Top Banner
Development and Applications of Carbon Nanotube Textiles Korea-US Forum on Nanotechnology September 30 th 2014 Dr. Philip Bradford, Assistant Professor Department of Textile Engineering Chemistry and Science NC State University
10

Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Jul 07, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Development and Applications of

Carbon Nanotube Textiles Korea-US Forum on Nanotechnology

September 30th 2014

Dr. Philip Bradford, Assistant Professor

Department of Textile Engineering Chemistry and Science

NC State University

Page 2: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

How are CNTs Usually Processed?

…liquid based processing creates bundled CNTs whose fabrics loose functionality

CNT Powder Gojny et al., Compos. Sci. Tech.

2005

Length/diameter

ratio: 100-1000

Page 3: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

How Do We Produce Our MWCNTs?

C2H2 2C + H2

750oC

Iron Catalyst

Length-to-diameter ratio of

~ 100,000

This is same as…

…a human hair that is 30 feet long!

… a pencil that is half a mile long!

Page 4: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Drawable CNT Sheets

Page 5: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Carbon Nanotube Sheet Take-up

Page 6: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

CNT Sheet Nonwoven Fabrics If mandrel or CNT sheet is traversed during take-up, larger pieces of fabric can be

created

Page 7: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Applications We are Exploring

7

Aerosol Filtration

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.01 0.10 1.00

Pa

rtic

le P

en

etr

atio

n (%

)

Particle Size (µm)

Control

1 layer

2 layer

3 layer

7 layer

Yildiz O. and Bradford P. Carbon, 2013, 64:295-304.

High Strength Hybrid Nanofiber Fabrics

0

50

100

150

200

0 10

Str

ess (

MP

a)

Strain (%)

60%CNT30%CNT

Page 8: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Applications We are Exploring

Battery Electrodes

Fu, K., et al. Advanced

Materials, 2013,

25(36):5109-5114.

High Performance Composites

Wang X, et al, Mater. Res. Lett.,(1) 2012

5μm 2μm

a b

Stano K. et al., ACS Appl. Mater.

& Interfaces, 2013

Page 9: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Applications We are Exploring

Strain Sensing

0

5

10

15

20

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2

Ele

ctri

cal R

esi

stance

Change (%

)

Str

ess

(M

Pa)

Strain (%)

Stress vs. Strain

Resistance Data - CNTs Perpendicular to Loading

Resistance Data - CNTs Parallel to Loading

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250

Resi

stance

Change (

%)

Str

ain

(%)

Time(s)

Strain (%)

Resistance Change (%)

High Performance Foams

0

10

20

30

40

50

60

70

Latex

(0.1

39)

PU (0

.027

)

Sili

cone

(0.2

72)

PU (0

.038

)

Rid

gid P

U (0

.027

)

Rid

gid P

E (0.0

32)

Al (

0.20

0)

Al (

0.21

6)

Al (

0.27

0)

CNT (0

.049

)

Al (

0.21

6)

Al (

0.20

9)

CNT (0

.079

)

CNT (0

.114

)

Foam Type (Density g/cm3)

Sp

ecif

ic C

om

pre

ssiv

e S

tren

gth

(M

Pa/g

cm

-3)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

Co

mp

ressiv

e S

tress (M

Pa

)

Compressive Strain (%)

No anneal

30 min at 500oC in Air

Page 10: Development and Applications of Carbon Nanotube Textiles · 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 0.01 0.10 1.00) Particle Size (µm) Control 1 layer 2 layer 3 layer

Research Made Possible By:

My group members:

Kelly Stano

Ozkan Yildiz

James Stahl

Shagheyegh Faraji

Kun Fu

Spencer Barbour

Ang Li

Karim Aly

Jincheng Zhu

Funding agencies

AFOSR

ACS

NC Space Grant

Eastman Chemical

NASA

Thank you for

your attention!

Contact Information

[email protected]

919-515-1866

www.go.ncsu.edu/Bradford