Top Banner
Design Tools for Architectured Bio-inspired Actuators/Sensors N. Vermaak 1 , G. Michailidis 2 , G. Parry 1 , R. Estevez 1 , G. Allaire 2 , Y. Bréchet 1 1 Univ. Grenoble SIMAP; 2 Ecole Polytechnique CMAP ch 15, 2013 kshop for the Cours Architectures rarchisées : les leçons du vivant
30

Design Tools for Architectured Bio-inspired Actuators/Sensors

Feb 25, 2016

Download

Documents

thisbe

Design Tools for Architectured Bio-inspired Actuators/Sensors. N. Vermaak 1 , G. Michailidis 2 , G. Parry 1 , R. Estevez 1 , G. Allaire 2 , Y. Bréchet 1 1 Univ. Grenoble SIMAP; 2 Ecole Polytechnique CMAP. March 15, 2013 Workshop for the Cours Architectures - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

N. Vermaak1, G. Michailidis2, G. Parry1, R. Estevez1,G. Allaire2, Y. Bréchet1 1Univ. Grenoble SIMAP;2Ecole Polytechnique CMAP

March 15, 2013

Workshop for the Cours Architectures hiérarchisées : les leçons du vivant

Page 2: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

J.E. Huber, N.A. Fleck, and M.F. Ashby, “The selection of mechanical actuators based on performance indices,” Proc. R. Soc. London A, Vol 453(1965) pp. 2185-2205, (1997).M. Zupan, M.F. Ashby, and N.A. Fleck, “Actuator classification and selection—the development of a database,” Advanced Engineering Materials 4(12) 933-940, (2002).J. Shieh, J.E. Huber, N.A. Fleck, M.F. Ashby “The selection of sensors” Progress in Materials Science 46 (2001) 461-504

convert a stimulus into a measured signal

controllable work-producing devicesActuators

Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 2/30

STIMULUSmechanical, thermal,

electromagnetic, acoustic, chemical…

MEASURED SIGNALtypically electrical, optical, sometimes

pneumatic, hydraulic…

CONTROL SIGNALtypically electrical,

optical, mechanical, chemical, thermal…

MECHANICAL ACTIONdisplacement

or force

Page 3: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

J.E. Huber, N.A. Fleck, and M.F. Ashby, “The selection of mechanical actuators based on performance indices,” Proc. R. Soc. London A, Vol 453(1965) pp. 2185-2205, (1997).M. Zupan, M.F. Ashby, and N.A. Fleck, “Actuator classification and selection—the development of a database,” Advanced Engineering Materials 4(12) 933-940, (2002).J. Shieh, J.E. Huber, N.A. Fleck, M.F. Ashby “The selection of sensors” Progress in Materials Science 46 (2001) 461-504

convert a stimulus into a measured signal

controllable work-producing devicesActuators

Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 3/30

STIMULUSmechanical, thermal,

electromagnetic, acoustic, chemical…

MEASURED SIGNALtypically electrical, optical, sometimes

pneumatic, hydraulic…

CONTROL SIGNALtypically electrical,

optical, mechanical, chemical, thermal…

MECHANICAL ACTIONdisplacement

or force

http://en.wikipedia.org/wiki/Bimetallic_strip Y. Forterre, J.M. Skothelm, J. Dumals, L. Mahadevan, “How the Venus Flytrap Snaps”, Nature Vol. 433, No. 27, pp. 421-425, 2005.

Page 4: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

Thermal expansion actuators

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 4/30

Actuation strain:

Actuation stress:

eth = Δl = α(Tf – T0) = αΔT l0

Δll0Tf

l0T0

Δll0Tf

sth = Eecomp = -EαΔT ecomp = - eth

Page 5: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 5/30

From CES (Mike Ashby)

Page 6: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/SensorsCombinations of two or more materials or of materials and space, configured in such a way as to have attributes not offered by any one material aloneMike Ashby, “Designing architectured materials” Scripta Materialia 68 (2013) 4–7

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 6/30

Man-made bi-material strip example

http://en.wikipedia.org/wiki/Bimetallic_strip

Page 7: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/SensorsCombinations of two or more materials or of materials and space, configured in such a way as to have attributes not offered by any one material aloneMike Ashby, “Designing architectured materials” Scripta Materialia 68 (2013) 4–7

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 7/30

Biological bi-material strip example

J.W.C. Dunlop, R. Weinkamer, and P. Fratzl, “Artful interfaces within biological materials”, Materials Today Vol. 14, No. 3, pp.70-78, 2011.

Mechanics Without Muscle:Biomechanical Inspiration from the Plant World, MARTONE et al, Integrative and Comparative Biology, pp. 1–20; doi:10.1093/icb/icq122

Page 8: Design Tools for  Architectured Bio-inspired Actuators/Sensors

To maximize force or displacement:

Bi-material strip Thermal actuation

1. choose appropriate materials2. model the interface3. find the optimal distribution of materials (and space):

Shape/Topology optimization via level-set method

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 8/30

large material differences required

Page 9: Design Tools for  Architectured Bio-inspired Actuators/Sensors

To maximize force or displacement:

Bi-material strip Thermal actuation

1. choose appropriate materials2. model the interface3. find the optimal distribution of materials (and space):

Shape/Topology optimization via level-set method

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 9/30

large material differences required

Page 10: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 10/30

From CES (Mike Ashby)

Page 11: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Natasha Vermaak&GeorgiosMichailidisMarch 15, 2013 11/30

Usually, stronger bonds ~

steeper potential energy wells ~ stiffer materials ~ ↑E

Young’s Modulus (E)

Page 12: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 12/30

Coefficient of Thermal Expansion (CTE or a)

Normal Lattice positions for atomsPositions displaced because of vibrations

↑ T ↑ atomic vibrations, energy

anharmonic potential avg interatomic separation ↑(thermal expansion)

harmonic potential no change in avg. interatomic separation (no thermal expansion)

Increase of avg. interatomic separation

Typical interatomic potentials are asymmetric

(anharmonic)

Interatomic distance r

Potential Energy

Symmetric (harmonic) potential

No change in avg. interatomic separation

Page 13: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 13/30

Coefficient of Thermal Expansion (CTE or a)

Increase of avg. interatomic separation

Typical interatomic potentials are asymmetric

(anharmonic)

Interatomic distance r

Potential Energy

Symmetric (harmonic) potential

No change in avg. interatomic separation

↑ interatomic bond strength (↑E)(deeper the potential energy curve) thermal expansion a↓

Page 14: Design Tools for  Architectured Bio-inspired Actuators/Sensors

To maximize force or displacement:

Bi-material strip Thermal actuation

1. choose appropriate materials2. model the interface3. find the optimal distribution of materials (and space):

Shape/Topology optimization via level-set method

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 14/30

large material differences required

Page 15: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design challenge due to the interface:efficiency vs. lifetime

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 15/30

To maximize force or displacement:

large material differences (efficiency)large stresses or strain gradients across bi-material interface

promotes/accelerates damage, limits the

lifetime of actuators

Page 16: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design solution inspired by biological actuators

Nature uses architectured and graded or smooth interfaces (not sharp) to achieve efficiency without sacrificing lifetime

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 16/30

Page 17: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Physics and Chemistry of Interfaces, Hans-Jürgen Butt, Karlheinz Graf, Michael Kappl, Wiley, 2003Understanding Solids: The Science of Materials, R. J. D. Tilley, Wiley, 2004

Interface Modelling

Energy concerns limit the size of the interface transition zone

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 17/30

atom species 1 species 2

Sharp interface boundary on atomic scale (semiconductors by MBE)

Smooth or graded (broad) transitions (or thin layers of new compounds) by interdiffusion or surface reactions that depend onTemperature, diffusion coefficient, defect density, reactivity of the components…

Energy concerns and (minimizing interfacial energy) means maximizing atomic matching to reduce the number or broken bonds / lattice mis-match

Page 18: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Interface Transition

ZONE

MATERIAL 1 MATERIAL 2Natasha Vermaak & Georgios MichailidisMarch 15, 2013 18/30

Interface Modelling

Page 19: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Uniform thermal

loading, DT

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

To maximizedisplacement:1. choose appropriate materials2. model the interface3. find the optimal distribution of materials (and space):

Shape/Topology optimization via level-set method

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 19/30

large material differences required

Maximize vertical end-displacement

Page 20: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Maximize Vertical End-Displacement

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 20/30

S. Timoshenko, “Analysis of bi-metal thermostats”, JOSA, Vol. 11 (3), pp. 233-255, 1925.

m = a1/a2 ; n = E1/E2

Analytic optimum when the only free variable is top thickness, a1

Page 21: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Maximize Vertical End-Displacement

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 21/30

SOME PROBLEM & OPTIMIZATION PARAMETERS

DT = 1 ; 100 x 50 elements; L = 1; h = 0.5Interface zone width = 16 * element sizeElement size = 1 / 100; Total iter. = 200Material 1 volume constraint 50%

Shape/Topology optimization

via the level-set method

E1 = 1.0

E2 = 0.5

a1 = 1.0

a2 = 0.5

Youn

g’s M

odul

us (E

)

Page 22: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Natasha Vermaak & Georgios Michailidis March 15, 2013 22/30

Shape/Topology optimizationvia the level set method

“The art of structure is where to put the holes.”

~Robert Le Ricolais (1894-1977)

Page 23: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Gregoire Alliaire, Shape and Topology Optimization, Ecole Polytechnique, http://www.cmap.polytechnique.fr/~optopo/level_en.html

Natasha Vermaak & Georgios Michailidis March 15, 2013 23/30

Shape/Topology optimizationvia the level set method

Numerical Algorithm

Page 24: Design Tools for  Architectured Bio-inspired Actuators/Sensors

S. Osher, UCLA, http://www.math.ucla.edu/~sjo/

Natasha Vermaak & Georgios Michailidis March 15, 2013 24/30J.A. Sethian, Berkeley,http://math.berkeley.edu/~sethian/level_set.html

The level set methodMethod for tracking evolving interfaces

Page 25: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Natasha Vermaak & Georgios Michailidis March 15, 2013 25/30

M. Wang and X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Engrg. 193 (2004).G. Allaire, C. Dapogny, G. Delgado, G. Michailidis, Multi-phase structural optimization via a level-set method, (in preparation).

Using m level-set functions, we can describe up to n=2m different phases.

The level set methodMulti-phase description

Page 26: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Maximize Vertical End-Displacement

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 26/30

using one material + holes: v = 2.15

Initialization

SOME PROBLEM & OPTIMIZATION PARAMETERS

DT = 1 ; 100 x 50 elementsElement size = 1 / 100; Total iter. = 200; ks = 0L = 1; h = 0.5; No volume constraint

Youn

g’s M

odul

us (E

)

Page 27: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Maximize Vertical End-Displacement

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 27/30

E1 = 1.0

E2 = 0.5

a2 = 1.0

a1 = 0.5

SOME PROBLEM & OPTIMIZATION PARAMETERS

DT = 1 ; ks =0; 100 x 50 elements; L = 1; h = 0.5Interface zone width = 16 * element sizeElement size = 1 / 100; Total iter. = 200Material 1 volume constraint 50%

using two materials (no holes): v = 0.97

Initialization

Youn

g’s M

odul

us (E

)

Page 28: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Maximize Vertical End-Displacement

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 28/30

using two materials (no holes): v = 1.03

E1 = 1.0

E2 = 0.5

a1 = 1.0

a2 = 0.5

Initialization

SOME PROBLEM & OPTIMIZATION PARAMETERS

DT = 1 ; ks =0; 100 x 50 elements; L = 1; h = 0.5Interface zone width = 16 * element sizeElement size = 1 / 100; Total iter. = 200Material 1 volume constraint 50%

Youn

g’s M

odul

us (E

)

Page 29: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Maximize Vertical End-Displacement

Natasha Vermaak & Georgios MichailidisMarch 15, 2013 29/30

SOME PROBLEM & OPTIMIZATION PARAMETERS

DT = 1 ; ks =0; 100 x 50 elements; L = 1; h = 0.5Interface zone width = 16 * element sizeElement size = 1 / 100; Total iter. = 200Material 1 volume constraint 50%

using two materials (no holes): v = 2.24

Initialization

Youn

g’s M

odul

us (E

)

a2 = 1.0

a1 = 0.5

E1 = 1.0

E2 = 0.5E* = 0.25

a* = 2.0

Page 30: Design Tools for  Architectured Bio-inspired Actuators/Sensors

Design Tools for ArchitecturedBio-inspired Actuators/Sensors

N. Vermaak1, G. Michailidis2, G. Parry1, R. Estevez1,G. Allaire2, Y. Bréchet1 1Univ. Grenoble SIMAP;2Ecole Polytechnique CMAP

March 15, 2013

Workshop for the Cours Architectures hiérarchisées : les leçons du vivant