Top Banner
DESIGN PORTOLIO JAMES LE Included in this document is a summary of the projects worked on outside of the regular curriculum through employment, as a member of the Society of Automotive Engineers R&D Team (SAE R&D), and through personal interest. It seeks to highlight the projectsgoals and responsibilities.
13
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design Portfolio - Rev 7

DESIGN PORTOLIO

JAMES LE

Included in this document is a summary of the projects worked on outside of the regular

curriculum through employment, as a member of the Society of Automotive Engineers

R&D Team (SAE R&D), and through personal interest. It seeks to highlight the projects’ goals and responsibilities.

Page 2: Design Portfolio - Rev 7

UF SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) – R&D TEAM

Project – Carbon Fiber Control Arms

ROLE Member of the Finite Element Analysis (FEA) Team.

PROJECT GOALS To reduce the weight of the control arms for the suspension system while maintaining strength. We achieve this by collaborating with the design team and UF SAE members and analyze newly designed control arms, knuckles, and bungs.

PROJECT HIGHLIGHTS ANSYS FEA Software Design Optimization Collaborated with Test team and SAE to define boundary and loading conditions Created presentations for senior SAE members to communicate results

FEA – Mesh and Stress Results

REFLECTIONS Joining a newly created design team and working in cross-functional groups for a single project was very rewarding. Not only did I get to learn the process behind FEA, but I got to build my teamwork skills and communicating skills between R&D members and SAE members. I got to learn a skill not learn in the classroom with industry leading software. The carbon fiber control arms are currently installed on the SAE formula car.

Proposed Control Arm Model

Page 3: Design Portfolio - Rev 7

UF SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) – R&D TEAM

Project – Carbon Fiber Brake Ducts

ROLE Team Leader – Manufacturing Team

PROJECT GOALS To build the components for a brake duct designed by the R&D design team. Learn the process behind carbon fiber manufacturing and lathe and mill machining.

PROJECT HIGHLIGHTS Created schedules for machining and carbon fiber mold manufacturing training Collaborated with UF SAE Composites Team Reported to R&D Team Captain and SAE Team Captain to communicate project

results Interfaced with Design Team to design for manufacturability 3D printing exposure with UF faculty

REFLECTIONS Ultimately, the brake ducts were deemed unnecessary after testing of new brake rotor design. However, the project was very beneficial in learning what it takes to lead a team. Planning meetings, training sessions, and learning about design for manufacturability of were the key skills learned by the manufacturing team.

Proposed Carbon Fiber Brake Duct

Mold Manufacturing

Machining Training

Page 4: Design Portfolio - Rev 7

Innovation Marine

Innovation Marine Corp

High Performance Diesel Engine Intern Optimized, updated, and checked part and assembly drawings using SolidWorks 2014 of a modified

Cummins marine diesel engine implemented with a sequential turbo system for the Navy Special Warfare Development Group. (NSWDG formerly DEVGRU)

Conducted finite element analysis simulations to for critical engine parts to meet Navy specifications. Project assistant for sequential turbo system testing and installation. Assisted in quality control, quality inspection and quality assurance of production turbo-diesel

engines. Designed various parts to proper and ergonomic function of the turbo-diesel engine.

LEIDOS Prototype Navy Boat Space Frame Project by Michael Peters Yacht Design – Project Manager

Project Manager for manufacturing of prototype frame Learned CNC programming using FeatureCAM to build frame Coordinated with vendors to order tools, stock, and material Created project schedule and managed project tasks Transferred CNC skills to diesel engine parts manufacturing and builds of personal designs

Page 5: Design Portfolio - Rev 7

Innovation Marine

Experience

Designing and producing my own parts in the CNC helped me understand its capabilities. I was able to develop efficient CNC manufacturing practices to ensure an accurate produced part. Taking part in the proof of concept and initial prototype phases of the Michael Peters project assisted in learning what it takes to design and manufacture a novel concept. Learning the capabilities of the CNC machine and examining part drawings from other engineers also helped me understand design concepts that would create functional and manufacturable design.

Space Frame Slide Tracks

Space Frame Slides First CNC Part

Page 6: Design Portfolio - Rev 7

Innovation Marine

Innovation Designs

Heat Shield

Given the opportunity to design parts for the High Performance Diesel Engine, LEIDOS Frame, and various other projects. Shown above is a Heat Shield concept designed to prevent the operators of the engine from burning themselves on turbo components. The heat from the exhaust fumes heated the metal to just above 1100°F. After making some assumptions, I was able to choose my own material, Inconel alloy, and ran through some simple hand calculations of radiation heat transfer. In theory, the heat shield would exhibit a temperature of 158° F, much lower than what is currently measured.

Heat Shield

Heat Shield Drawing Specifications – Material Inconel

Page 7: Design Portfolio - Rev 7

Innovation Marine

Diesel Engine Quality Control Process

TASKS

• Participated in conducting measurements of parts to meet tolerance specifications

• Non-Conformance Reports (NCR)

• Work Instructions

Reports, NCR’s, and work instructions were reviewed by company president, director of engineering, and machinist to verify accurate data collection and clear communication of assembly process.

Non-Conformance Report

Work Instruction – Turbo Nozzle

Page 8: Design Portfolio - Rev 7

Innovation Marine

FEA – Naval Special Warfare Development Group

ROLE

Using my previous experience using ANSYS FEA software, I was tasked in running simulations in SolidWorks Simulation. The main part being analyzed was a saddle for a heat exchanger, exposed to certain G-forces specified by the Navy. Wrote simulation reports and submitted to engineering director and Navy personnel for review and approval to part change.

HIGHLIGHTS

Exposure to G-Force simulation New FEA software Formal Report submitted to NSWDG

EXPERIENCE

Learning a new FEA package was difficult but the methodology was still the same. Expanded my knowledge about FEA and allowed me to learn another FEA simulation package. Was relied on to run simulations of other engine parts to verify proper operation in the field. Was able to collaborate with head engineer at United States Marine Inc. in New Orleans. Gained experience in report riding for the Navy personnel and officers.

Heat Exchanger Saddle Mesh

Heat Exchanger Stress Results

Page 9: Design Portfolio - Rev 7

Innovation Marine

Design Proposal

Was encouraged by the director of engineer to come up with a solution to turbo-lag in the production Cummins turbo-diesel marine engines. The design had to fit within the engine space of the boat and be reliable enough to work in harsh environments. I was also tasked in researching a possible motor-generator unit for the engine. The result was a 30 page design proposal submitted to the director of engineering for review. Currently being considered with the addition of a two speed transmission as a means to reduce turbo lag.

3D Section View Render

Design Highlight Flier

Page 10: Design Portfolio - Rev 7

Senior Design

Heat Exchanger Design Project

Based on given design specifications, were tasked to design a Shell-and-Tube heat exchanger for crude oil and city water. Design was based on a hybrid of the Kern Method and other methods researched.

Project Roles

CAD Designer Material Selection Cost Analysis

Final Heat Exchanger Design

Heat Exchanger Exploded View

Page 11: Design Portfolio - Rev 7

Senior Design

Senior Design Project

During senior design, our design team was tasked to reverse engineer a Razor E300 electric scooter and report how it was made and manufactured. Due to my experience in researching of electric motors, I was the electrical systems lead, FEA lead, and brake design lead.

Electrical System

Characterized the electrical system Defined functional requirements Created part and assembly drawings

Finite Element Analysis

Created an accurate simulation of dead weight load and impact force on steel frame

Brake Design

Explained the physics behind the band brake system used to control scooter speed

Using what we learned by reverse engineering the Razor E300 electric scooter, we were tasked to design a unique electric scooter that could fit in a carry-on sized bag.

Razor E300 Electric Scooter – Reverse Engineered

Page 12: Design Portfolio - Rev 7

Senior Design

Advanced Scooter Concepts – XRS-C

Given the opportunity to create a company name and design name for a light, compact electric scooter. Key design requirements were that the scooter must be able to fit in a carry-on sized volume, and be under 23 lbs. Final design featured:

Carbon Fiber High Torque Cruise control Fold-ability Ergonomic Handle Bars and Deck

Folded Design Render

Key Responsibilities

Carbon Fiber Rim Design Mechanical Analysis – SolidWorks Finite Element Analysis (FEA) Electrical System

Page 13: Design Portfolio - Rev 7

Senior Design

Mechanical Analysis Ran FEA Simulations for various load bearing components

o Carbon Fiber Tubing o Rear Bungs o Handle Bar Tubes o Carbon Fiber Rim

Electrical System Calculated Battery Life Specified electrical components

o Battery Configuration o Motor Output o Controller Settings

Carbon Fiber Rim Design Design Carbon Fiber Rim Designed for Focal Point of Design Designed for Manufacturability

Carbon Fiber Rim Simulation - Simplified

Wiring Summary – XRS-C