Top Banner
Determining the Nature of Dark Energy: The Latest Results from ESSENCE and the Future of Observational Cosmology Michael Wood-Vasey Harvard-Smithsonian Center for Astrophysics 2008 February 26 LCOGT/KITP
62

Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Mar 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Determining the Nature of Dark Energy:

The Latest Results from ESSENCE and the

Future of Observational Cosmology

Michael Wood-VaseyHarvard-Smithsonian Center for Astrophysics

2008 February 26LCOGT/KITP

Page 2: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 3: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Baryons4%

Dark Energy73%

Dark Matter23%

c.f. Astier06, Spergel06, Eisenstein05, Perlmutter99, Riess98

Page 4: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Arable Land3%

Ocean70%

Other Land27%

Food and Agriculture Organization of the United Nations

Page 5: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

What is Dark Energy?

Courtesy of David Weinberg

Page 6: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Three philosophically distinct possibilities...

A “classical” cosmological constant, as envisioned by Einstein, residing in the gravitational sector.

A “Vacuum energy” effect, arising from quantum fluctuations in the vacuum, acting as a “source” term

Departure from GR on cosmological length scales

Regardless, it’s evidence of new fundamental physics!

Page 7: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

The Basic Question:

Is a cosmological constant model consistent with our observations of

the Universe?

Page 8: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

The ESSENCE Survey Determine w to 10% or w!=-1

6-year project on CTIO 4m telescope in Chile; 12 sq. deg.

Wide-field images in 2 bands

Same-night detection of SNe

Spectroscopy

Keck, VLT, Gemini, Magellan

Goal is 200 SNeIa, 0.2<z<0.8

Data and SNeIa public real-time

Page 9: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 10: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

ESSENCE Survey TeamClaudio Aguilera CTIO/NOAO Bruno Leibundgut ESO

Andy Becker Univ. of Washington Weidong Li UC Berkeley

Josh Blackman ANU/Stromlo/SSO Thomas Matheson NOAO

Stéphane Blondin Harvard/CfA Gajus Miknaitis Fermilab

Peter Challis Harvard/CfA Gautham Narayan Harvard University

Ryan Foley UC Berkeley Jose Prieto OSU

Alejandro Clocchiatti Univ. Católica de Chile Armin Rest NOAO/CTIO

Ricardo Covarrubias Univ. of Washington Adam Riess STScI/JHU

Tamara Davis Dark Cosmology Center Brian Schmidt ANU/Stromlo/SSO

Alex Filippenko UC Berkeley Chris Smith CTIO/NOAO

Arti Garg Harvard University Jesper Sollerman Stockholm Obs.

Peter Garnavich Notre Dame University Jason Spyromilio ESO

Malcolm Hicken Harvard University Christopher Stubbs Harvard University

Saurabh Jha SLAC/KIPAC Nicholas Suntzeff Texas A&M

Robert Kirshner Harvard/CfA John Tonry Univ. of Hawaii/IfA

Kevin Krisciunas Texas A&M Michael Wood-Vasey Harvard/CfA

Page 11: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 12: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 13: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

R

I

Reference New Difference

Page 15: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

2005 2006 Sep Oct

Nov Dec

Time

Page 16: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 17: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

ESSENCE Spectra

Matheson et al. (2005)

Page 19: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

One-parameter family

(Supernova Cosmology Project, Kim et al)

Color

Rate of decline

Peak brightness

Page 20: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

One-parameter family

(Supernova Cosmology Project, Kim et al)

Color

Rate of decline

Peak brightness

σ ~ 0.13 mag

Page 21: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Apparent Brightness

z=0.48

Page 22: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

−1.0 −0.5 0.0 0.5 1.0color

0

20

40

60

#/0.

10 b

in

nearbyESSENCE

SNLS

−1.0 −0.5 0.0 0.5 1.0color

0

20

40

60

#/0.

10 b

in

nearbyESSENCE

SNLS

SALT2 (Guy07)

All good nearby SNeIa Only z>0.015

Page 23: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

−3 −2 −1 0 1 2 3 AV

0

20

40

60

#/0.

30 b

in

nearbyESSENCE

SNLSprior

−3 −2 −1 0 1 2 3 AV

0

20

40

60

#/0.

30 b

in

nearbyESSENCE

SNLSprior

MLCS2k2 (Jha07) flatnegav

Only z>0.015All good nearby SNeIa

Page 24: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

−1.0 −0.5 0.0 0.5 1.0color

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

SNLSESSENCEnearby

−1.0 −0.5 0.0 0.5 1.0 color

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

SNLSESSENCEnearby

SALT2, beta=0

Luminosity vs. Color

All good nearby SNeIa

Page 25: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

SALT2, beta=1.77 (Guy07)

−1.0 −0.5 0.0 0.5 1.0 color

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

SNLSESSENCEnearby

−1.0 −0.5 0.0 0.5 1.0color

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

SNLSESSENCEnearby

Corrected Luminosity vs. Color

Page 26: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

−3 −2 −1 0 1 2 3 AV

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

nearbyESSENCE

SNLS

−3 −2 −1 0 1 2 3 AV

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

nearbyESSENCE

SNLS

Anti-Corrected Luminosity vs. Color

MLCS2k2 flatnegavbeta=0, R_V=3.1

Page 27: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

−3 −2 −1 0 1 2 3 AV

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

nearbyESSENCE

SNLS

MLCS2k2 flatnegavbeta=-0.9, R_V=3.1

−3 −2 −1 0 1 2 3 AV

−3

−2

−1

0

1

2

3

Δµ

[m

ag]

nearbyESSENCE

SNLS

Corrected Luminosity vs. Color

Page 28: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

ESSENCE Hubble Diagram

0.01 0.10 1.0034363840424446

µ

(ΩM, ΩΛ) = (0.27, 0.73)(ΩM, ΩΛ) = (0.3, 0.0)(ΩM, ΩΛ) = (1.0, 0.0)

0.01 0.10 1.00Redshift

−1.5−1.0

−0.5

0.0

0.5

1.01.5

Δµ

ESSENCEnearby

Wood-Vasey et al., 2007, ApJ, 666, 694

see alsoMiknaitis et al.,

2007, ApJ, 666, 674

Davis et al.,2007, ApJ, 666, 716

Page 29: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

0.0 0.2 0.4 0.6 0.8 1.0ΩM

-2.0

-1.5

-1.0

-0.5

0.0w

SNeIaBAO

SNeIa+BAO

w=-1.05 +- 0.11 +- 0.13

ESSENCE

Flat,constant-w

Page 30: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

578 PERLMUTTER ET AL. Vol. 517

FIG. 7.ÈBest-!t con!dence regions in the plane for our primary)M

-)"analysis, !t C. The 68%, 90%, 95%, and 99% statistical con!dence regionsin the plane are shown, after integrating the four-dimensional !t)

MÈ)"over and a. (See footnote 11 for a link to the table of this two-M

Bdimensional probability distribution.) See Fig. 5e for limits on the smallshifts in these contours due to identi!ed systematic uncertainties. Note thatthe spatial curvature of the universeÈopen, Ñat, or closedÈis not determi-native of the future of the universeÏs expansion, indicated by the near-horizontal solid line. In cosmologies above this near-horizontal line theuniverse will expand forever, while below this line the expansion of theuniverse will eventually come to a halt and recollapse. This line is not quitehorizontal, because at very high mass density there is a region where themass density can bring the expansion to a halt before the scale of theuniverse is big enough that the mass density is dilute with respect to thecosmological constant energy density. The upper-left shaded region,labeled ““ no big bang,ÏÏ represents ““ bouncing universe ÏÏ cosmologies withno big bang in the past (see Carroll et al. 1992). The lower right shadedregion corresponds to a universe that is younger than the oldest heavyelements (Schramm 1990) for any value of km s~1 Mpc~1.H0 º 50

on that day : the distribution, abundances, excitations, andvelocities of the elements that the photons encounter as theyleave the expanding photosphere all imprint on the spectra.So far, the high-redshift supernovae that have been studiedhave light-curve shapes just like those of low-redshift super-novae (see Goldhaber et al. 1999), and their spectra showthe same features on the same day of the light curve as theirlow-redshift counterparts having comparable light-curvewidth. This is true all the way out to the z \ 0.83 limit of thecurrent sample (Perlmutter et al. 1998b). We take this as astrong indication that the physical parameters of the super-nova explosions are not evolving signi!cantly over this timespan.

Theoretically, evolutionary e†ects might be caused bychanges in progenitor populations or environments. For

example, lower metallicity and more massive SN Ia-progenitor binary systems should be found in youngerstellar populations. For the redshifts that we are consider-ing, z \ 0.85, the change in average progenitor masses maybe small (Ruiz-Lapuente, Canal, & Burkert 1997 ; Ruiz-Lapuente 1998). However, such progenitor mass di†erencesor di†erences in typical progenitor metallicity are expectedto lead to di†erences in the !nal C/O ratio in the explodingwhite dwarf and hence a†ect the energetics of the explosion.The primary concern here would be if this changed thezero-point of the width-luminosity relation. We can look forsuch changes by comparing light curve rise times betweenlow- and high-redshift supernova samples, since this is asensitive indicator of explosion energetics. Preliminary indi-cations suggest that no signi!cant rise-time change is seen,with an upper limit of day for our sample (see forth-[1coming high-redshift studies of Goldhaber et al. 1999 andNugent et al. 1998 and low-redshift bounds from Vacca &Leibundgut 1996, Leibundgut et al. 1996b, and Marvin &Perlmutter 1989). This tight a constraint on rise-timechange would theoretically limit the zero-point change toless than D0.1 mag (see Nugent et al. 1995 ; Ho" Ñich,Wheeler, & Thielemann 1998).

A change in typical C/O ratio can also a†ect the ignitiondensity of the explosion and the propagation characteristicsof the burning front. Such changes would be expected toappear as di†erences in light-curve timescales before andafter maximum & Khokhlov 1996). Preliminary(Ho" Ñichindications of consistency between such low- and high-redshift light-curve timescales suggest that this is probablynot a major e†ect for our supernova samples (Goldhaber etal. 1999).

Changes in typical progenitor metallicity should alsodirectly cause some di†erences in SN Ia spectral features

et al. 1998). Spectral di†erences big enough to(Ho" Ñicha†ect the B- and V -band light curves (see, e.g., the extrememixing models presented in Fig. 9 of et al. 1998)Ho" Ñichshould be clearly visible for the best signal-to-noise ratiospectra we have obtained for our distant supernovae, yetthey are not seen (Filippenko et al. 1998 ; Hook et al. 1998).The consistency of slopes in the light-curve width-luminosity relation for the low- and high-redshift super-novae can also constrain the possibility of a strongmetallicity e†ect of the type that et al. (1998)Ho" Ñichdescribes.

An additional concern might be that even small changesin spectral features with metallicity could in turn a†ect thecalculations of K-corrections and reddening corrections.This e†ect, too, is very small, less than 0.01 mag, for photo-metric observations of SNe Ia conducted in the rest-frame Bor V bands (see Figs. 8 and 10 of et al. 1998), as isHo" Ñichthe case for almost all of our supernovae. (Only two of oursupernovae have primary observations that are sensitive tothe rest-frame U band, where the magnitude can change byD0.05 mag, and these are the two supernovae with thelowest weights in our !ts, as shown by the error bars of Fig.2. In general the I-band observations, which are mostlysensitive to the rest-frame B band, provide the primary lightcurve at redshifts above 0.7.)

The above analyses constrain only the e†ect ofprogenitor-environment evolution on SN Ia intrinsic lumi-nosity ; however, the extinction of the supernova light couldalso be a†ected, if the amount or character of the dustevolves, e.g., with host galaxy age. In ° 4.1, we limited the

Perlmutter et al. (1999, ApJ)Riess et al. (1998, AJ)0.0 0.5 1.0 1.5 2.0 2.5

!M

-1

0

1

2

3!

"

68.3

%95

.4%

95.4%

99.7

%

99.7

%

99.7

%No

Big B

ang

!tot =1

Expands to Infinity

Recollapses !"=0

Open

Closed

Accelerating

Decelerating

q0=0

q0=-0.5

q0=0.5

^

MLCS

0.0 0.5 1.0 1.5 2.0 2.5

!M

-1

0

1

2

3

!"

68.3%

95.4

%

95.4%

99.7

%

99.7

%

99.7

%No

Big B

ang

!tot =1

Expands to Infinity

Recollapses !"=0

Open

Closed

Accelerating

Decelerating

q0=0

q0=-0.5

q0=0.5

^

#m15(B)

No. 3, 1998 EVIDENCE FOR AN ACCELERATING UNIVERSE 1023

FIG. 6.ÈJoint con!dence intervals for from SNe Ia. The solid()M

, )")contours are results from the MLCS method applied to well-observed SNeIa light curves together with the snapshot method et al.(Riess 1998b)applied to incomplete SNe Ia light curves. The dotted contours are for thesame objects excluding the unclassi!ed SN 1997ck (z \ 0.97). Regions rep-resenting speci!c cosmological scenarios are illustrated. Contours areclosed by their intersection with the line )

M\ 0.

The normalized PDF comes from dividing this relativePDF by its sum over all possible states,

p(H0, )m, )" o l0)

\ exp ([s2/2)/~== dH0 /~== d)" /0= exp ([s2/2)d)

M, (10)

neglecting the unphysical regions. The most likely values forthe cosmological parameters and preferred regions ofparameter space are located where is mini-equation (4)mized or, alternately, is maximized.equation (10)

The Hubble constants as derived from the MLCSmethod, 65.2 ^ 1.3 km s~1 Mpc~1, and from the template-!tting approach, 63.8 ^ 1.3 km s~1 Mpc~1, are extremelyrobust and attest to the consistency of the methods. Thesedeterminations include only the statistical component oferror resulting from the point-to-point variance of the mea-sured Hubble Ñow and do not include any uncertainty inthe absolute magnitude of SN Ia. From three photoelec-trically observed SNe Ia, SN 1972E, SN 1981B, and SN1990N (Saha et al. the SN Ia absolute magni-1994, 1997),tude was calibrated from observations of Cepheids in thehost galaxies. The calibration of the SN Ia magnitude fromonly three objects adds an additional 5% uncertainty to theHubble constant, independent of the uncertainty in the zeropoint of the distance scale. The uncertainty in the Cepheid

distance scale adds an uncertainty of D10% to the derivedHubble constant & Walker(Feast 1987 ; Kochanek 1997 ;

& Freedman A realistic determination of theMadore 1998).Hubble constant from SNe Ia would give 65 ^ 7 km s~1Mpc~1, with the uncertainty dominated by the systematicuncertainties in the calibration of the SN Ia absolute magni-tude. These determinations of the Hubble constant employthe Cepheid distance scale of & FreedmanMadore (1991),which uses a distance modulus to the Large MagellanicCloud (LMC) of 18.50 mag. Parallax measurements by theHipparcos satellite indicate that the LMC distance could begreater, and hence our inferred Hubble constant smaller, by5% to 10% though not all agree with the inter-(Reid 1997),pretation of these parallaxes & Freedman(Madore 1998).All subsequent indications in this paper for the cosmo-logical parameters and are independent of the value)

M)"for the Hubble constant or the calibration of the SN Ia

absolute magnitude.Indications for and independent from can be)

M)", H0,

found by reducing our three-dimensional PDF to twodimensions. A joint con!dence region for and is)

M)"derived from our three-dimensional likelihood space

p()M

, )" o l0) \P~=

=p()

M, )", H0 o l0)dH0 . (11)

FIG. 7.ÈJoint con!dence intervals for from SNe Ia. The solid()M

, )")contours are results from the template-!tting method applied to well-observed SNe Ia light curves together with the snapshot method et(Riessal. applied to incomplete SNe Ia light curves. The dotted contours1998b)are for the same objects excluding the unclassi!ed SN 1997ck (z \ 0.97).Regions representing speci!c cosmological scenarios are illustrated. Con-tours are closed by their intersection with the line )

M\ 0.

Page 31: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

0.0 0.5 1.0 1.5 2.0!M

0.0

0.5

1.0

1.5

2.0!

"ESSENCE+SNLS+gold

(!M,!") = (0.27,0.73)!Total=1

SNe Ia alone require >0

at 99.995% conf.

Page 32: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

What To Do?

Think carefully

Different samples

Different splits of color vs. extinction

Understand dust in other galaxies

Understand any evolution of dust vs. redshift

Page 33: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

ESSENCE SNeIa From All 6 Years

~200 SNeIa2007

2002

2006

2003

2004

2005

Page 34: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Previous ESSENCE Hubble Diagram

0.2 0.4 0.6 0.8 1.0 1.2Redshift

14

16

18

20

22

24

26 µ

(mag

)

(ΩM, ΩΛ) = (1.0, 0.0)(ΩM, ΩΛ) = (0.3, 0.0)

(ΩM, ΩΛ) = (0.27, 0.73)

nearbyESSENCESNLS

Page 35: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

0.2 0.4 0.6 0.8 1.0 1.2Redshift

14

16

18

20

22

24

26 µ

(mag

)

(ΩM, ΩΛ) = (1.0, 0.0)(ΩM, ΩΛ) = (0.3, 0.0)

(ΩM, ΩΛ) = (0.27, 0.73)

nearbyESSENCESNLS

Preliminary Current ESSENCE Hubble Diagram

Page 36: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Summary & Future The State of LCDM is Strong

Tackle Extinction vs. Intrinsic Color

UV - Optical - NIR data

More nearby SNeIa: +300 from KAIT, CSP, CfA

SDSS-II, ESSENCE, SNLS joint analysis

Pan-STARRS1, Dark Energy Survey, LSST

JDEM with supernovae

Page 37: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

ESSENCE Status Summary

Flat Universe model with a cosmological constant works fine.

w=-1.05 +- 0.11 (stat) +- 0.13 (sys)

Final ESSENCE results: due in 2008

Double sample

Improve systematics

Reach goal: w to 10%

Page 38: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Future of Probing the Nature of Dark Energy

SN cosmology tests

Gravitational lensing

Galaxy cluster abundances

Baryon oscillations

Particle physics experiments

Tests of gravity on all scales

signal!

Page 39: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Pan-STARRS

7 square degree field

1.8m effective aperture

24th magnitude in 300 sec

1 TB / night

Real-time analysis

Will find 10,000s of SNe!

Lensing shear map

Panoramic Survey Telescope & Rapid Response System

http://pan-starrs.ifa.hawaii.edu/

Page 40: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Medium-Deep SurveyPS1 PSDC-230-002-00

Figure 3: Celesitial sphere in Mercator projection showing extinction map from WMAP. The proposed Medium Deep

Fields are marked as black boxes, the white circle is one of the stellar transit fields, and the white square is M31. The

black line at -30 degrees Declination shows the southern limit of the PS1 Steradian Survey pointing centers.

Figure 4: Left: Outside view of the celestial sky tesselated into 6252 fields. Of these fields, 5464 have boresight centers

degrees Declination. Center, the 3 degree field of view of PS1 with an inscribed hexagon of 5.84 square degrees.

Right, the twenty percent overlap from a single tesselation due to the circular field of view.

PS1 MCS 12 September 25, 2006

Page 41: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Medium-Deep SurveyPS1 PSDC-230-002-00

Figure 3: Celesitial sphere in Mercator projection showing extinction map from WMAP. The proposed Medium Deep

Fields are marked as black boxes, the white circle is one of the stellar transit fields, and the white square is M31. The

black line at -30 degrees Declination shows the southern limit of the PS1 Steradian Survey pointing centers.

Figure 4: Left: Outside view of the celestial sky tesselated into 6252 fields. Of these fields, 5464 have boresight centers

degrees Declination. Center, the 3 degree field of view of PS1 with an inscribed hexagon of 5.84 square degrees.

Right, the twenty percent overlap from a single tesselation due to the circular field of view.

PS1 MCS 12 September 25, 2006

Page 42: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 43: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

LSST

10 square degree field

6.5m effective aperture

24th magnitude in 20 sec

20 TB / night

Real-time analysis

Will find millions of SNe!

Lensing, BAO, Clusters

Large Synoptic Survey Telescope

Page 44: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Strongly Lensed SNeIa

100,000s of high-z SNeIa 0.1-1% should be strongly lensed

Multiply-imaged SNeIa time-delay with known magnification Measure H0

improve complementary cosmological constraints

!"#$%&'($'")*$'+,-*.#*'.%/01#-*2'&*/*,/&3#*1+4.#&*'2*low-redshift Type Ia

!5#*60%7'+%*.&#/8013*%7#*9:*(#$*$/-#1$#*02 /*20.#&*("#$%&'3&/"7*0(*/%%/$7#-*

%'*;!!<=*>1*/1)*;!!<*20#,-?*%7#&#*60,,*.#*%)"0$/,,)*/.'+%*@*%)"#*>/ !5*.#,'6*

&#-(702%* :=@A* /%* /1)* %04#* '2* '.(#&B/%0'1=* <7#(#* !5#* CD@:?:::E)#/&F* /&#*

.&037%* #1'+37* ('* %7/%* (7'&%* #G"'(+&#(* 60,,* )0#,-* (+220$0#1%* !E5* &/%0'* 2'&*

("#$%&/,*0-#1%020$/%0'1(=*

H,%#&1/%0B#,)?* /* ,/&3#* (/4",#* '2* 1#/&.)* !5#* $/1* /,('* .#* 2',,'6#- +"*

("#$%&'($'"0$/,,)* .)* 60-#* 20#,-* ("#$%&'($'"0$* (+&B#)* 2/$0,0%0#(* (+$7* /(* %7#*

;/&3#* (8)* H&#/* I+,%0JK.L#$%* !"#$%&'($'"0$* <#,#($'"#* C;HIK!<F* .#013*

$'1(%&+$%#-* 01* M701/=* N0%7* /* 20#,-* '2* B0#6* '2* O:* (P+/&#* -#3&##(* /1-* /1*

/"#&%+&#* '2* Q*4#%#&(?* %7#&#* /&#* /.'+%* @@* <)"#* >/* !5#* /%* /1)* %04# 01* %7#*

;HIK!<*20#,-*%7/%*/&#*/%*&#-(702%*.#,'6*:=9=*.&037%*#1'+37*2'&*("#$%&'($'"0$*

'.(#&B/%0'1(=*N0%7*%)"0$/,*#G"'(+&#*%04#*'2*@=R*7'+&(?*;HIK!<*$/1*'.(#&B#*

/.'+%*@:?:::*<)"#*>/*!5#*-+&013*0%(*(+&B#)*4'-#*#B#&)*)#/&=

!"#$%&'($'")*'2*SNe at redshifts higher than 0.3 0(*,08#,)*%'*&#4/01*-0220$+,%*

2'&*%7#*2'&#(##/.,#*2+%+&#=*H*(+.J(/4",#*'2*%7#(#*!5#*4/)*.#*(#,#$%#-*2'&*

("#$%&'($'"0$*(%+-0#(*.+%* %7#* %'%/,*1+4.#&*'2*(+$7*'.(#&B/%0'1(* 0(* ,08#,)* %'*

.#*(4/,,=* ;!!<S(* ,037%$+&B#(*60,,* .#* 2/&*4'&#*-#%/0,#-* %7/1* %7'(#*'.%/01#-*

2&'4* "&#(#1%J-/)* (#/&$7#(?* 7'6#B#&T* %70(* 4/8#(* 0%* "'((0.,#* %'* '.%/01*

"7'%'4#%&0$*&#-(702%(*2&'4*%7#*!5#*%7#4(#,B#(?*01*/--0%0'1*%'*%7'(#*'.%/01#-*

2&'4*%7#0&*7'(%*3/,/G0#(=*H*<)"#*>/*!5*("#$%&+4*7/(*4/1)*(%&'13*("#$%&/,*

2#/%+&#(* 670$7* "&'B0-#* %7#* (/4#* '""'&%+10%)* 2'&* "7'%'4#%&0$* &#-(702%*

-#%#&401/%0'1* /(* 01* 3/,/G0#(=* U1,08#* /* 3/,/G)* ("#$%&+4?* 7'6#B#&? %7#* !5*

("#$%&+4*#B',B#(*60%7*%04#*01*/*B#&)*("#$020$*6/)?*'1#*7037,)*$'&&#,/%#-*60%7*

%7#*60-%7*"/&/4#%#&*/(*4#/(+&#-*2&'4*%7#*,037%$+&B#=*<7+(?*!5#*(7'+,-*.#*

.#%%#&J(+0%#-*%7/1*3/,/G0#(*2'&*"7'%'4#%&0$*&#-(702%*-#%#&401/%0'1=*<7# ,/&3#*

1+4.#&*'2*!5#*/%*&#-(702%(*.#,'6*:=9*$/1*.#*+(#-*%'*$/,0.&/%#*"7'%'4#%&0$*

&#-(702%(*'2*!5#=

<'*%#(%*%7#*7)"'%7#(0(*'2*-#-+$013*photometric redshifts 2&'4*4+,%0J#"'$7*

!5* ,037%$+&B#(?* 6#* 7/B#* "#&2'&4#-* /* (04+,/%0'1* '2* /* -##"* !5#* (#/&$7=*

!)1%7#%0$* ,037%$+&B#(* /&#* '.%/01#-* 2&'4*/* 2/0&,)* $'4",#%#* (04+,/%0'1* '2* %7#*

'.(#&B013* /1-* -/%/* &#-+$%0'1* "&'$#((?* 01$,+-013* %7#* #22#$%(* '2* 6#/%7#&?*

B/&0/.,#*(##013?*"7'%'1*(%/%0(%0$(?*/1-*'%7#&*('+&$#(*'2*"7'%'4#%&0$*#&&'&(=*

V/$7* ,037%$+&B#* 0(* %7#1* (+.L#$%#-* %'* /* 20B#J"/&/4#%#&* 20%?* 2'&* %04#* '2*

#G",'(0'1?* 60-%7* "/&/4#%#&?* &#-(702%?* 7'(%J3/,/G)* &#--#1013?* /1-* -0(%/1$#*

4'-+,+(=* <7#* "&#,0401/&)* &#(+,%(* (7'6* %7/%* 0%* 0(* "'((0.,#* %'* -#&0B#* !5#

&#-(702%(*%'*.#%%#&*%7/1*@W=

<7#*;!!<*&#(#/&$7*/1-*-#B#,'"4#1%*#22'&%*0(*2+1-#-*01*"/&%*.)*%7<7#*;!!<*&#(#/&$7*/1-*-#B#,'"4#1%*#22'&%*0(*2+1-#-*01*"/&%*.)*%7#*5/%0'1/,*!$0#1$#*X'+1-/%0'1*+1-#&*!$0#1%020$*Y&'3&/4*K&-#&*5'=#*5/%0'1/,*!$0#1$#*X'+1-/%0'1*+1-#&*!$0#1%020$*Y&'3&/4*K&-#&*5'= Z*CH!<Z*CH!<JJ:RR@@[@F*%7&'+37*M''"#&/%0B#*H3&##4#1%*H!<:RR@@[@F*%7&'+37*M''"#&/%0B#*H3&##4#1%*H!<JJ:@9OAZ\=**:@9OAZ\=**

H--0%0'1/,*2+1-013*$'4#(*2&'4*"&0B/%#*-'1/%0'1(?*01H--0%0'1/,*2+1-013*$'4#(*2&'4*"&0B/%#*-'1/%0'1(?*01JJ801-*(+""'&%*/%*]#"/&%4#1%*'2**V1#&3)*,/.'&/%'&0#(*/1-*'%7#&*;!!801-*(+""'&%*/%*]#"/&%4#1%*'2**V1#&3)*,/.'&/%'&0#(*/1-*'%7#&*;!!<M*>1(%0%+%0'1/,*I#4.#&(=<M*>1(%0%+%0'1/,*I#4.#&(=

U10B#&(0%)*'2*M/,02'&10/?*]/B0(U10B#&(0%)*'2*M/,02'&10/?*]/B0(

U10B#&(0%)*'2*>,,01'0(*/%*U&./1/U10B#&(0%)*'2*>,,01'0(*/%*U&./1/JJM7/4"/031M7/4"/031

;/6&#1$#*;0B#&4'&#*5/%0'1/,*;/.'&/%'&);/6&#1$#*;0B#&4'&#*5/%0'1/,*;/.'&/%'&)

!%/12'&-*;01#/&*H$$#,#&/%'&*M#1%#&!%/12'&-*;01#/&*H$$#,#&/%'&*M#1%#&

!%/12'&-*U10B#&(0%)!%/12'&-*U10B#&(0%)

<7#*Y#11(),B/10/*!%/%#*U10B#&(0%)<7#*Y#11(),B/10/*!%/%#*U10B#&(0%)

^&''87/B#1*5/%0'1/,*;/.'&/%'&)^&''87/B#1*5/%0'1/,*;/.'&/%'&)

_/&B/&-_/&B/&-JJ!40%7('10/1*M#1%#&*2'&*H(%&'"7)(0$(!40%7('10/1*M#1%#&*2'&*H(%&'"7)(0$(

`'71(*_'"801(*U10B#&(0%)`'71(*_'"801(*U10B#&(0%)

;/(*M+4.&#(*K.(#&B/%'&)?*>1$=;/(*M+4.&#(*K.(#&B/%'&)?*>1$=

5/%0'1/,*K"%0$/,*H(%&'1'4)*K.(#&B/%'&)5/%0'1/,*K"%0$/,*H(%&'1'4)*K.(#&B/%'&)

a#(#/&$7*M'&"'&/%0'1a#(#/&$7*M'&"'&/%0'1

<7#*U10B#&(0%)*'2*H&0b'1/<7#*U10B#&(0%)*'2*H&0b'1/

U10B#&(0%)*'2*N/(7013%'1U10B#&(0%)*'2*N/(7013%'1

LSST Supernova LSST Supernova

CosmologyCosmologyL. Wang (LBNL), P. Pinto (U Arizona), H. Zhan (UC Davis)

;!!<* 60,,* -#%#$%* &'+37,)* \::* !5#* #B#&)* 1037%* .#%6##1* 0%(*

shallow and deep searches?* 60%7* 2/&* 4'&#* -#%/0,#-*

,037%$+&B#(*%7/1*%7'(#*'.%/01#-*.)*"&#(#1%J-/)*(#/&$7#(=*X'&*

%7#*-##"*(#/&$7?*'.(#&B/%0'1(*/&#*4/-#*2'&* %#1*401+%#(*"#&*

1037%?* -0B0-013* %70(* %04#* 01* /* 20B#J-/)* $/-#1$#* /4'13* %7#*

3&0bc 20,%#&* (#%=* <7#* &#(+,%013* ,037%$+&B#(* 60,,* 7/B#*

+1"&#$#-#1%#-* %04#* /1-* $','&* (/4",013?* 2',,'6013* %#1(* '2*

%7'+(/1-(* '2* !5#* %7&'+37'+%* %7#0&* #B',+%0'1* 60%7* 'B#&* @::*

"7'%'4#%&0$*"'01%(*"#&*,037%$+&B#=

H.'B#d* K1#J! #&&'&* $'1%'+&(* 01* %7#*w:e"4 ",/1#* 2'&* ;!!<*

SNe C&#-*,01#F*/1-*;!!<*baryon acoustic oscillations C^HK?*

.,+#* /1-* 4/3#1%/* ,01#(F=* N#* /((+4#* /* 2,/%* +10B#&(#* 60%7*

$'1(%/1%* -/&8* #1#&3)* #P+/%0'1* '2* (%/%#*w:=* <7#(#* ;!!<* !5*

$'1(%&/01%(* /&#* '.%/01#-* 60%7* @R?:::* !5#* %'* /* &#-(702%* b* D*

:=\R=* X'&* ^HK?*6#* /((+4#* /* (+&2/$#* -#1(0%)* '2* Q\* 3/,/G0#(*

"#&*(P+/&#*/&$401=*<7#*(+&B#)*0(*-0B0-#-*01%'*A*&'+37,)*#P+/,J

60-%7*&#-(702%*.01(*2&'4*z f*:=O*%'*9=*Y7'%'4#%&0$*&#-(702%*#&&'&(*

'2*3/,/G0#(*/&#*4'-#,#-*60%7*/*g/+((0/1*-0(%&0.+%0'1*'2*&4( !bf*!b: C@* h* bF* /1-* .0/(* #b=* <7#*4/3#1%/* ,01#* $'&&#("'1-(* %'*

'"%040(%0$* "&0'&(* '1* !b: /1-* #b?* 670,#* %7#* .,+#* ,01#* %'*

"#((040(%0$* "&0'&(=* ;!!<*!5* /1-* ^HK* $'1(%&/01%(* /&#* 1#/&,)*

'&%7'3'1/,* %'* #/$7* '%7#&?* (+$7* %7/%* %7#* $'4.01/%0'1* 60,,* .#*

,#((* "&'1#* %'* +1$#&%/01%0#(* '2* %7#* 3/,/G)* "7'%'Jb* #&&'&*

-0(%&0.+%0'1=*>1*/--0%0'1?*;!!<*weak lensing (7#/&*$'J("#$%&/*

60,,* ",/$#* 01-#"#1-#1%* C6=&=%=* !5#F* $'1(%&/01%(* %7/%* 4/8#* /*

,/&3#*/13,#*60%7* %7#* #&&'&* $'1%'+&* 2&'4*!5#=* *With all three

precision probes – Type Ia SNe, BAO, and weak lensing –

LSST will be a powerful tool for studying the properties of

dark energy and its evolution.

H.'B#d* _+..,#* -0/3&/4* 2'&* 9:?:::* !5#* '.%/01#-* 'B#&* %7&##*

)#/&(* 01* /* (013,#* 20#,-?* 60%7* &#-(702%(* -#%#&401#-* "7'%'J

4#%&0$/,,)=* a#30'1(* '2* /""/&#1%,)* 01$&#/(#-* ($/%%#&* /$%+/,,)*

$'1%/01*P+0%#*/*(4/,,*1+4.#&*CD@::F*'2*$/(#(*67#&#*%7#*20%%013*

"&'$#-+&#*-0-* 1'%* "#&2'&4*/(*6#,,* /(* +(+/,=* <7#* $+%J'22* 1#/&*

bD@=9* '$$+&(* /(* %7#* !5* &#-(702%* '+%* '2* %7#* ("#$%&/,* &/13#*

$'B#&#-*.)*;!!<S(*3&0bc 20,%#&*(#%=

V/$7* )#/&?* ;!!<*60,,* .#* /.,#* %'* '.(#&B#* 9:?:::* <)"#* >/* !5#* /%* &#-(702%*

.#,'6* :=9?*60%7* 7037JP+/,0%)*4+,%0J./1-* "7'%'4#%&)* /1-* ("#$%&'($'")* 2&'4*

2',,'6*+"*'.(#&B/%0'1(=*!+$7*/* ,/&3#*1+4.#&*'2*!5#*60,,*#1/.,#*+(*%'*(+.J

$,/((02)* <)"#* >/* !5#* 01%'* 4+$7* 201#&* 3&0-(=* <70(* 4/)* #B#1%+/,,)* 4/8#* 0%*

"'((0.,#*%'*(031020$/1%,)*&#-+$#*%7#*-0("#&(0'1*'2*-0(%/1$#*#(%04/%#(*$/+(#-*

.)*B/&0/%0'1(*01*%7#*01%&01(0$*"&'"#&%0#(*'2*!5#=*<7#*81'6,#-3#*-#-+$#-*2&'4*

%7#* ,'6* &#-(702%* !5#* 60,,* /,('* .#* +(#-* %'* $'1(%&/01* ()(%#4/%0$* #&&'&(* '2*

"7'%'4#%&0$*&#-(702%*#(%04/%#(*1#$#((/&)*2'&*!5#*/%*4+$7*7037#&*&#-(702%(=

Summaryd* M+&&#1%* $'(4','30$/,* /"",0$/%0'1(* '2* <)"#* >/* !5#* /&#*./(#-*'1*B#&)*(04",#*4'-#,(*01*670$7*%7#*01%&01(0$*"&'"#&%0#(*'2 !5#*

>/* /&#* $7/&/$%#&0b#-* .)* '1,)* '1#* '&* %6'* "/&/4#%#&(=* 5'1#%7#,#((?

%7#(#*4'-#,(?*./(#-*+"'1*-/%/*2&'4*2#6#&*%7/1*@::*1#/&.)*<)"#*>/

!5#?* 7/B#* "&'B0-#-* -0(%/1$#* #(%04/%#(* /(* /$$+&/%#* /(* AW=* <7#*

;!!<*60,,*'.(#&B#*4'&#*%7/1*O::*%04#(*/(*4/1)*1#/&.)*<)"#*>/*!5#

#/$7*)#/&=*H1*;!!<*(#,#$%#-*/&#/*(+&B#)*60,,* 7/B#*+1"&#$#-#1%#-*

%04#*/1-*$','&*(/4",013*/1-*2',,'6*4'&#*%7/1*@::?:::*!5#*"#&*20#,-*

+"* %'* z D* @=O* %7&'+37'+%* %7#0&* ,037%$+&B#(=* !+$7* ,/&3#* 1+4.#&(* '2*

!5#*60,,*(031020$/1%,)*04"&'B#*'+&*+1-#&(%/1-013*'2*%7#(#*#G",'(0'1(*

/1-* /,,'6* -#%#&401013* /--0%0'1/,* ,037%$+&B#* "/&/4#%#&(=* <70(* 60,,*

(+.(%/1%0/,,)*&#-+$#*()(%#4/%0$*#&&'&(* 01*-0(%/1$#*#(%04/%#(*/1- 60,,*

/$70#B#* $'1(%&/01%(* '1* %7#* 1/%+&#* '2* * -/&8* #1#&3)* /1-* '%7#&*

$'(4','30$/,*"/&/4#%#&(*'2*+1"&#$#-#1%#-*"&#$0(0'1=

H*2&/$%0'1*C:=@*D*@WF*'2*z D*@*!5# 60,,*.#*3&/B0%/%0'1/,,)*,#1(#-*

.)* 2'&#3&'+1-* 3/,/G0#(=* K.(#&B/%0'1(* '2* ,#1(#-* !5#* 60,,*

"&'B0-#*"&#$0(#*-#%#&401/%0'1(*'2*%7#*Hubble constant H: C(##*

"'(%#&* O[=:9F?* $&+$0/,* 2'&* /$70#B013* %037%* $'1(%&/01%(* '1* -/&8*

#1#&3)*2&'4*!5#*67#1*"i 0(*/*2&##*"/&/4#%#&*C;01-#&*O::RF=

H.'B#*C</8#1*2&'4*K3+&0 j*i/6/1'*O::9?*I5aH!?*99\?*;ORFd*M'1(%&/01%(*

'1* %7#* &/-0/,*4/((* "&'20,#*! /1-* %7#* _+..,#* $'1(%/1%* 7* 2&'4* R* P+/-&+",#*

,#1(*#B#1%(*'2*k!K( C,#2%*"/1#,F*/1-*<)"#*>/*!5#*C&037%*"/1#,F=*!5#*7/B#*

6#,,J$/,0.&/%#-* ,+401'(0%0#(* %7/%* /,,'6* 2'&* /1* /.(',+%#* 4#/(+&#* '2* %7#*

4/31020$/%0'1*/1-*%7+(*.&#/8*%7#*4/((J(7##%*-#3#1#&/$)*(+22#&#-*.)*'%7#&*

,#1(013*4#/(+&#4#1%(=

In its normal survey mode, LSST will discover more than 280,000 Type Ia supernovae (SNe Ia) per year across the visible sky to a redshift of ~0.8. With a deep, pointed search in three 10-deg2

fields, it will discover and closely monitor 30,000 SNe annually to a redshift of z ~1.2. Using these SNe for cosmology will rely upon spectroscopic follow-up capabilities and upon novel methods

of deducing photometric redshifts from multi-band supernova light curves. This poster provides a sample of how LSST SNe Ia will be used as cosmological probes. A primary goal will be to

detect systematics affecting the supernova cosmology program and, at the same time, to constrain cosmological parameters. This will be feasible because LSST's extremely large sample size

allows for multiple parameter fits which can self-calibrate systematics in ways not accessible to current surveys. The systematic relations deduced from these SNe will be helpful for current and

future space-based projects targeting SNe at even higher redshifts. Such large samples will also enable discoveries of SNe Ia affected by foreground gravitational lensing. We explore the use of

LSST's SNe in constraining the behavior of dark energy and show how their combination with baryonic oscillation investigations will make LSST a particularly powerful experiment to this end.

Finally, we show how the distribution of so many well-observed SNe across the sky will constrain the angular variation of cosmological parameters.

H.'B#d* !04+,/%#-* ,037%$+&B#(* 2&'4* %7#* ;!!<* -##"* (+&B#)* 2'&* /* !5* /%*

bf:=\9O=* <7#* (',0-* ,01#(* /&#* %7#* 01"+%* ,037%* $+&B#(=* !+$7* -#%/0,#-* ,037%*

$+&B#(?* $'4.01#-* 60%7* 81'6,#-3#* -#&0B#-* 2&'4* %7#* #G$##-013,)* ,/&3#*

1+4.#&*'2*1#/&.)*(+"#&1'B/*'.(#&B#-?*60,,*,08#,)*/,,'6*-#%#&401013*&#-(702%(*

%'*.#%%#&*%7/1*@W*./(#-*'1*"7'%'4#%&0$*-/%/*/,'1#=*!+$7*-#%/0,#- -/%/*/&#*

/,('* 04"'&%/1%* 2'&* #G%01$%0'1* $'&&#$%0'1(* /1-* 2'&* %7#* $'1%&',* '2 ()(%#4/%0$(*

/&0(013*2&'4*B/&0/%0'1(*01%&01(0$*%'*%7#*(+"#&1'B/#*%7#4(#,B#(=

H.'B#d*<7#*20,%#&*(#%*'2*;!!<*",'%%#-*%'3#%7#&*60%7*!5#*>/*("#$%&/*/%*'"%0$/,*

4/G04+4?*/%*&#-(702%*b#&'*C.,/$8*(',0-*,01#F*/1-*/%*&#-(702%*'2*:=\*C&#-*(',0-*

,01#F=*<7#*./1-*"/((#(*/&#*(8#%$7#-*01*-'%%#-* ,01#(*2'&*3*C.,/$8F?*&*C.,+#F?* 0*

C3&##1F?*b*C&#-F?*/1-*c*C"+&",#F=

a#,/%0B#*4/31020$/%0'1

#=3=*k!K(

H.(',+%#*4/31020$/%0'1

#=3=*<)"#*>/*!5#

;!!<* !5#* 60,,* /,('* $'1(%&/01* /13+,/&* B/&0/%0'1(* '2*

$'(4','30$/,*"/&/4#%#&(*/$&'((*%7#*(8)=**!+$7*4#/(+&#4#1%(*

(#&B#* %6'* "+&"'(#(=* <7#)* 7#,"* $'1%&',* ()(%#4/%0$(* -+#* %'*

01$'4",#%#*+1-#&(%/1-013*'2*%7#*,'$/,*+10B#&(#?*(+$7*/(*%7'(#*

2&'4*%7#*I0,8)*N/)*-+(%*$'&&#$%0'1T*%7#)*"&'B0-#*'.(#&B/%0'1/,*

$'1(%&/01%(*'1* ,/&3#J($/,#*B#,'$0%)* 20#,-(* 01* %7#* ,'$/,*+10B#&(#T*

/1-* %7#)* $'1(%0%+%#* /* -0&#$%* %#(%* 2'&* 7'4'3#1#0%)* '2*

$'(4','30$/,*"/&/4#%#&(=

Oguri & Kawano (2003, MNRAS)

Page 45: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

LSST Opens up the Skies

Data will be immediately publicly available

Allow all colleges and institutions to do research with big telescopes

Will change the nature of research

Page 46: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

LSST Dark Energy

Supernovae

Weak Lensing

Baryon Oscillations

Galaxy Clusters

Page 47: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

LSST & Supernovae LSST will find millions of supernovae

Hundreds of thousands well-studied z < 1.2

Tens of thousands z < 0.3

Opportunity for SN science on a new level

Cosmology and Dark Energy

Supernovae qua supernovae

SNe trace structure

Rates: star-formation, galaxy environments

New brilliant ideas . . .

Page 48: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

0.0 0.2 0.4 0.6 0.8 1.0ΩM

-2.0

-1.5

-1.0

-0.5

0.0w

SNeIaBAO

SNeIa+BAO

w=-1.05 +- 0.11 +- 0.13

ESSENCE

Flat,constant-w

Page 49: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

0.0 0.2 0.4 0.6 0.8 1.0ΩM

-2.0

-1.5

-1.0

-0.5

0.0w

SNeIaBAO

SNeIa+BAO

w=-1.05 +- 0.11 +- 0.13

ESSENCE

Flat,constant-w

Page 50: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

LSST SN Ia (M, w)

!"#$%&'($'")*$'+,-*.#*'.%/01#-*2'&*/*,/&3#*1+4.#&*'2*low-redshift Type Ia

!5#*60%7'+%*.&#/8013*%7#*9:*(#$*$/-#1$#*02 /*20.#&*("#$%&'3&/"7*0(*/%%/$7#-*

%'*;!!<=*>1*/1)*;!!<*20#,-?*%7#&#*60,,*.#*%)"0$/,,)*/.'+%*@*%)"#*>/ !5*.#,'6*

&#-(702%* :=@A* /%* /1)* %04#* '2* '.(#&B/%0'1=* <7#(#* !5#* CD@:?:::E)#/&F* /&#*

.&037%* #1'+37* ('* %7/%* (7'&%* #G"'(+&#(* 60,,* )0#,-* (+220$0#1%* !E5* &/%0'* 2'&*

("#$%&/,*0-#1%020$/%0'1(=*

H,%#&1/%0B#,)?* /* ,/&3#* (/4",#* '2* 1#/&.)* !5#* $/1* /,('* .#* 2',,'6#- +"*

("#$%&'($'"0$/,,)* .)* 60-#* 20#,-* ("#$%&'($'"0$* (+&B#)* 2/$0,0%0#(* (+$7* /(* %7#*

;/&3#* (8)* H&#/* I+,%0JK.L#$%* !"#$%&'($'"0$* <#,#($'"#* C;HIK!<F* .#013*

$'1(%&+$%#-* 01* M701/=* N0%7* /* 20#,-* '2* B0#6* '2* O:* (P+/&#* -#3&##(* /1-* /1*

/"#&%+&#* '2* Q*4#%#&(?* %7#&#* /&#* /.'+%* @@* <)"#* >/* !5#* /%* /1)* %04# 01* %7#*

;HIK!<*20#,-*%7/%*/&#*/%*&#-(702%*.#,'6*:=9=*.&037%*#1'+37*2'&*("#$%&'($'"0$*

'.(#&B/%0'1(=*N0%7*%)"0$/,*#G"'(+&#*%04#*'2*@=R*7'+&(?*;HIK!<*$/1*'.(#&B#*

/.'+%*@:?:::*<)"#*>/*!5#*-+&013*0%(*(+&B#)*4'-#*#B#&)*)#/&=

!"#$%&'($'")*'2*SNe at redshifts higher than 0.3 0(*,08#,)*%'*&#4/01*-0220$+,%*

2'&*%7#*2'&#(##/.,#*2+%+&#=*H*(+.J(/4",#*'2*%7#(#*!5#*4/)*.#*(#,#$%#-*2'&*

("#$%&'($'"0$*(%+-0#(*.+%* %7#* %'%/,*1+4.#&*'2*(+$7*'.(#&B/%0'1(* 0(* ,08#,)* %'*

.#*(4/,,=* ;!!<S(* ,037%$+&B#(*60,,* .#* 2/&*4'&#*-#%/0,#-* %7/1* %7'(#*'.%/01#-*

2&'4* "&#(#1%J-/)* (#/&$7#(?* 7'6#B#&T* %70(* 4/8#(* 0%* "'((0.,#* %'* '.%/01*

"7'%'4#%&0$*&#-(702%(*2&'4*%7#*!5#*%7#4(#,B#(?*01*/--0%0'1*%'*%7'(#*'.%/01#-*

2&'4*%7#0&*7'(%*3/,/G0#(=*H*<)"#*>/*!5*("#$%&+4*7/(*4/1)*(%&'13*("#$%&/,*

2#/%+&#(* 670$7* "&'B0-#* %7#* (/4#* '""'&%+10%)* 2'&* "7'%'4#%&0$* &#-(702%*

-#%#&401/%0'1* /(* 01* 3/,/G0#(=* U1,08#* /* 3/,/G)* ("#$%&+4?* 7'6#B#&? %7#* !5*

("#$%&+4*#B',B#(*60%7*%04#*01*/*B#&)*("#$020$*6/)?*'1#*7037,)*$'&&#,/%#-*60%7*

%7#*60-%7*"/&/4#%#&*/(*4#/(+&#-*2&'4*%7#*,037%$+&B#=*<7+(?*!5#*(7'+,-*.#*

.#%%#&J(+0%#-*%7/1*3/,/G0#(*2'&*"7'%'4#%&0$*&#-(702%*-#%#&401/%0'1=*<7# ,/&3#*

1+4.#&*'2*!5#*/%*&#-(702%(*.#,'6*:=9*$/1*.#*+(#-*%'*$/,0.&/%#*"7'%'4#%&0$*

&#-(702%(*'2*!5#=

<'*%#(%*%7#*7)"'%7#(0(*'2*-#-+$013*photometric redshifts 2&'4*4+,%0J#"'$7*

!5* ,037%$+&B#(?* 6#* 7/B#* "#&2'&4#-* /* (04+,/%0'1* '2* /* -##"* !5#* (#/&$7=*

!)1%7#%0$* ,037%$+&B#(* /&#* '.%/01#-* 2&'4*/* 2/0&,)* $'4",#%#* (04+,/%0'1* '2* %7#*

'.(#&B013* /1-* -/%/* &#-+$%0'1* "&'$#((?* 01$,+-013* %7#* #22#$%(* '2* 6#/%7#&?*

B/&0/.,#*(##013?*"7'%'1*(%/%0(%0$(?*/1-*'%7#&*('+&$#(*'2*"7'%'4#%&0$*#&&'&(=*

V/$7* ,037%$+&B#* 0(* %7#1* (+.L#$%#-* %'* /* 20B#J"/&/4#%#&* 20%?* 2'&* %04#* '2*

#G",'(0'1?* 60-%7* "/&/4#%#&?* &#-(702%?* 7'(%J3/,/G)* &#--#1013?* /1-* -0(%/1$#*

4'-+,+(=* <7#* "&#,0401/&)* &#(+,%(* (7'6* %7/%* 0%* 0(* "'((0.,#* %'* -#&0B#* !5#

&#-(702%(*%'*.#%%#&*%7/1*@W=

<7#*;!!<*&#(#/&$7*/1-*-#B#,'"4#1%*#22'&%*0(*2+1-#-*01*"/&%*.)*%7<7#*;!!<*&#(#/&$7*/1-*-#B#,'"4#1%*#22'&%*0(*2+1-#-*01*"/&%*.)*%7#*5/%0'1/,*!$0#1$#*X'+1-/%0'1*+1-#&*!$0#1%020$*Y&'3&/4*K&-#&*5'=#*5/%0'1/,*!$0#1$#*X'+1-/%0'1*+1-#&*!$0#1%020$*Y&'3&/4*K&-#&*5'= Z*CH!<Z*CH!<JJ:RR@@[@F*%7&'+37*M''"#&/%0B#*H3&##4#1%*H!<:RR@@[@F*%7&'+37*M''"#&/%0B#*H3&##4#1%*H!<JJ:@9OAZ\=**:@9OAZ\=**

H--0%0'1/,*2+1-013*$'4#(*2&'4*"&0B/%#*-'1/%0'1(?*01H--0%0'1/,*2+1-013*$'4#(*2&'4*"&0B/%#*-'1/%0'1(?*01JJ801-*(+""'&%*/%*]#"/&%4#1%*'2**V1#&3)*,/.'&/%'&0#(*/1-*'%7#&*;!!801-*(+""'&%*/%*]#"/&%4#1%*'2**V1#&3)*,/.'&/%'&0#(*/1-*'%7#&*;!!<M*>1(%0%+%0'1/,*I#4.#&(=<M*>1(%0%+%0'1/,*I#4.#&(=

U10B#&(0%)*'2*M/,02'&10/?*]/B0(U10B#&(0%)*'2*M/,02'&10/?*]/B0(

U10B#&(0%)*'2*>,,01'0(*/%*U&./1/U10B#&(0%)*'2*>,,01'0(*/%*U&./1/JJM7/4"/031M7/4"/031

;/6&#1$#*;0B#&4'&#*5/%0'1/,*;/.'&/%'&);/6&#1$#*;0B#&4'&#*5/%0'1/,*;/.'&/%'&)

!%/12'&-*;01#/&*H$$#,#&/%'&*M#1%#&!%/12'&-*;01#/&*H$$#,#&/%'&*M#1%#&

!%/12'&-*U10B#&(0%)!%/12'&-*U10B#&(0%)

<7#*Y#11(),B/10/*!%/%#*U10B#&(0%)<7#*Y#11(),B/10/*!%/%#*U10B#&(0%)

^&''87/B#1*5/%0'1/,*;/.'&/%'&)^&''87/B#1*5/%0'1/,*;/.'&/%'&)

_/&B/&-_/&B/&-JJ!40%7('10/1*M#1%#&*2'&*H(%&'"7)(0$(!40%7('10/1*M#1%#&*2'&*H(%&'"7)(0$(

`'71(*_'"801(*U10B#&(0%)`'71(*_'"801(*U10B#&(0%)

;/(*M+4.&#(*K.(#&B/%'&)?*>1$=;/(*M+4.&#(*K.(#&B/%'&)?*>1$=

5/%0'1/,*K"%0$/,*H(%&'1'4)*K.(#&B/%'&)5/%0'1/,*K"%0$/,*H(%&'1'4)*K.(#&B/%'&)

a#(#/&$7*M'&"'&/%0'1a#(#/&$7*M'&"'&/%0'1

<7#*U10B#&(0%)*'2*H&0b'1/<7#*U10B#&(0%)*'2*H&0b'1/

U10B#&(0%)*'2*N/(7013%'1U10B#&(0%)*'2*N/(7013%'1

LSST Supernova LSST Supernova

CosmologyCosmologyL. Wang (LBNL), P. Pinto (U Arizona), H. Zhan (UC Davis)

;!!<* 60,,* -#%#$%* &'+37,)* \::* !5#* #B#&)* 1037%* .#%6##1* 0%(*

shallow and deep searches?* 60%7* 2/&* 4'&#* -#%/0,#-*

,037%$+&B#(*%7/1*%7'(#*'.%/01#-*.)*"&#(#1%J-/)*(#/&$7#(=*X'&*

%7#*-##"*(#/&$7?*'.(#&B/%0'1(*/&#*4/-#*2'&* %#1*401+%#(*"#&*

1037%?* -0B0-013* %70(* %04#* 01* /* 20B#J-/)* $/-#1$#* /4'13* %7#*

3&0bc 20,%#&* (#%=* <7#* &#(+,%013* ,037%$+&B#(* 60,,* 7/B#*

+1"&#$#-#1%#-* %04#* /1-* $','&* (/4",013?* 2',,'6013* %#1(* '2*

%7'+(/1-(* '2* !5#* %7&'+37'+%* %7#0&* #B',+%0'1* 60%7* 'B#&* @::*

"7'%'4#%&0$*"'01%(*"#&*,037%$+&B#=

H.'B#d* K1#J! #&&'&* $'1%'+&(* 01* %7#*w:e"4 ",/1#* 2'&* ;!!<*

SNe C&#-*,01#F*/1-*;!!<*baryon acoustic oscillations C^HK?*

.,+#* /1-* 4/3#1%/* ,01#(F=* N#* /((+4#* /* 2,/%* +10B#&(#* 60%7*

$'1(%/1%* -/&8* #1#&3)* #P+/%0'1* '2* (%/%#*w:=* <7#(#* ;!!<* !5*

$'1(%&/01%(* /&#* '.%/01#-* 60%7* @R?:::* !5#* %'* /* &#-(702%* b* D*

:=\R=* X'&* ^HK?*6#* /((+4#* /* (+&2/$#* -#1(0%)* '2* Q\* 3/,/G0#(*

"#&*(P+/&#*/&$401=*<7#*(+&B#)*0(*-0B0-#-*01%'*A*&'+37,)*#P+/,J

60-%7*&#-(702%*.01(*2&'4*z f*:=O*%'*9=*Y7'%'4#%&0$*&#-(702%*#&&'&(*

'2*3/,/G0#(*/&#*4'-#,#-*60%7*/*g/+((0/1*-0(%&0.+%0'1*'2*&4( !bf*!b: C@* h* bF* /1-* .0/(* #b=* <7#*4/3#1%/* ,01#* $'&&#("'1-(* %'*

'"%040(%0$* "&0'&(* '1* !b: /1-* #b?* 670,#* %7#* .,+#* ,01#* %'*

"#((040(%0$* "&0'&(=* ;!!<*!5* /1-* ^HK* $'1(%&/01%(* /&#* 1#/&,)*

'&%7'3'1/,* %'* #/$7* '%7#&?* (+$7* %7/%* %7#* $'4.01/%0'1* 60,,* .#*

,#((* "&'1#* %'* +1$#&%/01%0#(* '2* %7#* 3/,/G)* "7'%'Jb* #&&'&*

-0(%&0.+%0'1=*>1*/--0%0'1?*;!!<*weak lensing (7#/&*$'J("#$%&/*

60,,* ",/$#* 01-#"#1-#1%* C6=&=%=* !5#F* $'1(%&/01%(* %7/%* 4/8#* /*

,/&3#*/13,#*60%7* %7#* #&&'&* $'1%'+&* 2&'4*!5#=* *With all three

precision probes – Type Ia SNe, BAO, and weak lensing –

LSST will be a powerful tool for studying the properties of

dark energy and its evolution.

H.'B#d* _+..,#* -0/3&/4* 2'&* 9:?:::* !5#* '.%/01#-* 'B#&* %7&##*

)#/&(* 01* /* (013,#* 20#,-?* 60%7* &#-(702%(* -#%#&401#-* "7'%'J

4#%&0$/,,)=* a#30'1(* '2* /""/&#1%,)* 01$&#/(#-* ($/%%#&* /$%+/,,)*

$'1%/01*P+0%#*/*(4/,,*1+4.#&*CD@::F*'2*$/(#(*67#&#*%7#*20%%013*

"&'$#-+&#*-0-* 1'%* "#&2'&4*/(*6#,,* /(* +(+/,=* <7#* $+%J'22* 1#/&*

bD@=9* '$$+&(* /(* %7#* !5* &#-(702%* '+%* '2* %7#* ("#$%&/,* &/13#*

$'B#&#-*.)*;!!<S(*3&0bc 20,%#&*(#%=

V/$7* )#/&?* ;!!<*60,,* .#* /.,#* %'* '.(#&B#* 9:?:::* <)"#* >/* !5#* /%* &#-(702%*

.#,'6* :=9?*60%7* 7037JP+/,0%)*4+,%0J./1-* "7'%'4#%&)* /1-* ("#$%&'($'")* 2&'4*

2',,'6*+"*'.(#&B/%0'1(=*!+$7*/* ,/&3#*1+4.#&*'2*!5#*60,,*#1/.,#*+(*%'*(+.J

$,/((02)* <)"#* >/* !5#* 01%'* 4+$7* 201#&* 3&0-(=* <70(* 4/)* #B#1%+/,,)* 4/8#* 0%*

"'((0.,#*%'*(031020$/1%,)*&#-+$#*%7#*-0("#&(0'1*'2*-0(%/1$#*#(%04/%#(*$/+(#-*

.)*B/&0/%0'1(*01*%7#*01%&01(0$*"&'"#&%0#(*'2*!5#=*<7#*81'6,#-3#*-#-+$#-*2&'4*

%7#* ,'6* &#-(702%* !5#* 60,,* /,('* .#* +(#-* %'* $'1(%&/01* ()(%#4/%0$* #&&'&(* '2*

"7'%'4#%&0$*&#-(702%*#(%04/%#(*1#$#((/&)*2'&*!5#*/%*4+$7*7037#&*&#-(702%(=

Summaryd* M+&&#1%* $'(4','30$/,* /"",0$/%0'1(* '2* <)"#* >/* !5#* /&#*./(#-*'1*B#&)*(04",#*4'-#,(*01*670$7*%7#*01%&01(0$*"&'"#&%0#(*'2 !5#*

>/* /&#* $7/&/$%#&0b#-* .)* '1,)* '1#* '&* %6'* "/&/4#%#&(=* 5'1#%7#,#((?

%7#(#*4'-#,(?*./(#-*+"'1*-/%/*2&'4*2#6#&*%7/1*@::*1#/&.)*<)"#*>/

!5#?* 7/B#* "&'B0-#-* -0(%/1$#* #(%04/%#(* /(* /$$+&/%#* /(* AW=* <7#*

;!!<*60,,*'.(#&B#*4'&#*%7/1*O::*%04#(*/(*4/1)*1#/&.)*<)"#*>/*!5#

#/$7*)#/&=*H1*;!!<*(#,#$%#-*/&#/*(+&B#)*60,,* 7/B#*+1"&#$#-#1%#-*

%04#*/1-*$','&*(/4",013*/1-*2',,'6*4'&#*%7/1*@::?:::*!5#*"#&*20#,-*

+"* %'* z D* @=O* %7&'+37'+%* %7#0&* ,037%$+&B#(=* !+$7* ,/&3#* 1+4.#&(* '2*

!5#*60,,*(031020$/1%,)*04"&'B#*'+&*+1-#&(%/1-013*'2*%7#(#*#G",'(0'1(*

/1-* /,,'6* -#%#&401013* /--0%0'1/,* ,037%$+&B#* "/&/4#%#&(=* <70(* 60,,*

(+.(%/1%0/,,)*&#-+$#*()(%#4/%0$*#&&'&(* 01*-0(%/1$#*#(%04/%#(*/1- 60,,*

/$70#B#* $'1(%&/01%(* '1* %7#* 1/%+&#* '2* * -/&8* #1#&3)* /1-* '%7#&*

$'(4','30$/,*"/&/4#%#&(*'2*+1"&#$#-#1%#-*"&#$0(0'1=

H*2&/$%0'1*C:=@*D*@WF*'2*z D*@*!5# 60,,*.#*3&/B0%/%0'1/,,)*,#1(#-*

.)* 2'&#3&'+1-* 3/,/G0#(=* K.(#&B/%0'1(* '2* ,#1(#-* !5#* 60,,*

"&'B0-#*"&#$0(#*-#%#&401/%0'1(*'2*%7#*Hubble constant H: C(##*

"'(%#&* O[=:9F?* $&+$0/,* 2'&* /$70#B013* %037%* $'1(%&/01%(* '1* -/&8*

#1#&3)*2&'4*!5#*67#1*"i 0(*/*2&##*"/&/4#%#&*C;01-#&*O::RF=

H.'B#*C</8#1*2&'4*K3+&0 j*i/6/1'*O::9?*I5aH!?*99\?*;ORFd*M'1(%&/01%(*

'1* %7#* &/-0/,*4/((* "&'20,#*! /1-* %7#* _+..,#* $'1(%/1%* 7* 2&'4* R* P+/-&+",#*

,#1(*#B#1%(*'2*k!K( C,#2%*"/1#,F*/1-*<)"#*>/*!5#*C&037%*"/1#,F=*!5#*7/B#*

6#,,J$/,0.&/%#-* ,+401'(0%0#(* %7/%* /,,'6* 2'&* /1* /.(',+%#* 4#/(+&#* '2* %7#*

4/31020$/%0'1*/1-*%7+(*.&#/8*%7#*4/((J(7##%*-#3#1#&/$)*(+22#&#-*.)*'%7#&*

,#1(013*4#/(+&#4#1%(=

In its normal survey mode, LSST will discover more than 280,000 Type Ia supernovae (SNe Ia) per year across the visible sky to a redshift of ~0.8. With a deep, pointed search in three 10-deg2

fields, it will discover and closely monitor 30,000 SNe annually to a redshift of z ~1.2. Using these SNe for cosmology will rely upon spectroscopic follow-up capabilities and upon novel methods

of deducing photometric redshifts from multi-band supernova light curves. This poster provides a sample of how LSST SNe Ia will be used as cosmological probes. A primary goal will be to

detect systematics affecting the supernova cosmology program and, at the same time, to constrain cosmological parameters. This will be feasible because LSST's extremely large sample size

allows for multiple parameter fits which can self-calibrate systematics in ways not accessible to current surveys. The systematic relations deduced from these SNe will be helpful for current and

future space-based projects targeting SNe at even higher redshifts. Such large samples will also enable discoveries of SNe Ia affected by foreground gravitational lensing. We explore the use of

LSST's SNe in constraining the behavior of dark energy and show how their combination with baryonic oscillation investigations will make LSST a particularly powerful experiment to this end.

Finally, we show how the distribution of so many well-observed SNe across the sky will constrain the angular variation of cosmological parameters.

H.'B#d* !04+,/%#-* ,037%$+&B#(* 2&'4* %7#* ;!!<* -##"* (+&B#)* 2'&* /* !5* /%*

bf:=\9O=* <7#* (',0-* ,01#(* /&#* %7#* 01"+%* ,037%* $+&B#(=* !+$7* -#%/0,#-* ,037%*

$+&B#(?* $'4.01#-* 60%7* 81'6,#-3#* -#&0B#-* 2&'4* %7#* #G$##-013,)* ,/&3#*

1+4.#&*'2*1#/&.)*(+"#&1'B/*'.(#&B#-?*60,,*,08#,)*/,,'6*-#%#&401013*&#-(702%(*

%'*.#%%#&*%7/1*@W*./(#-*'1*"7'%'4#%&0$*-/%/*/,'1#=*!+$7*-#%/0,#- -/%/*/&#*

/,('* 04"'&%/1%* 2'&* #G%01$%0'1* $'&&#$%0'1(* /1-* 2'&* %7#* $'1%&',* '2 ()(%#4/%0$(*

/&0(013*2&'4*B/&0/%0'1(*01%&01(0$*%'*%7#*(+"#&1'B/#*%7#4(#,B#(=

H.'B#d*<7#*20,%#&*(#%*'2*;!!<*",'%%#-*%'3#%7#&*60%7*!5#*>/*("#$%&/*/%*'"%0$/,*

4/G04+4?*/%*&#-(702%*b#&'*C.,/$8*(',0-*,01#F*/1-*/%*&#-(702%*'2*:=\*C&#-*(',0-*

,01#F=*<7#*./1-*"/((#(*/&#*(8#%$7#-*01*-'%%#-* ,01#(*2'&*3*C.,/$8F?*&*C.,+#F?* 0*

C3&##1F?*b*C&#-F?*/1-*c*C"+&",#F=

a#,/%0B#*4/31020$/%0'1

#=3=*k!K(

H.(',+%#*4/31020$/%0'1

#=3=*<)"#*>/*!5#

;!!<* !5#* 60,,* /,('* $'1(%&/01* /13+,/&* B/&0/%0'1(* '2*

$'(4','30$/,*"/&/4#%#&(*/$&'((*%7#*(8)=**!+$7*4#/(+&#4#1%(*

(#&B#* %6'* "+&"'(#(=* <7#)* 7#,"* $'1%&',* ()(%#4/%0$(* -+#* %'*

01$'4",#%#*+1-#&(%/1-013*'2*%7#*,'$/,*+10B#&(#?*(+$7*/(*%7'(#*

2&'4*%7#*I0,8)*N/)*-+(%*$'&&#$%0'1T*%7#)*"&'B0-#*'.(#&B/%0'1/,*

$'1(%&/01%(*'1* ,/&3#J($/,#*B#,'$0%)* 20#,-(* 01* %7#* ,'$/,*+10B#&(#T*

/1-* %7#)* $'1(%0%+%#* /* -0&#$%* %#(%* 2'&* 7'4'3#1#0%)* '2*

$'(4','30$/,*"/&/4#%#&(=

Page 51: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Future of Cosmology Luminosity Distance

SNeIa: SNAP; PanSTARRS, LSST GRBs?

Angular Diameter Distance Large Scale Structure

Baryon Acoustic Oscillations Lensing/Shear

Cosmic Microwave Background Planck

Gravity LIGO, LISA

Page 52: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

Summary

The accelerating Universe poses a significant challenge to theory, experiment and observation.

The current data are consistent with a “simple” w = − 1, = 1

Upcoming projects have great potentialto yield new insights into dark energy

Page 53: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 54: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 55: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The
Page 56: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

MDS survey

Page 57: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

SN Ia Colors It’s been hard to disentangle intrinsic SN Ia colors

from reddening due to dust

Do SNeIa have an intrinsic color-luminosity relationship?

MV = c E(B-V)

Dust extinction has the equivalent through RV

MV = AV = RV E(B-V)

Page 58: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

SNeIa in NIR

SNeIa are more standard in near infrared

Krisciunas seminal work 2000-2004 w/ 17 SNeIa

Recent confirmation: Wood-Vasey 2007

New homogeneous sample from PAIRITEL

Doubled sample of SNeIa

Page 59: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

PAIRITEL: SN 2006D

SN 2006DSN 2006D

30”30”

NE

S 3S 3

S 1S 1

S 2S 2

Page 60: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

12

14

16

18

20

mH

PAIRITEL SNeIaliterature SNeIa

(!M, !L, h0) = (0.23, 0.77, 0.72)MH = -19.19

1000 10000Velocity [km/s; CMB+Virgo]

-1.0

-0.5

0.0

0.5

1.0

mH -

(MH+µ"

CDM)

RMS = 0.41 #2

$ = 1.56

%z = 150 km/s , %µ = 0.10 mag

Optical Hubble Diagram

Page 61: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

H-band Hubble Diagram

12

14

16

18

20

mH

PAIRITEL SNeIaliterature SNeIa

(!M, !L, h0) = (0.23, 0.77, 0.72)MH = -17.98

1000 10000Velocity [km/s; CMB+Virgo]

-1.0

-0.5

0.0

0.5

1.0

mH -

(MH+µ"

CDM)

RMS = 0.15 mag

#z = 150 km/s

Page 62: Determining the Nature of Dark Energy - online.itp.ucsb.eduonline.itp.ucsb.edu/online/astro99/woodvasey/pdf/Woodvasey_Astro_KITP.pdf · Determining the Nature of Dark Energy: The

No Trends in Residuals

0.0 0.5 1.0 1.5 2.0 2.5 !2 / DoF

-2

-1

0

1

2

mH -

(MH+µ"

CDM)

PAIRITEL SNeIaliterature SNeIa

0 5 10 15 20 25# H-band Observations

-0.4 -0.2 0.0 0.2 0.4 !

-2

-1

0

1

2

mH -

(MH+µ"

CDM)

PAIRITEL SNeIaliterature SNeIa

0.01 0.10 1.00 10.00 AV