Top Banner
Integrated RF design Flow From Concept to Fabrication Using ADS dist_BPF1_1 ModelType=MW Delta=0 mil Zo=50 Ohm N=0 As=20 dB Ap=3 dB Fs2=2.4 GHz Fp2=2.2 GHz Fp1=2 GHz Fs1=1.8 GHz Subst="MSub1" dist_BPF1 Re f PAD_PI_Design_1 ModelType=MW Loss=0. dB PAD_PI_Design BoardLayout1_1 ModelType=MW BoardLayout1 Ref BPF2_lumped_design_lay_1 ModelType=MW BPF2_lumped_design_lay MIX1 Mixer2 PAD_PI_Design_1 ModelType=MW Loss=0. dB PAD_PI_Design AMP1 Amplifier2 EM Modeled RF Board In house designed Bought out
36

Design Review 2003C Template - 微波EDA网

Mar 20, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design Review 2003C Template - 微波EDA网

Integrated RF design Flow

From Concept to FabricationUsing ADS

d i s t_ B PF 1 _ 1

M o d e l T y p e = M WDe l ta = 0 m i lZ o = 5 0 Oh mN= 0A s = 2 0 d BA p = 3 d BF s 2 = 2 .4 GHzF p 2 = 2 .2 GHzF p 1 = 2 GHzF s 1 = 1 .8 GHzS u b s t= "M Su b 1 "

d i s t_ B PF 1Re f

T L 1

C L in 1

C L in 3

T L 2

C L in 2

PAD_PI_Design_1

ModelType=MWLoss=0. dB

PAD_PI_Design

Gc Tee1

Gb

Tee3

Ga

BoardLayout1_1ModelType=MW

BoardLayout1Ref

BPF2_lumped_design_lay_1ModelType=MW

BPF2_lumped_design_lay

L1

L2

L3

L4

L5C 1

C2

C 3

C4

C 5

X1 X2 X3 X4 X6X7

MIX1Mixer2

PAD_PI_Design_1

ModelType=MWLoss=0. dB

PAD_PI_Design

Gc Tee1

Gb

Tee3

Ga

AMP1

Amplifier2

EM Modeled RF Board In house designed Bought out

Page 2: Design Review 2003C Template - 微波EDA网

Agenda:

1. Top level system design using ADS Budget analysis

2. Modeling “off the shelf components” In terms of data

based models or parametric models.

3. Creating Layout libraries for off the shelf components

4. Creating an EM based RF board model.

5. Release for manufacturing

Page 3: Design Review 2003C Template - 微波EDA网

Agilent EEsof EDA Hierarchical Design Flow

Synthesize real signals from

simulation dataSystem Level

Capture real signals as inputs

RF/Analog Subsystem Float/Fixed Point, Matlab, System C, C++

Circuit-level HDL, RTL, Matlab, C++

RF/Analog Downconverter

DigitalReceiver

GMSKDemod

RFFrontend

wire [6:0] M1_B_1_Result; // hpeesof_id : M1.B_1wire [9:0] M1_B_2_Result; // hpeesof_id : M1.B_2

hp_CONST_S C5 (.Result(C5_Result));defparam C5.Width = 3;defparam C5.ConstValue = 24576;

hp_ADD_SATTRUNC_S A5 (.A(R4_R1_Q),.B(M3_Result),.Result(A5_Result));

Verilog APhysicalDevice/

Component

Page 4: Design Review 2003C Template - 微波EDA网

Bottoms-up Design with Circuit Envelope Co-simulation

Double Stage RF subsystem

Transistor Level Amplifier

Distributed Matching Network

Ptolemy BER simulation

Ver

ifica

tion

Page 5: Design Review 2003C Template - 微波EDA网

RF System Simulator

Node Names in order { RF_In , Mix_In , Mix_Out , Filt_Out , IF_Out }

PortP3Num=3

PortP1Num=1

PortP2Num=2

I_ProbeI_RF_In

Amplifierb1_IF_AMPS21=dbpolar(20,0)S11=polar(0.1,0)S22=polar(0.2,180)S12=0.03NF=4 dBTOI=-12.56

I_ProbeI_Mix_In

Mixerb2_MIXSideBand=LOWERRF_Rej=45 dBConvGain=dbpolar(-6,0)NF=6 dBTOI=-16

BPF_Chebyshevb3_RF_BPFFcenter=Filt_FreqBWpass=30.0 MHzRipple=.1 dBBWstop=150 MHzAstop=60 dB

I_ProbeI_Mix_Out

I_ProbeI_Filt_Out

Amplifierb4_RF_AMPS21=dbpolar(10,0)S11=polar(0.1,0)S22=polar(0.1,180)S12=0.05NF=3 dBTOI=-10

I_ProbeI_IF_Out

Push into Converter and adjust topology for desired system specifications.

PortP1Num=1

PortP2Num=2

VARglobal VAR1LOpower_dBm=7LO_Freq=2.312 GHzRF_Freq=2.400 GHzRFpower_dBm=-50

V_1ToneSRC1V=dbmtov(LOpower_dBm,50)Freq=LO_Freq

RR3R=50 Ohm

SDC_AMFADown_ConverterFilt_Freq=88 MHz

LO Input

IF OutputRF Input

EnvelopeEnv1Freq[1]=LO_FreqFreq[2]=RF_FreqOrder[1]=1Order[2]=1StatusLevel=2Stop=Tstop usecStep=Tstep usecOther=SaveToDataset=no

SDC_AMFA_EQN_comsyslibEQN

SDC_AMFA_Equations

Analog/RF Simulation of Block Behavior, i.e. Mixer, PA, Filters, Modulators

Supports all Analysis Modes (HB, Tran, SP, CE)

Mix and Match Circuit and Behavioral Blocks

Page 6: Design Review 2003C Template - 微波EDA网

Hierarchical Design Flow Example:Digital Satellite ZIF Tuner for Direct TV

MPEG Data

I

Q

A/D

A/D

AGC Control

Nyquist Filter+

Derotator+

8PSK/QPSK/BPSKDemodulator

FECForward Error

Correction

ViterbiDeinterleaverReed-SolomonDescrambler

LNA AGC

Base-Band

Base-Band

Cos w0t

Sin w0t

950 MHz W0 2150 MHz

0

LNA

ZIF Tuner

I

Q

STMicroelectronics Example •Analog/RF Cosim•HDL Cosim•Matlab Cosim

Page 7: Design Review 2003C Template - 微波EDA网

What are budget measurements?A method of lining up circuit architecture and “budgeting”circuit specifications to meet an RF system specification

AttenuatorATTEN2

VSWR=1.00Loss=0 dB tune{ 0 dB to 10 dB by 0.1 dB }

AttenuatorATTEN1

VSWR=1.00Loss=0 dB tune{ 0 dB to 10 dB by 0.1 dB }

P_1TonePORT1

Freq=1 GHzP=polar(dbmtow (0),0)Z=50 OhmNum=1

TermTerm2

Z=50 OhmNum=2MixerWithLO

MIX1

ConvGain=dbpolar(-6,0)DesiredIF=RF minus LOZRef=50 Ohm

Amplif ier2AMP1

S12=0S22=polar(0,180)S11=polar(0,0)S21=dbpolar(X,0)

Amplif ier2AMP2

S12=0S22=polar(0,180)S11=polar(0,0)S21=dbpolar(Y,0)

Can be computed by looking in to the input of the system and incrementally moving the output point one stage at a time. This is the most common view.

•Budget Analysis tool augments RF sub-system capabilities in ADS by providing an alternative method to jumpstart system architecture analysis

•Budget analysis offers more detail than an Excel spreadsheet and uses your IP built up in ADS

Page 8: Design Review 2003C Template - 微波EDA网

Two different methods to do budget• The budget measurements can be done

using:

1. Circuit simulators such as AC and HB

2. ADS Budget controller

• The budget controller is a relatively new addition and does not replace the budget measurements that exist already.

• Introduced into the tool for ease of use and enhanced noise measurements.

• A more detailed analysis can always done using circuit simulators and budget measurements

Page 9: Design Review 2003C Template - 微波EDA网

Don’t confuse me with two different budget analysis tools

Just tell me when do I use what?Simple!

Ready made easy to use

Quick way of getting startedNew Budget analysis tool:

Existing budget analysis tool:

More flexible

More capable

More detail

Ok that is Easy!

Page 10: Design Review 2003C Template - 微波EDA网

RF System Budget Analysis Controller

Analysis controller introduced in ADS 2004A• Schematic name: “Budget”.

• Palette and library: “Simulation-Budget”

• Available only on A/RF schematic

Page 11: Design Review 2003C Template - 微波EDA网

New ADS Analysis – RF System BudgetDownconverter Example:

Termination

Term or R

Cascaded 2-Port network

Source

P_1Tone or P_nTone

1 2

Am pLay outC k tA m p

1 2

Mix erW ithLOMIX2

LO _F req=940 MH zN F =6.5 dBC onv G ain=dbpolar(-6 ,0)D es iredIF =R F m inus LOZ R ef =50 O hm

1

1

2

TermTerm 2

Z =50 O hmN um =2

21

P adP AD 2

Los s =1 dBN etTy pe=P i

1

1

2

P_1TonePO R T1

F req=1 G H zP=polar(dbm tow(pwrin),0)Z =50 O hmN um =1

21

BPF _But terworthBP F 1

As top=60 dBBW s top=100 MH zApas s =3 dBBW pas s =10 MH zF c enter=1 G H z

21

PadPAD 1

Los s =1 dBN etTy pe=P i

21

B PF _But terworthB PF 2

A s top=60 dBB W s top=60 MH zA pas s =3 dBB W pas s =10 MH zF c enter=60 MH z

1 2

Am plif ie r2AMP 2

G ainC om pPower=10TO I=21S12=0.1S22=polar(0 .2 ,180)S11=polar(0 .2 ,0)S21=dbpolar(Y ,0)

Budget controller

Page 12: Design Review 2003C Template - 微波EDA网

RF System Budget – Added Components4 new A/RF components introduced in ADS 2004A, primarily for RF System Budget analysis• Based on existing ADS A/RF components

• Can also be used with other ADS analysesMixerWithLO – 2-port mixer with built-in LO

AGC_Amp, AGC_PwrControl – To define AGC loops in the system

PathSelect2 – To switch between two alternate paths in the system

Page 13: Design Review 2003C Template - 微波EDA网

RF System Budget – Set Up

Budget controller schematic component/dialog box

Page 14: Design Review 2003C Template - 微波EDA网

RF System Budget – MeasurementsBudget controller schematic component/dialog box

Page 15: Design Review 2003C Template - 微波EDA网

Non-Linear Budget Analysis

• If P1dB, SOI or TOI measurements requested, then•Component input power swept to achieve 5 dB component gain compression•If CmpmaxPin is reached with: 1)no gain compression, component assumed lin

2) with 0 < g.c < 5 db, error message displayed to increase CmpmaxPin

•P2D file is extracted at the component input frequency over the effective power rang

1 2 3 4 5 6 7

Pgc< CmpmaxPin

5 dB

1 2

AmpLay outCktAmp

1 2

MixerWithLOMIX2

LO_Freq=940 MHzNF=6.5 dBConv Gain=dbpolar(-6,0)DesiredIF=RF minus LOZRef =50 Ohm

1

1

2

TermTerm2

Z=50 OhmNum=2

21

PadPAD2

Loss=1 dBNetTy pe=Pi

1

1

2

P_1TonePORT1

Freq=1 GHzP=polar(dbmtow(pwrin),0)Z=50 OhmNum=1

21

BPF_ButterworthBPF1

Astop=60 dBBWstop=100 MHzApass=3 dBBWpass=10 MHzFcenter=1 GHz

21

PadPAD1

Loss=1 dBNetTy pe=Pi

21

BPF_ButterworthBPF2

Astop=60 dBBWstop=60 MHzApass=3 dBBWpass=10 MHzFcenter=60 MHz

1 2

Amplif ier2AMP2

GainCompPower=10TOI=21S12=0.1S22=polar(0.2,180)S11=polar(0.2,0)S21=dbpolar(Y ,0)

Page 16: Design Review 2003C Template - 微波EDA网

RF System Budget – Data DisplayRecommended usage – Auto format display feature

• Use it to setup the data display the first time

• Modify display tables as needed, save data display file or as template

• Configure simulation setup to use saved dds file or useDisplayTemplate to open template at the end of the simulation

Page 17: Design Review 2003C Template - 微波EDA网

Data DisplayAuto format data display

• Data display is formatted with 3 pages named

– Measurement Tables

– Summary Tables

– Measurement Plots

Page 18: Design Review 2003C Template - 微波EDA网

Data Display Measurement TablesAuto format display with components in columns

Page 19: Design Review 2003C Template - 微波EDA网

Data Display Measurement Tables

• Components listed in same order (left to right) as in schematic design

1 2

AmpLay outCktAmp

1 2

MixerWithLOMIX2

LO_Freq=940 MHzNF=6.5 dBConv Gain=dbpolar(-6,0)DesiredIF=RF minus LOZRef =50 Ohm

1

1

2

TermTerm2

Z=50 OhmNum=2

21

PadPAD2

Loss=1 dBNetTy pe=Pi

1

1

2

P_1TonePORT1

Freq=1 GHzP=polar(dbmtow(pwrin),0)Z=50 OhmNum=1

21

BPF_ButterworthBPF1

Astop=60 dBBWstop=100 MHzApass=3 dBBWpass=10 MHzFcenter=1 GHz

21

PadPAD1

Loss=1 dBNetTy pe=Pi

21

BPF_ButterworthBPF2

Astop=60 dBBWstop=60 MHzApass=3 dBBWpass=10 MHzFcenter=60 MHz

1 2

Amplif ier2AMP2

GainCompPower=10TOI=21S12=0.1S22=polar(0.2,180)S11=polar(0.2,0)S21=dbpolar(Y ,0)

Page 1 of 3Meas_NameCmp_NF_dB

NF_Ref In_...OutNPw rT...OutPGain_...OutPw r_d...OutP1dB_...OutTOI_dBmOutSFDR_...

BPF12.9812.981

-112.465-4.493-4.493

1000.0001000.0001000.000

CktAmp1.2784.260

-92.42711.68911.689

7.40616.07472.334

PAD11.0004.276

-93.47710.62210.622

6.40615.07472.368

MIX26.5009.079

-95.0234.3044.3040.0809.074

69.398

BPF20.0969.083

-95.1234.2004.200

-0.0168.978

69.401

AMP25.0009.500

-70.53012.63312.633

9.89020.71360.829

PAD21.0009.500

-71.53011.63311.633

8.89019.71360.828

Page 20: Design Review 2003C Template - 微波EDA网

Data Display Summary TablesAuto format display – “Summary Tables”page System_Name

SystemInN0_dBmSystemInNPwr_dBmSystemInP1dB_dBm

SystemInSOI_dBmSystemInTOI_dBm

SystemNF_dBSystemOutN0_dBm

SystemOutNPwr_dBmSystemOutP1dB_dBm

SystemOutSOI_dBmSystemOutTOI_dBm

SystemPGain_SS_dBSystemPGain_dB

SystemPOut_dBmSystemS11_dB

SystemS11_magSystemS11_phase

SystemS12_dBSystemS12_mag

SystemS12_phaseSystemS21_dB

SystemS21_magSystemS21_phase

SystemS22_dBSystemS22_mag

SystemS22_phase

System_Value

-173.855-107.834

-20.0311000.000

-10.2089.500

-134.540-71.530

8.8901000.000

19.71329.92111.63311.633

-11.2800.273

-149.565-400.000

0.0000.000

11.6333.816

119.390-14.115

0.197177.656

Setup_Name

System_AnalysisTypeSystem_NoiseResBWSystem_NoiseSimBW

System_NoiseSimFStepSystem_PilotFreq

System_PilotPwr_dBmSystem_RefR

System_SourceFreqSystem_SourcePwr_dBm

System_SourceTemp

Setup_Value

1.0001.000

2.000E62.000E61.000E9

-5.786E-1550.000

1.000E9-5.786E-15

25.000

Page 21: Design Review 2003C Template - 微波EDA网

Data Display PlotsAuto format display – “Measurement plots” page

• Page format measurement Vs component index (stage #) is independent of components in rows/columns parameter setting

123456

0

7

Cm

p_N

F_dB

3456789

2

10

NF_

Ref

In_d

B

2 40 6

-110

-100

-90

-80

-120

-70

Cmp_Index

Out

NPw

rTot

al_d

Bm

0

5

10

-5

15O

utPG

ain_

dB

0

5

10

-5

15

Out

Pwr_

dBm

2 40 6

0200400600800

-200

1000

Cmp_Index

Out

P1dB

_dBm

200

400

600

800

0

1000

Out

TOI_

dBm

200

400

600

800

0

1000

Out

SFD

R_T

otal

_dB

2 40 6

859095

100105

80

110

Cmp_Index

Out

SNR

_Tot

al_d

B

0.51.01.52.02.5

0.0

3.0

...ys

NF_

NoI

mag

e_dB

2468

10

0

12

...p_

Ctrb

_Sys

TOI_

dB2 40 6

-505

101520

-10

25

Cmp_Index

Cm

p_SS

_PG

ain_

dB

200

400

600

800

0

1000

Cm

p_O

utP1

dB_d

Bm

-1.5-1.0-0.50.00.51.0

-2.0

1.5

..._M

ism

atch

Loss

_dB

2 40 6

0200400600800

-200

1000

Cmp_Index

InP1

dB_d

Bm

Page 22: Design Review 2003C Template - 微波EDA网

RF System Budget – Output CSV fileAdditional feature to write to text file

• Optionally, results can be written to text file as comma separated values(CSV)

• File created with the name <design_name>.csv

Page 23: Design Review 2003C Template - 微波EDA网

RF System Budget – Output CSV fileAdditional feature to optionally run a command at the end of the simulation

• To open the CSV file using an application like MS Excel

• Filename (<design_name>.csv) is appended to command and executed like this

Prompt> command filename

Page 24: Design Review 2003C Template - 微波EDA网

RF System Budget – Output CSV fileTypical use of Run command feature

• Launch MS Excel to open the CSV file

• Run Excel macro to format the raw data into tables and plots similar to ADS data display

– Sample Excel macro shipped with Budget example project

– Can be extended or modified by the user as needed

Launch Excel

Raw .csv file

Run macro

Tables in Excel

Plots in Excel

Page 25: Design Review 2003C Template - 微波EDA网

Downconverter Example

Goal: To design an downconverter with

• Input frequency at 1GHz and out put at 60 MHZ.

• Signal swing at Input 0 to -65dBm

• A spurious free dynamic range of 65 dB with a minimum SNR of 10 d

1 2

Am pLay outC k tAm p

1 2

Mix erW ithLOMIX2

LO _F req=940 MH zN F =6.5 dBC onv G ain=dbpolar(-6,0 )D es iredIF =R F m inus LOZ R ef =50 O hm

1

1

2

TermTerm 2

Z =50 O hmN um =2

21

PadPAD 2

Los s =1 dBN etTy pe=P i

1

1

2

P_1TonePO R T1

F req=1 G H zP=polar(dbm tow(pwrin ),0)Z =50 O hmN um =1

21

BPF _But terworthBPF 1

As top=60 dBBW s top=100 MH zApas s =3 dBBW pas s =10 MH zF c enter=1 G H z

21

PadPAD 1

Los s =1 dBN etTy pe=P i

21

BPF _But te rworthBPF 2

As top=60 dBBW s top=60 MH zApas s =3 dBBW pas s =10 MH zF c enter=60 MH z

1 2

Am plif ie r2AMP2

G ainC om pPower=10TO I=21S12=0.1S22=polar(0 .2,180)S11=polar(0 .2,0)S21=dbpolar(Y ,0)

Constraints:• Use the in house designed LNA for the first stage

• Use a specific amplifier available in the inventory for final stage

Page 26: Design Review 2003C Template - 微波EDA网

Analyze the system at both ends ofDynamic Range

STEP1Input power = 0 dBm

Cmp_RefDes

BPF1CktAmp

PAD1MIX2BPF2AMP2PAD2

OutPGain_dB

-4.49311.68910.6224.3044.200

12.63311.633

OutPwr_dBm

-4.49311.68910.6224.3044.200

12.63311.633

OutP1dB_dBm

1000.0007.4066.4060.080

-0.0169.8908.890

OutTOI_dBm

1000.00016.07415.0749.0748.978

20.71319.713

NF_RefIn_dB

2.9814.2604.2769.0799.0839.5009.500

InP1dB_dBm

-20.031-23.013-5.609-6.609

-12.935-13.031

1000.000

...p_SS_PGain_dB

-4.19718.775-1.066-6.318-0.10424.177-1.000

Cmp_RefDes

BPF1CktAmp

PAD1MIX2BPF2AMP2PAD2

OutNPwrTotal_dBm

-112.465-92.427-93.477-95.023-95.123-70.530-71.530

OutPwr_dBm

-4.49311.68910.6224.3044.200

12.63311.633

OutSNR_Total_dB

107.972104.116104.10099.32899.32383.16383.163

OutSFDR_Total_dB

1000.00072.33472.36869.39869.40160.82960.828

Input power = -65 dBm

Cmp_RefDesBPF1

X1PAD1MIX2BPF2AMP2PAD2

OutPGain_dB-4.54214.23213.1666.8486.744

30.92129.921

OutPwr_dBm-69.542-50.768-51.834-58.152-58.256-34.079-35.079

OutP1dB_dBm1000.000

7.4066.4060.080

-0.0169.8908.890

OutTOI_dBm1000.000

16.07415.0749.0748.978

20.71319.713

NF_RefIn_dB2.9814.2604.2769.0799.0839.5009.500

InP1dB_dBm-20.031-23.013-5.609-6.609

-12.935-13.031

1000.000

...p_SS_PGain_dB-4.19718.775-1.066-6.318-0.10424.177-1.000

Cmp_RefDesBPF1

X1PAD1MIX2BPF2AMP2PAD2

OutNPwrTotal_dBm-112.465-92.427-93.477-95.023-95.123-70.530-71.530

OutPwr_dBm-69.542-50.768-51.834-58.152-58.256-34.079-35.079

OutSNR_Total_dB42.92241.66041.64336.87136.86736.45136.451

OutSFDR_Total_dB1000.000

72.33472.36869.39869.40160.82960.828

Page 27: Design Review 2003C Template - 微波EDA网

CKT amplifier is compressing

vin

vout

CREATE AMPLIFIER LAYOUT

"SMT_Pad" is used to generate layout artwork only.THIS COMPONENT IS NOT USED IN S IMULATION.If parasitic effects from the pads need tobe included, they can be added as shunt capacitances or the pads can be modeledusing MLOC open-circuit microstrip elements.

The schematic was created by copying "FinishedA mp.dsn" and replacing all the idealcomponents with SMT C's, L's and R's. Next, "Layout>Generate/Update Layout" was usedto create the initial layout. In the layout window, microstrip lines were added toachieve the desired circuit board. When it was finished, clicking on "Schematic>Generate/Update Schematic" resulted in the finished schematic seen here.

Notice that ports have been added at each point requiring external access: RF input, RF output and V CC.

A symbol was edited (under "V iew>Create/E dit S chematic S ymbol"). The circuit issimulated in "S imFromLayout.dsn", which contains the required controls and data items.

Note that this design has been set to "S imulate from Layout" (see File>Design/Parameters),meaning that the netlist for simulation is derived from the layout representation of thiscircuit, not the schematic. In order to change the results in "S imFromLayout.dds",changes must be made in the layout, not this schematic.

S _ParamS P1

S tep=0.05 GHzS top=1.5 GHzS tart=0.5 GHz

S-PAR AMETER S IP3outipo1ipo1=ip3_out(vout,{1,0},{2,-1},50)

P 0

P in

IP3 o u t

V ARV AR1pwrin=0

EqnVar

P aramSweepS weep1

S tep=2S top=0S tart=-20S imInstanceName[6]=S imInstanceName[5]=S imInstanceName[4]=S imInstanceName[3]=S imInstanceName[2]=S imInstanceName[1]="HB1"S weepVar="pwrin"

PARAMETER SWEEP

HarmonicB alanceHB1

Order[1]=3Freq[1]=1.0 GHz

H ARMON IC BALANC E

TermTerm1

Z=50 OhmNum=1

P_1TonePORT1

Freq=1 GHzP=polar(dbmtow(pwrin),0)Z=50 OhmNum=1

TermTerm2

Z=50 OhmNum=2

V_DCSRC1Vdc=10 V

MSUBFR4

Rough=0 milTanD=0T=0 milHu=3.9e+034 milCond=1.0E +50Mur=1E r=4.3H=28 mil

MSub

gnd

s r_ im s _ RC-I_ 0 6 0 3 _ J _ 1 9 9 5 0 8 1 4RB2PART_ NUM =RC-I-0 6 0 3 -6 2 0 0 -J 6 2 0 Oh mSM T_ Pa d ="Pa d _ 0 6 0 3 "OFFSET= 1 0 m i l

gnd

s c _ m rt_ M C_ GRM 3 9 X7 R0 5 0 _ K_ 1 9 9 6 0 8 2 8C_ d e c o u p 2

OFFSET=1 0 m i lSM T_ Pa d ="Pa d _ 0 6 0 3 "PART_ NUM = GRM 3 9 X7 R1 0 2 K0 5 0 1 .0 n F

gndp b _ h p _ AT4 1 4 1 1 _ 1 9 9 2 1 1 0 1Q1

gnd

s c _ m rt_ M C_ GRM 3 9 X7 R0 5 0 _ K_ 1 9 9 6 0 8 2 8C_ d e c o u p 1

OFFSET=1 0 m i lSM T_ Pa d ="Pa d _ 0 6 0 3 "PART_ NUM =GRM 3 9 X7 R1 0 2 K0 5 0 1 .0 n F

gnd

s c _ m rt_ M C_ GRM 3 9 X7 R0 5 0 _ K_ 1 9 9 6 0 8 2 8C_ d e c o u p 3

OFFSET= 1 0 m i lSM T_ Pa d ="Pa d _ 0 6 0 3 "PART_ NUM =GRM 3 9 X7 R1 0 2 K0 5 0 1 .0 n F

gnd

ShortShort1

SM T_ Pa dPa d _ 0 6 0 3

PO=-1 0 m i lSM _ L a y e r="c o n d "SM O=0 m i lPa d L a y e r="c o n d "L =2 0 m i lW =3 0 m i l

SMT_Pad

M L INTL 1

L = 2 0 0 m i lW= 1 5 m i lSu b s t="FR4 "

M L INTL 2

L =5 0 m i lW=1 5 m i lSu b s t="FR4 "

M TEETe e 1Su b s t= "FR4 "W 1 =1 5 m i lW 2 =1 5 m i lW 3 =1 5 m i l

M L INTL 3

L =1 5 m i lW=1 5 m i lSu b s t="FR4 "

s l_ c ft_ 0 6 0 3 HS_ J _ 1 9 9 6 0 8 2 8L inPART_ NUM =0 6 0 3 HS-2 2 0 XJ B 2 0 .9 n HSM T_ Pa d ="Pa d _ 0 6 0 3 "OFFSET=1 0 m i l

M L INTL 6

L =5 0 m i lW=1 5 m i lSu b s t="FR4 "

M TEETe e 2Su b s t= "FR4 "W 1 =1 5 m i lW 2 =1 5 m i lW 3 =1 5 m i l

M L INTL 5

L =2 5 m i lW=1 5 m i lSu b s t="FR4 "

M L INTL 7

L =1 5 m i lW=1 5 m i lSu b s t="FR4 "

M L INTL 8

L =1 5 m i lW=1 5 m i lSu b s t="FR4 "

M TEETe e 3Su b s t="FR4 "W1 =1 5 m i lW2 =1 5 m i lW3 =1 5 m i l

M L INTL 9

L =2 5 m i lW =1 5 m i lSu b s t= "FR4 "

M L INTL 1 0

L =1 5 m i lW=1 5 m i lSu b s t="FR4 "

M L INTL 2 0

L =2 5 m i lW=1 5 m i lSu b s t="FR4 "

M L INTL 2 1

L =2 5 m i lW= 1 5 m i lSu b s t="FR4 "

s l_ c ft_ 0 6 0 3 HS_ J _ 1 9 9 6 0 8 2 8L s ta bPART_ NUM =0 6 0 3 HS-1 8 0 XJ B 1 7 .1 n HSM T_ Pa d ="Pa d _ 0 6 0 3 "OFFSET=1 0 m i l

M L INTL 1 9

L =1 5 m i lW =1 5 m i lSu b s t= "FR4 "

M TEETe e 4Su b s t="FR4 "W1 =1 5 m i lW2 =1 5 m i lW3 =1 5 m i l

M L INTL 1 1

L =5 0 m i lW= 1 5 m i lSu b s t="FR4 "

M L INTL 1 2

L =3 0 m i lW= 1 5 m i lSu b s t="FR4 "

s r_ im s _ RC-I_ 0 6 0 3 _ J _ 1 9 9 5 0 8 1 4RCPART_ NUM =RC-I-0 6 0 3 -2 0 0 0 -J 2 0 0 Oh mSM T_ Pa d ="Pa d _ 0 6 0 3 "OFFSET=1 0 m i l

M L INTL 1 5

L = 3 0 m i lW= 1 5 m i lSu b s t="FR4 "

M TEETe e 5Su b s t="FR4 "W1 =1 5 m i lW2 =1 5 m i lW3 =1 5 m i lM L IN

TL 1 4

L =1 5 m i lW=1 5 m i lSu b s t="FR4 "

M L INTL 1 3

L =2 5 m i lW= 1 5 m i lSu b s t="FR4 "

M L INTL 1 7

L =2 5 m i lW= 1 5 m i lSu b s t="FR4 "

M L INTL 2 2

L =2 0 0 m i lW=1 5 m i lSu b s t="FR4 "

M L INTL 1 6

L =3 7 m i lW= 1 5 m i lSu b s t="FR4 "

s c _ m rt_ M C_ GRM 3 9 C0 G0 5 0 _ C_ 1 9 9 6 0 8 2 8Co u t

OFFSET=1 0 m i lSM T_ Pa d ="Pa d _ 0 6 0 3 "PART_ NUM = GRM 3 9 C0 G0 3 0 C0 5 0 3 p F

M TEETe e 6Su b s t="FR4 "W1 =1 5 m i lW2 =1 5 m i lW3 =1 5 m i l

s l_ c ft_ 0 6 0 3 HS_ J _ 1 9 9 6 0 8 2 8L o u tPART_ NUM = 0 6 0 3 HS-2 2 0 XJ B 2 0 .9 n HSM T_ Pa d ="Pa d _ 0 6 0 3 "OFFSET=1 0 m i l

M L INTL 1 8

L =5 0 m i lW =1 5 m i lSu b s t= "FR4 "

M CORNCo rn 1Su b s t="FR4 "W=1 5 m i l

s r_ im s _ RC-I_ 0 6 0 3 _ J _ 1 9 9 5 0 8 1 4Rs ta bPART_ NUM =RC-I-0 6 0 3 -8 2 R0 -J 8 2 Oh mSM T_ Pa d = "Pa d _ 0 6 0 3 "OFFSET=1 0 m i l

M CORNCo rn 2Su b s t= "FR4 "W =1 5 m i l

s c _ m rt_ M C_ GRM 3 9 C0 G0 5 0 _ J _ 1 9 9 6 0 8 2 8Cin

OFFSET= 1 0 m i lSM T_ Pa d ="Pa d _ 0 6 0 3 "PART_ NUM =GRM 3 9 C0 G1 2 0 J 0 5 0 1 2 p F

M L INTL 4

L =2 5 m i lW= 1 5 m i lSu b s t="FR4 "

s r_ im s _ RC-I_ 0 6 0 3 _ J _ 1 9 9 5 0 8 1 4RB1PART_ NUM =RC-I-0 6 0 3 -6 8 0 1 -J 6 .8 k Oh mSM T_ Pa d ="Pa d _ 0 6 0 3 "OFFSET=1 0 m i l

•Perform both S-parameter and Harmonic balance simulation on this ckt.

Page 28: Design Review 2003C Template - 微波EDA网

Examine the Characteristics of the CKT amplifier.

-18 -16 -14 -12 -10 -8 -6 -4 -2-20 0

0

5

10

-5

15

pwrin

dBm

(vou

t[::,1

])

Eqn gain=dBm (vout[::,1])-pwrin

-18 -16 -14 -12 -10 -8 -6 -4 -2-20 0

14

15

16

17

13

18

pwrin

gain

0.6 0.8 1.0 1.2 1.40.4 1.6

1.5

2.0

1.0

2.5

freq, GHz

nf(2

)

0.6 0.8 1.0 1.2 1.40.4 1.6

14

16

18

20

12

22

freq, GHzdB

(S(2

,1))

0.6 0.8 1.0 1.2 1.40.4 1.6

-15

-10

-5

-20

0

freq, GHz

dB(S

(1,1

))dB

(S(2

,2))

0.6 0.8 1.0 1.2 1.40.4 1.6

-30

-28

-26

-32

-24

freq, GHz

dB(S

(1,2

))

1 dB compression

Page 29: Design Review 2003C Template - 微波EDA网

Adjust the first attenuatorsSTEP2

1

2

P_1TonePORT1

Freq=1 GHzP=polar(dbmtow(pwrin),0)Z=50 OhmNum=1

1

21

BPF_ButterworthBPF1

Astop=60 dBBWstop=100 MHzApass=3 dBBWpass=10 MHzFcenter=1 GHz

21

PadPAD1

Loss=6 dBNetType=Pi

21

PadPAD2

Loss=12 dBNetType=Pi

1 2

MixerWithLOMIX2

LO_Freq=.940 GHzNF=6.5 dBConvGain=dbpolar(-6,0)DesiredIF=RF minus LOZRef=50 Ohm

1

1

2

TermTerm2

Z=50 OhmNum=2

1 2

Amplifier2AMP2

GainCompPower=10TOI=21S12=0.1S22=polar(0.2,180)S11=polar(0.2,0)S21=dbpolar(Y,0)

1 2

AmpLayoutCktAmp

21

BPF_ButterworthBPF2

Astop=60 dBBWstop=60 MHzApass=3 dBBWpass=10 MHzFcenter=60 MHz

Cmp_RefDesBPF1PAD1

CktAmpMIX2BPF2AMP2PAD2

OutPGain_dB-3.069

-10.6347.2310.9130.809

12.64011.640

OutPwr_dBm-3.069

-10.6347.2310.9130.809

12.64011.640

OutP1dB_dBm1000.0001000.000

7.4571.1311.0359.9108.910

OutTOI_dBm1000.0001000.000

16.07410.0749.978

20.77019.770

NF_RefIn_dB2.9818.981

10.26014.43814.44214.82314.823

InP1dB_dBm-15.063-18.044-24.044-6.609

-12.935-13.031

1000.000

...p_SS_PGain_dB-3.047-7.56718.853-6.318-0.10424.177-1.000

Cmp_RefDesBPF1PAD1

CktAmpMIX2BPF2AMP2PAD2

OutNPwrTotal_dBm-110.991-112.604-92.476-94.623-94.723-70.166-71.165

OutPwr_dBm-3.069

-10.6347.2310.9130.809

12.64011.640

OutSNR_Total_dB107.922101.97099.70795.53695.53282.80582.805

OutSFDR_Total_dB1000.0001000.000

72.36769.79869.80160.62460.624

• Back off the power going into CktAmp by increasing attenuation in front of it.

OK

NOT OK

Output power systemis trying to force

Actual output power

Page 30: Design Review 2003C Template - 微波EDA网

Other ways to look at the performance:

PAD1 CktAmp MIX2 BPF2 AMP2BPF1 PAD2

1

2

3

4

5

0

6

Cmp_RefDes

Cm

p_C

trb_S

ysN

F_N

oIm

age_

dB

PAD1 CktAmp MIX2 BPF2 AMP2BPF1 PAD2

2

4

6

8

10

12

0

14

Cmp_RefDes

Cm

p_C

trb_S

ysTO

I_dB

Eqn backoff=OutP1dB_dBm-OutPwr_dBm

Cmp_Index0123456

Cmp_RefDesBPF1PAD1

CktAmpMIX2BPF2

AMP2PAD2

Cmp_SS_PGain_dB-3.047-7.567

18.853-6.318-0.104

24.177-1.000

backoff1003.0691010.634

0.2260.2190.226

-2.730-2.730

The gain is enough to swampthe noise contribution of

Components beyond CktAmp

AMP2 is contributing

Entirely for the compressi

NF Contribution

TOI Contribution

Not OK

Page 31: Design Review 2003C Template - 微波EDA网

STEP3• Back off power going into Amp2 or

• Look for a better amplifier with higher compression; We chose the former.

Cmp_Ref DesBPF1

ATTEN1X1

MIX2BPF3PAD1AMP2

OutPGain_dB-3.069

-10.6397.9692.1242.028

-10.14813.423

OutPwr_dBm-8.069

-15.6392.969

-2.876-2.972

-15.1488.423

OutP1dB_dBm1000.0001000.000

7.4571.4361.340

-10.6608.903

OutTOI_dBm1000.0001000.000

16.07410.074

9.978-2.02218.442

NF_Ref In_dB2.9818.981

10.26014.43814.44216.56519.331

InP1dB_dBm-4.375-7.356

-13.3565.086

-0.935-1.031

-13.031

...S_PGain_dB-3.047-7.56718.853-5.844-0.096

-12.17724.177

Cmp_Ref DesBPF1

ATTEN1X1

MIX2BPF3PAD1AMP2

OutNPwrTotal_dBm-110.991-112.604

-92.476-94.150-94.241

-104.296-77.355

OutPwr_dBm-8.069

-15.6392.969

-2.876-2.972

-15.1488.423

OutSNR_Total_dB102.922

96.96595.44591.27491.27089.14885.778

OutSFDR_Total_dB1000.0001000.000

72.36769.48369.48068.18363.865

Eqn backof f =OutP1dB_dBm-OutPwr_dBmCmp_Index

0123456

Cmp_Ref DesBPF1

ATTEN1X1

MIX2BPF3PAD1AMP2

Cmp_SS_PGain_dB-3.047-7.56718.853-5.844-0.096

-12.17724.177

backof f1008.0691015.639

4.4884.3124.3124.4880.480

1 2 3 4 50 6

2

4

0

6

Cmp_Index

Cm

p_C

trb_S

ysN

F_N

oIm

age_

dB

1 2 3 4 50 6

1

2

3

0

4

C mp_Index

Cm

p_C

trb_S

ysTO

I_dB

Close to goal!

OK every where

Adjust the second attenuators

Page 32: Design Review 2003C Template - 微波EDA网

Find the optimal attenuationSTEP4• Find the dependency of SFDR on the attenuation before AMP2

7 8 9 10 11 12 13 14 15 16 17 18 196 20

61.461.661.862.062.262.462.662.863.063.263.463.663.8

61.2

64.0

loss2

Out

SFD

R_T

otal

_dB

[::,6

]

• A situation of ‘noise limited case’ going into ‘gain limited case’.

Page 33: Design Review 2003C Template - 微波EDA网

Other measurements enhance ourunderstanding.

ATTEN1 X1 MIX2 BPF3 PAD1BPF1 AMP2

1

2

3

4

5

6

7

0

8

Cmp_RefDes

Cm

p_C

trb_S

ysN

F_N

oIm

age_

dB

p lot_vs(Cmp_Ctrb_SysTOI_dB, Cmp_RefDe

loss2=6.000000loss2=7.000000loss2=8.000000loss2=9.000000

loss2=10.000000loss2=11.000000loss2=12.000000loss2=13.000000loss2=14.000000loss2=15.000000loss2=16.000000loss2=17.000000loss2=18.000000loss2=19.000000loss2=20.000000

ATTEN1 X1 MIX2 BPF3 PAD1BPF1 AMP2

1

2

3

4

5

6

7

0

8

Cmp_RefDes

Cm

p_C

trb_S

ysTO

I_dB

p lot_vs(Cmp_Ctrb_SysTOI_dB, Cmp_RefDe

loss2=6.000000loss2=7.000000loss2=8.000000loss2=9.000000

loss2=10.000000loss2=11.000000loss2=12.000000loss2=13.000000loss2=14.000000loss2=15.000000loss2=16.000000loss2=17.000000loss2=18.000000loss2=19.000000loss2=20.000000

NF Contribution

TOI Contribution

Page 34: Design Review 2003C Template - 微波EDA网

RF System Budget – Example projectExample project shipped in ADS example directory

• Under Tutorials/RF_Budget_Examples_prj

• Several designs to enable users to ramp up quickly

– Using sweeps, AGC loops, mixers, statistical controllers etc.

Page 35: Design Review 2003C Template - 微波EDA网

Budget Example Summary:

• The ADS budget controller is an effective way to quickly budget circuit level specifications

• ADS behavioral modeling and simulators are used

• Data can be formatted in a variety of ways to provide insight into RF System behaviors

Page 36: Design Review 2003C Template - 微波EDA网

广 告 页

Agilent ADS中文学习培训课程套装ADS中文学习培训课程套装是迄今为止国内最全面最权威的ADS培训教程,详细全面地讲解了ADS在微波射频电路、通信系统和电磁仿真设计方面的内容。套装中的中文视频培训课程是由具有多年

ADS使用经验的微波射频和通信领域资深专家讲解,工程实践强,且视频演示直观易学,能让您在最短的时间内学会使用ADS,并把ADS真正应用到微波射频电路和通信系统设计研发工作中去...。详情请浏览网址:http://www.mweda.com/eda/agilent.html

矢量网络分析仪学习套装

矢量网络分析仪是微波射频工程师研发调试工作中常用的测

试仪器之一,为了帮助微波射频工程师最迅速、全面地熟悉掌握矢

量网络分析仪使用,微波EDA网推出了这套矢量网络分析仪学习培训教程套装。套装中既有直观易学的矢量网络分析仪使用操作视频

教程,也有全面的矢网用户操作手册,详情请浏览网址: http://www.mweda.com/vna/course

台湾中华射频/通信专业视频课程套装

台湾中华大学教授给岛内知名电子企业员工培训课程视频,由

于是给企业员工培训,所以讲课内容尽量摒弃繁琐的数学推导、抽

象的概念,多从工程实践出发,以通俗易懂的语言和直观工程实例

来向学员讲述微波射频电路和数字通信系统相关知识。是从事微波

射频电路设计和通信系统设计相关工程技术人员不可多得的经典学

习教程。详情请浏览网址:http://www.mweda.com/vedio/vedio_45.html

Cadence Allegeo PCB设计培训套装

衡量一个软件的优劣,其中一个很现实的标准就是看它的市场

占有率,Cadence Allegro现在几乎成为高速板设计中实际上的工业标准,被很多大型电子通信类公司采用,因此掌握Cadence Allegro对找份好工作有实质的帮助;另外其学习资源也比较丰富,比较适

合自学。本站现推出Cadence Allegro PCB设计培训套装,实用易学,物超所值,帮助您迅速有效的学习掌握Allegeo PCB设计。详情请浏览网址:http://www.mweda.com/eda/allegro.html

>> 更多微波射频和PCB设计相关培训课程尽在 微波EDA网