewhirltestandnosignsofanyinterferenceorunduewearwerefound.

    6.SUMMARY

    Afullscalerotorsystemwithpiezoelectricactuatedbladeflapswasdevelopedandwhirltowertested.The

    developmenteffortincludeddesign,fabrication,andcomponenttestingofrotorblades,trailingedgeflaps,

    piezoelectricactuators,switchingpoweramplifiers,andthedata/powersystem.Whirltowertestingofthe34-foot

    diameterrotordemonstratedthefunctionality,robustness,andrequiredauthorityoftheflapsystem.

    Provingtheintegration,robustoperation,andauthorityoftheflapsystemwerethekeyobjectivesmetbythewhirl

    towertest.Thissuccessdependedontailoringthepiezoelectricmaterialsandactuatortotheapplicationand

    meetingactuator/bladeintegrationrequirements.Testresultsdemonstratethefeasibilityandpracticalityofapplying

    smartmaterialsforlimitedauthority,activecontrolonahelicopterrotor.Follow-onforwardflightdemonstrations

    areneededtoquantifytheexpectedsignificantimprovementsinvibrations,noise,andaerodynamicperformance.

    Extensionsofthistechnologyareaprimecandidateforon-bladeflightcontrol,i.e.eliminationoftheswashplate.

    Specificconclusionsare:

    1. Modelscalerotortestsdemonstratedthefeasibilityandbenefitsofpiezoelectricactuatedtrailingedgeflaps.2. Highvoltagecustompiezostackscanbedrivenathighfieldlevelsandmechanicalpreloadwithoutputs75%

    largerthancommerciallyavailablewithoutaffectingdurability.

    3. Ahighenergy,compactpiezoelectricactuatorforoperationintheruggedrotorbladeenvironmentwas

    developed.Performanceanddurabilityweredemonstratedinextensivebenchtests.4. Ahighefficiencyswitchingpoweramplifierwasdeveloped.Powerdensitywasincreasedfour-foldcompared

    topreviousmodels.

    5. Aeroelasticsimulationmodelsfortheflapsystemweredeveloped.Resultsshowedthat2degreesofflapdeflectionaresufficientforvibrationreductionathighspeed.

    6. Theactuator/flapintegrationintothebladewasoptimizedforperformance,weight,matchingbaselinebladedynamics,andusingproductionbladetooling.Fabricationmethodsweredevelopedtoembedactuatorandflap

    supportingstructuresaswellasdata/powerwiringintheblade.

    7. Therobustnessandcontrolauthorityoftheflapsystemwasdemonstratedinwhirltowertests.Therotorwasfullyinstrumentedandanextensivedatasetofactuatorperformanceandrotorloadswasobtained.

    8. Actuatorauthorityexceededrequirements.Flapinducedoscillatoryrotorthrustwasgreaterthan10%ofbaselinethrust.

    9. TheSMARTrotorsystemisreadyforforwardflightdemonstrations.

    ACKNOWLEDGEMENTS

    Drs.EphrahimGarciaandTerryWeisshaar,DARPA,providedthemotivationandfundingfortheeffort.Dr.Gary

    Anderson,ARO,providedtechnicaloversightwithsupportfromotherresearchersatU.S.Armylaboratories.Dr.

    JanetSater,IDA,providedguidance.Drs.WilliamWarmbrodt(NASA)andCheeTung(U.S.Army)provided

    fundingandtechnicaloversight.AtBoeingthefollowingengineers,staff,andsubcontractorsprovidedsupport:

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    6/11

    6

    LouSilverthorn,MikeNothaft,JeffHughes,MikeGamble,DaveDomzalski,JosephJette,andmanyothers.Atthe

    UniversityofMaryland,Prof.InderjitChopra,assistedbyJinweiShen,TaeohLee,AndreasBernhard,andNikhil

    Koratkarsupportedrotoraeroelasticanalysesandflapactuatorspintesting,andconductedmodelrotorwindtunnel

    tests.AtUCLA,Prof.GregoryCarman,assistedbyMilanMitrovichandPaulChaplya,testedPEmaterials.At

    MIT,Prof.StevenHall,assistedbyEricPrechtlandDoraTzianetopoulou,conductedmodelrotorspintestsand

    supporteddesignofthedoublex-frameactuator.

    REFERENCES

    1. ChopraI.,StatusofApplicationofSmartStructuresTechnologytoRotorcraftSystems",RAEConference"InnovationinRotorcraftTechnology,London,UK,June1997(republishedinJournaloftheAHSSociety,

    Vol.45(4),pp228-252,October2000).

    2. FriedmannP.,ThePromiseofAdaptativeMaterialsforAlleviatingAeroelasticProblemsandSomeConcerns,RAEConference"InnovationinRotorcraftTechnology",London,UK,June1997.

    3. Straub,F.K.andKing,R.J.,Applicationofsmartmaterialstocontrolofahelicopterrotor,Proc.SPIESymposiumonSmartStructuresandMaterials,SanDiego,March1996.

    4. HasegawaY.,KatayamaN.,KobikiN.,NakasatoE.,YamakawaE.,OkawaH.,ExperimentalandAnalyticalResultsofWhirlTowerTestofATICFullScaleRotorSystem,57thAnnualForum,Washington,DC,May9-

    11,2001.5. Enenkl,B.,Klppel,V.,Preiler,D.,andJnker,P.,FullScaleRotorwithPiezoelectricActuatedBlade

    Flaps,Proc.28thEuropeanRotorcraftForum,Paper89,Bristol,UK,Sept.2002.

    6. Straub,F.K.etal.,SmartMaterialActuatedRotorTechnologySMART,Proc.AIAASDMConference,AIAA-2000-1715,Atlanta,GA,April2000.

    7. Prechtl,E.,andHall,S.R.,Closed-LoopVibrationControlExperimentsonaRotorwithBladeMountedActuation,Proc.41

    stAIAASDMConference,AIAA-2000-1714,Atlanta,GA,April2000.

    8. Koratkar,N.A.,andChopra,I.,WindTunnelTestingofaMach-ScaledRotorModelwithTrailingEdgeFlaps,Proc.57

    thAHSAnnualForum,Alexandria,VA,2001,pp.1069-1099.

    9. Shen,J.andChopra,I.,AeroelasticModelingofTrailing-EdgeFlapswithSmartMaterialActuators,Proc.41stAIAASDMConference,AIAA-2000-1622,Atlanta,GA,April2000.

    10. Shen,J.andChopra,I.,AeroelasticStabilityofSmartTrailing-EdgeFlapHelicopterRotors,Proc.42ndAIAASDMConference,AIAA-2001-1675,Seattle,WA,April2001.

    11. Mitrovic,M.,G.P.Carman,andF.K.Straub,Electro-MechanicalCharacterizationofPiezoelectricStackActuators,Proc.SPIEConferenceonSmartStructuresandMaterials,SPIEVol.3668,NewportBeach,CA,

    March1999,pp.586-601.

    12. Mitrovic,M.,GregP.Carman,G.P.andStraub,F.K,DurabilityCharacterizationofPiezoelectricStackActuatorsunderCombinedElectro-MechanicalLoading,Proc.AIAASDMConference,AIAA-2000-1500,

    Atlanta,April2000.

    13. Mitrovic,M.,G.P.Carman,andF.K.Straub,DurabilityofPiezoelectricStackActuatorsunderCombinedElectro-Mechanical-ThermalLoading,Proc.SPIEConferenceonSmartStructuresandMaterials,Paper4333-

    04,NewportBeach,CA,March2001,pp.586-601.

    14. Chaplya,P.M.andCarman,G.P.,TheEffectofMechanicalPrestressonDielectricandPiezoelectricResponseofPZT-5HatHighElectricFields,AdaptiveStructuresandMaterialSystems,Orlando,FL,Nov.

    2000,pp.327-334.

    15. Chaplya,P.andCarman,G.P.,DielectricandPiezoelectricResponseofLeadZirconateTitanateatHigh

    ElectricandMechanicalLoadsinTermsofNon-180DomainWallMotion,JournalofAppliedPhysics,November2001,V90Issue10,pp.5278-5286.

    16. Hall,S.R.,Tzianetopoulou,T.,Straub,F.K.,andNgo,H.,DesignandTestingofaDoubleX-FramePiezoelectricActuator,Proc.SPIEConferenceonSmartStructuresandMaterials,NewportBeach,CA,

    March2000.

    17. Clingman,D.J.,andGamble,M.HighPowerPiezoDriveAmplifierforLargeStackandPFCApplications,Proc.SPIEConferenceonSmartStructuresandMaterials,NewportBeach,CA,March2001.

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    7/11

    7

    Table1:Rotorcharacteristics

    Rotorblade modifiedMD900

    Hubtype bearingless

    No.ofblades 5

    Radius 203.1in

    RotorSpeed 392rpm

    Chord 10in

    Airfoil HH-10,HH-06

    Twist 10deg

    Torsionfrequency 5.7/rev

    Table2:Flapdata

    Radialstation 150186in

    Length 36in

    Chord 3.5in

    Hingelocation 75%ofchord

    Hornlength 0.75in

    Max.flapangle 6deg

    Table3:2x-Frameactuatorcharacteristics

    Blockedforce 113lb

    Freestroke 0.081in

    Maximumwork 2.28in-lb

    Voltage 475725V

    Weight 2.16lb

    Specificwork 1.1in-lb/lb

    Actuator

    Flap

    Blade

    Actuator

    Flap

    Blade

    Figure1:MD900bladewithembeddedpiezoelectric

    actuatorandtrailingedgeflap

    AccessPlateFrame/Balbar

    ActuatorMounts

    FlapRention Strap

    Tension/TorsionRod

    Flextural RodEndLinkage

    Flap

    FlapHinges

    FlapFrame

    SMARTActuators

    A

    A

    ElectricalConnectors

    Outbd FlapSupportw/FlapStop

    Inbd FlapSupportw/IntegratedLinkEgressTunnel

    Figure2:Blade,flap,actuatordesignintegration

    ArcPathofFlapHornSpar

    CrossSection

    FlapLinkAssembly

    Tension-TorsionRod

    2-XFrameActuator

    ArcPathofFlapHornSpar

    CrossSection

    FlapLinkAssembly

    Tension-TorsionRod

    2-XFrameActuator

    Figure3:Actuator,flaplink,tension-torsionrod

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    8/11

    8

    ActuatorStacks

    Flap

    Balbar

    FlexturalLinkage

    AccessPlateFrame

    LinkageTunnel

    FoamCore

    X-Frames BladeSpar

    RodEndBearing

    AccessPlate

    Figure4:Blade,flap,actuatorcross-section(A-A)

    Actuator

    Flaps

    Access

    Cover

    TipWeights

    Actuator

    Flaps

    Access

    Cover

    TipWeights

    Figure5:Flapsystemcomponents

    SparInnerTorqueWrap

    AccessPlateFrame

    SparOuterTorqueWrap

    LeadingEdge

    Weights

    SparInnerTorqueWrap

    AccessPlateFrame

    SparOuterTorqueWrap

    LeadingEdge

    Weights

    Figure6:Bladesparfabrication

    SparDetail

    HingeAxisAlignmentTool

    Inbd FlapSupport

    Outbd FlapSupport

    Strap

    SparDetail

    HingeAxisAlignmentTool

    Inbd FlapSupport

    Outbd FlapSupport

    Strap

    Figure7:Bladesparandflapsupportdetaillayup

    BalanceWeight

    AccessPlate

    OffsetTool

    LeadingEdgeWrap

    BalanceWeight

    AccessPlate

    OffsetTool

    LeadingEdgeWrap

    Figure8:Leadingedgewrapclosureandbalance

    weight

    Lowerviewshown

    PiezoStackColumn

    InboardX-FrameActuator,Assembled

    LoadLink

    X-FrameActuator,Frames

    OutboardX-FrameActuator,Disassembled

    FlexureMount

    Figure9:2x-frameactuator

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    9/11

    9

    FixedFrame

    MovingFrame

    Figure10:2x-frameactuatordetails

    BenchTestRig

    FlapLinkTorsionBar

    Spring

    InboardX-FrameOutboardX-Frame

    BenchTestRig

    FlapLinkTorsionBar

    Spring

    InboardX-FrameOutboardX-Frame

    Figure11:Actuatoronbenchtestrig

    10in

    chord

    13Ft13Ft

    3Ft

    Actuator

    Access

    Cover

    Flap

    Figure12:Smartrotorbladeassembly

    GearBox

    RotorBalance

    StrutAssy

    1500HP

    Motor

    Figure13:Largerotorteststand(LRTS)

    Figure14:Rotorhubwithdata/powertransferunit

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    10/11

    10

    Figure15:Smartrotorbladeonwhirltower

    Figure16:Smartrotoronwhirltower

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 20 40 60 80 100

    RotorSpeed,%NR;Collective*10,deg

    FlapDeflection-Average,

    Relative

    ,deg

    test11 test12 test18

    te st1 1 te st 18

    vsRotorSpeed

    vsCollective

    vsRotorSpeed

    vsCollective

    Figure17:Flapdeflectionversusrotorspeed(0deg

    collective)andcollectivepitch(100%Rpm)withno

    powerapplied.

    -60

    -40

    -20

    0

    20

    40

    60

    -600 -400 -200 0 200 400 600

    ActuatorVoltage,V

    ActuatorDisplacement,mil

    8degcollective

    0degcollective

    1.5deg

    Figure18:Staticactuatordeflectionversusapplied

    voltage,at100%Rpm

  • 8/3/2019 Development and Whirl Tower Test of the Smart Active Flap Rotor

    11/11

    11

    -2000

    -1500

    -1000

    -500

    0

    500

    -4 -3 -2 -1 0 1 2 3 4

    FlapDeflection,deg

    BladeTorsionMoment,in-lb

    T51 T71 T130 T165

    Figure19:Bladetorsionmomentatfourstations

    versusstaticflapdeflection(8degcoll.,100%Rpm)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 1 2 3 4 5 6 7

    RotorSpeedMultiple

    CyclicFlapDisplacement(Avgof5),deg

    300V

    400V

    450V

    Figure20:Flapdeflectionversusexcitation

    frequencyforthreevoltagelevels(100%Rpm,8deg

    collective,1P=6.53Hz)

    0

    100

    200

    300

    400

    500

    600

    700

    0 1 2 3 4 5 6 7

    RotorSpeedMultiple

    TorsionMomentSta71,

    in-

    lb

    300V

    400V

    450V

    0V

    Figure21:Bladetorsionmomentharmonicsat

    station71inattheexcitationfrequencyforthree

    voltagelevels(100%Rpm,8degcollective,1P=

    6.53Hz)

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6 7

    RotorSpeedMultiple

    BalanceNormal,lb

    300V

    400V

    450V

    0V

    Figure22:Balancenormalforce(thrust)harmonics

    attheexcitationfrequencyforthreevoltagelevels

    (100%Rpm,8degcollective,1P=6.53Hz)