Top Banner
DESIGN OF BRIDGE NO. 141/1 (A) Forces & moments about abutment 1. Earth pressure Calculation Back fill soil properties- C = 0, θ = 30 0 , δ = 20 0 , γ d = 1.8 T/m 3 , γ s = 1.05 T/m 3 = 0.297 K AH = 0.297. cos 20 0 = 0.28 a. LWL Condition F = ½ ×6.15×3.90×12.0 = 114.02 T M = 114.02 ×0.42×6.15 = 294.51 Tm. 1.2 HFL condition F = [(½ ×1.512×3.0) + (3.15 ×1.512) + (½ ×3.15×0.92)] × 12 = [2.268 + 4.76 +1.44] × 12 = 27.21 + 57.12 + 17.28 = 101.61 T M = 27.21 (0.42 × 3.0 + 3.15) + 57.12 × 3.15/2 + 17.28 × 0.42 × 3.15 = 232.81 Tm. 1.3 Live load Surcharge . . Cos 2 Φ Ka = Cos θ cos(δ+θ)[1 +√ sin (δ+θ) sin (δ+β) ] 2 0.28×1.8×3.0 = 1.512
18

Design of Br. No. 141.1

Feb 17, 2016

Download

Documents

Design of Br. No. 141.1
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design of Br. No. 141.1

DESIGN OF BRIDGE NO. 141/1

(A) Forces & moments about abutment 1. Earth pressure Calculation

Back fill soil properties-

C = 0, θ = 300, δ = 200, γd = 1.8 T/m3, γs = 1.05 T/m3

= 0.297

KAH = 0.297. cos 200 = 0.28

a. LWL Condition

F = ½ ×6.15×3.90×12.0

= 114.02 T

M = 114.02 ×0.42×6.15

= 294.51 Tm.

1.2 HFL condition

F = [(½ ×1.512×3.0) + (3.15 ×1.512) + (½ ×3.15×0.92)] × 12

= [2.268 + 4.76 +1.44] × 12

= 27.21 + 57.12 + 17.28

= 101.61 T

M = 27.21 (0.42 × 3.0 + 3.15) + 57.12 × 3.15/2 + 17.28 × 0.42 × 3.15

= 232.81 Tm.

1.3 Live load Surcharge

F = 0.28×1.8×1.2×6.15×12

= 44.63 T

M = 44.63 × 6.15/2

= 137.23 Tm

...Cos2Φ

Ka =Cos θ cos(δ+θ)[1 +√ sin (δ+θ) sin (δ+β) ]2

cos (δ+θ) cos (θ+β)

0.28×1.8×3.0 = 1.512

Page 2: Design of Br. No. 141.1

Live Load Calculation 1. Class A Double lane

RB×9.4 = 6.8 (2.8+5.8+8.8) – 11.4 ×0.2

... RB = 12.34 T for double lane 24.68 TRA = 19.46 T for Double lane 38.92 T

2. Class 70R Tracked Load

RB × 9.4 = 70×2.085

... RB = 15.12 T

... RA = 54.47 T

Braking force = 0.2 × 70 = 14 TChange in reaction = (14×2.02)÷9.4 = 3.00 T

... RB = 15.12 – 3.00 = 12.12 T

... RA = 54.47 + 3.00 = 57.47 T3. Class 70 R wheeled load

RB×9.4 = 17× (1.17+4.22+5.59) +12(7.72+9.24) - 17× 0.2 = 41.14

... RB = 41.14 T ... RA = 50.86 TFrom above it is seen that case 70R Tracked load gives highest reaction.

... Max LL = 57.47 T

Page 3: Design of Br. No. 141.1

Live load from Super Structure

Type Load Normal SeismicL.A. Moment H.F. L.A. Moment

D.L. 117.65 0.03 3.52 16.94 5.74 97.23

D.L.+L.L. 175.12 0.03 5.25

Load from Dirt Wall, Abutment Cap, Abutment & Retaining Wall ――

(i) Dirt Wall = 0.25 × 0.82 × 12 × 2.4 = 5.90 T

Mn = 5.9 × 0.375 = - 2.21 TmFs = 0.85 TMs = 0.85 × 5.74 = 4.879 Tm

(ii) Abutment Cap = 0.225 × 0.67 × 12 × 2.4 = 4.34 TMn = 0.165 × 4.34 = - 0.716 TmFs = 0.624 TMs = 3.25 Tm

(iii) Abutment (LWL)W = [(0.67+1.0) / 2] × 5.105 × 12 × 2.4

= 122.76 TMn = - 9.82 TmFs = 17.67 TMs = 42.39 Tm

C.G. Calculation Area X Y Ax Ay

0.67 × 5.105 = 3.42 0.335 2.55 1.14 8.72½ × 0.33 × 5.105 = 0.84 0.78 3.403 0.655 2.85

4.26 1.795 11.57

... X = 0.42 m from left

... Y = 2.71 m from top(HFL)W = 1.955×0.67×12×2.4+½ ×1.955×0.12×12×2.4+3.15×12×0.81×1.4+0.5×3.15×

0.19×12×1.4= 37.72+3.37+42.86+5.02= 88.97 T

Mn = - 37.72×0.165+3.37×0.21-42.86×0.095+5.02×0.35= - 7.83 Tm

Fs = 5.43+0.48+6.17+0.72= 12.80 T

Ms = 4.12×5.43+0.48×3.8+6.17×1.58+0.72×1.05= 34.69 Tm

Page 4: Design of Br. No. 141.1

Return Wall ――W = 2× [(0.25×0.3×3.6×2.4) + (1.75×3.6×0.25×2.4)]

= 2(0.648 + 1.89) = 5.076 TMn = 2[(0.684(3.6/2 + 0.5)) + 1.89 (3.6/3+0.5)]

= 2[1.43 + 3.213]= 9.416 Tm

Fs = 2×0.114× (0.648 + 1.89)= 2×(0.093 + 0.272) = 0.73 T

Ms = 2×(0.093×6+0.272×5.26) = 3.976 Tm.

Kerb ――W = 2×0.425×0.3×3.6×2.4

= 2.203 TMn = 2.203×2.3 = 5.06 TmFs = 0.317 TMs = 1.99 Tm.Railing ――W = 2[(0.05×3.6) + (3×0.042)]

= 0.641 TMn = 0.641 × 2.3 = 1.47 TmFs = 0.092 TMs = 4.38 Tm

1. Horizontal force due to friction ――Fn = (20/100)×100 = 20 THF=M Rg = 0.06×117.65 = 70.59 TM = 70.59×5.33 = 376.24 TmForces & moment about Pier: - Dead Load = 235.37 TDead load + Live load = 313.80 TFs = 0.144 × 235.3 = 33.88 TMs = 33.88 × 5.74 = 194.47 TmMn = 0.00 Tm2. Load from Pier & Pier Cap ――Pier Cap = 0.8×0.225×12×2.4 = 5.184 TMn = 0Fs = 0.746 TMs = 0.746×5.21 = 3.89 Tm.Pier shift ――(LWL)W = 0.8×5.105×12×2.4 = 117.62 TMn = 0Fs = 16.94 TMs = 43.24 Tm(HFL)W = 0.8×12×3.15×1.4+0.8×12×1.955×2.4

= 42.33+45.04=87.37 T

Mn = 0.00

Page 5: Design of Br. No. 141.1

Fs = 0.144(42.33+45.04) = 6.09+6.48 = 15.58 TMs = 6.09× (3.15+(1.955/2))+6.48×(3.15/2)

= 25.13+10.21= 35.34 Tm

3. Horizontal forces due to friction ――Fn = 20/100×100

= 20 TFn/2 = 10 TH = 0.00 TTotal Horizontal force ――

= 2×10 = 20 TMoment = 20×5.33

= 106.60 TmWater Pressure (HFL)Maximum observed velocity = 0.8m/sec.Manning’s Velocity = 1.8m/sec.Max. Manning’s Velocity

= 1.84√2= 2.6 m/sec

P = 52 KV2

K = 0.9p = 52×0.9×2.62

= 316.4 Kg/m2

Total water pressure F = 316.4×0.8×(3.15/2)

= 398.66 KgFor variation of flow of 20O

F traffic = 398.66 Cos 20O = 374.62 KgF long = 136.35 KgMT = 0.374× 2/3 ×3.15 = 0.785 TmML = 0.136×2/3×3.15 = 0.286 Tm(C ) Design of abutment column (i) DL+EP+LL+HF+LL Surcharge +LWL

Sl. No. Description W FH Mn Fs Ms

1 Earth Pressure   114.02 294.51    2 LL Surcharge   44.63 137.23    3 DL+LL Superstructure 175.12   -5.25 16.94 97.234 Dirt Wall 5.9   -2.21 0.85 4.8795 Abutment Cap 4.34   -0.716 0.624 3.256 Abutment 122.74   -9.82 17.67 42.397 Return Wall 5.076   -9.406 0.73 3.9768 Kerb 2.203   -5.06 0.317 1.999 Railing 0.641   -1.47 0.092 4.38

10 Horizontal force   70.59 376.24    Total   316.02 229.24 774.048 37.223 158.095

Normal Condition Sesmic Condition

Page 6: Design of Br. No. 141.1

W = 316.04 T W =316.04 T

Mn = 774.05 Tm Mn =774.05+158.09= 932.14 Tm

Fn = 229.24 T Fn =229.24+37.22= 266.46 T

Sl. No. Description W FH Mn Fs Ms

1 Earth Pressure   101.61 232.81    2 LL Surcharge   44.63 197.23    3 DL+LL Superstructure 175.12   5.25 16.94 97.234 Dirt Wall 5.9   -2.21 0.85 4.8795 Abutment Cap 4.34   -0.716 0.624 3.256 Abutment 88.97   -7.83 12.8 34.697 Return Wall 5.076   -9.4 0.73 3.9768 Kerb 2.203   -5.06 0.317 1.999 Railing 0.641   -1.47 0.092 4.38

10 Horizontal force   70.59 376.24    Total   282.25 216.83 784.84 32.353 150.395

Normal Condition Seismic Condition

W = 282.25 T W =282.25 T

Mn = 216.83 Tm FH = 216.83+32.29= 249.12 T

Fn = 724.84 T Mn=724.84+150.39= 875.23 Tm

From Above two tables it is seen that LWL non Seismic is guiding for design.Design load = 316.04 TDesign Moment = 774.05 Tme = 774.05/316.04 = 2.44t = 1000mm b = 12000mmt/e = 1.6/2.44 = 0.409 d’/t = 60/1000 = 0.06 ≈ 0.05Assuming 1% Steelp = 1%n = 10mp = 1/100×10 = 0.10Referring Turneaure & Maurer ChartsCZ = 7.8 K = 0.275

... fe = M/bt2 ×CZ= (774.05×105)÷(1200×(100)2)×7.8 = 50.31 Kg/cm2 <115 Kg/cm2

... ft = n fe (d/kt – 1)= 10×50.31×((97.6/0.275×100) – 1)= 1282.44 Kg/cm2 <2000 Kg/cm2

Ast = 1/100 × 1200 × 100 = 1200 cm2 on each face 600 cm2

Using 32 Φ – 75 Nos. on each face

Summary of forces & moment at pier

Page 7: Design of Br. No. 141.1

LWL Condition Sl. No. Description W FHT FHL FS MNL Mnt Ms

1 DL+LL Superstructure 313.80     33.88     194.47

2 Pier Cap 5.184     0.746     3.89

3 Pier 117.62     16.94     43.24

4 Horizontal force     20   106.60    

5 Total 436.60   20 51.56 106.60   241.60

Normal Condition:-W = 436.60 THF = 20TM = 106.60 TmSeismic Condition: -W = 436.60 THF = 20+51.56 = 71.56 TM = 106.60+241.60 = 348.20 Tm

HFL Condition Sl. No. Description W FHL FHT MNL MNT FS Ms

1 DL+LL Superstructure 313.80         33.88 194.47

2 Pier Cap 5.184         0.746 3.893 Pier 87.37         12.58 35.344 Horizontal force   20   106.60      5 Water Current   0.136 0.374 0.286 0.785    6 Total 406.35 20.136 0.374 106.886 0.785 47.206 233.70

Normal Condition: - W = 406.35 TML = 106.9 TmMT = 0.785 TmHFL = 20.13 THFT = 0.374 TSeismic Condition: -W = 406.35 TML = 106.9+233.70 = 340.60 TmMT = 0.785 TmHFL = 20.13+47.20 = 67.33 THFT = 0.374 TFrom Above two tables it is observed that LWL non Seismic is guiding for design.Design Moment = 348.20 Tm Design load = 436.60 Te = 348.20/436.60 = 0.797mt = 800mm b = 12000mmd’/t = 60/800 = 0.075 ≈ 0.10t/e = 0.8/0.797 = 1.003Assuming P = 0.9%np = 10×0.009 = 0.09

Page 8: Design of Br. No. 141.1

Referring Turneaure & Maurer ChartsCZ = 9.3 K = 0.325

... fc = M/bt2 ×CZ

= (348.20×105)× 9.3 ÷(1200×(80)2) = 42.16 Kg/cm2 <1.5×115 Kg/cm2

... ft = n fc (d/Kt – 1)= 10×42.16× [77.6/ (0.325×80) – 1]= 836.71 Kg/cm2 <1.5×2000 Kg/cm2 (SAFE)

Ast = 0.9/100 × 1200 × 80 = 864 cm2 Provide 55 Nos. 32 Φ on each face.

Design of Raft Slab: - Dimensional Properties: -A = 29.98×12.9 = 386.74 m2

Ix = (29.98×12.93) ÷12 = 5363.19 m4

Iy = (12.9×29.983) ÷12 = 28966.99 m4

Zx = (29.98×12.92) ÷6 = 831.49 m3 Zy = (12.9×29.982) ÷6 = 1932.42 m3 Load directly coming over raft slab: -(i) LWL Condition Self Wt: - 1.29.98×12.9×2.4 = 928.18 TEarth : - 2× (½×12×1.8×3.08×4.62) = 307.36 T

(T) 1170.77 T(ii) HFL Condition Self Wt: - 1×29.98×12×1.4 = 503.66 TEarth : - 2× (½×12×1.05×3.05×4.62) = 179.29 TWater : - 12×3.15(29.98 – 2.0 – 2.4) = 997.16 T

(T) = 1680.91 T

Check for base pressure: - (LWL Normal)W = 1170.77+2×316.04+2×436.60 = 2676.05 T

Page 9: Design of Br. No. 141.1

M = 774.05–774.05+2×106.60 = 213.20 TmP = (2676.05÷359.76) ± (213.20÷1797.60)Pmax = 7.43+0.11 = 7.54 T/m2

Pmin = 7.43 – 0.11 = 7.32 T/m2

(LWL Seismic)W = 1170.77+2×316.04+2×436.60 = 2676.05 TM = 774.05–774.05+2×158.09 + 2 × 348.20 = 1012.58 TmP = (2676.05÷359.76) ± (1012.58÷1797.60)Pmax = 7.43+0.56 = 7.99 T/m2

Pmin = 7.43 – 0.56 = 6.87 T/m2

HFL (Normal)W = 2×282.25+2×406.35+1680.11 = 3057.31 TML = 2×106.9+724.84 – 724.84 = 213.80 TmMT = 2×0.785 = 1.57 TmP = (3057.31÷359.76) ± (213.80÷1797.60) ± (1.57÷719.52)

= 8.49± 0.118 ± 0.002P = 8.61 T/m2

p = 8.606 T/m2

p = 8.37 T/m2

HFL (Seismic)W = 3057.31 TML = 2×150.39+2×340.60 = 981.98 TmMT = 2×0.785 = 1.57 TmP = (3057.31÷359.76) ± (981.98÷1797.60) ± (1.57÷719.52)P = 9.038 T/m2

p = 9.034 T/m2

p = 7.942 T/m2

Design of raft SlabLWL NormalW = 2×316.04+2×436.60 = 1505.28 TM = 213.20 Tm.P = (1505.28÷359.76) ± (213.20÷1747.60)Pmax = 4.305 T/m2

Pmin = 4.063 T/m2

LWL SeismicW = 1505.28 TM = 2×158.09+2×348.20 = 1012.58 TmP = (1505.28÷359.76) ± (1012.58÷1747.60)Pmax = 4.763 T/m2

Pmin = 3.706 T/m2

HFL NormalW = 2×282.25+2×406.35 = 1377.2 TM = 2×106.9 = 213.80 TmP = (1377.2÷359.76) ± (213.80÷1747.60)Pmax = 3.95 T/m2

Pmin = 3.706 T/m2

HFL SeismicW = 1377.2 TM = 981.98 Tm

Page 10: Design of Br. No. 141.1

P = (1377.2÷359.76) ± (981.98÷1747.38)Pmax = 4.309 T/m2

Pmin = 3.267 T/m2 From above it is observed that LWL Normal condition is guiding for design.

Shear force in A1 P1 SFx = -316.04+4.063×x×12+0.0087×x2/2×12At A1 x = 0SF = -316.04 TSFx = 10.08 = -316.04+4.063×10.08×12+0.0087×10.082×6

= +180.72 TSF = 0x = 0.0522x2+48.77×-316.04

... x = 6.43m.

Shear force in P1 P2 SFx = -(436.60-180.72)+12×4.063×x+12×0.0087× x2/2

At P2 x = 9.82mSF = -255.88+478.78+5.03

= +227.93 TSF = 0At - 255.88+48.756x+0.0522x2

x2+934.02x – 4901.91 = 0

... x = 2.616mShear force in P2 A2 SFx = -(436.60-227.93)+12×4.063x+12×0.0087 x2/2

x = 0At P2 = Sf = -208.67TAt x =10.08mSF = 0At -208.67+48.756x+0.0522x2x = (-933.9±√ (933.9)2+4×3997.50) ÷2 = 4.26m

Page 11: Design of Br. No. 141.1

Bending moment in A1 P1 Mx =774.05 – 316.04x + ((4.063x2 ÷ 2) + (0.0087x3 ÷ 2))×12At A1 x = 0M = 774.05 TmAt x = 6.43 mM max = -245.55 TmAt x = 10.08mM = 83.14Portion P1 P2 Mx =774.05 +106.60 – 316.04 (10.08+x) – 436.60x + [(4.063×(10.08+x/2)2+0.0087

×(10.08+x/2×3)3]×12At A1 x = 9.82M = 95.132 TmAt x = 2.616 mM max = -308.88 TmPortion P2 A2 Mx = 774.05 +2×106.60 – 316.04× y – 436.60 (y – 10.08) – 436.60 (y – 19.9) +

[(4.063y2÷2)+(0.0087y3÷2×3)]×12At A2 M= +774.08 TMM max X = 4.26m

Y = 24.16mM max = -180.57 Tm

Design shear force =At Abutment = 316.04 TAt Pier = 255.88 T

Design Moment =At Abutment = 774.05 Tm At Pier = 201.69 Tm At mid span = 223.02 Tm (t)

Page 12: Design of Br. No. 141.1

Reinforcement at Abutment – M/bt2 = [774.05×107] ÷ [12000×(936)2] = 0.736Pt = 0.58%At = (0.58/100)×93.6×1200 = 651.45 Cm2

Provide 25 Φ – 135 nos. at bottom (662.67 cm2)ح ) =316.04 × 104) ÷ (12000×936(

= 0.281 N/mm2

100As/bd= (100×662.67) ÷ (1200×93.6) = 0.589Corresponding ح c = 0.34 N/mm2 > 0.281 N/mm2

Reinforcement at Pier – M/bt2 = [201.69 ×107] ÷ [12000×(936)2 = 0.191Pt = 0.2%At = (0.2/100)×93.6×1200 = 224.64 Cm2

Provide 25 Φ – 70 nos. at bottom (343.61 cm2)ح ) =255.88 × 104) ÷ (12000×936 = (0.227 N/mm2

100As/bd= (100×343.61) ÷ (1200×93.6) = 0.306Corresponding ح c = 0.25 N/mm2 > 0.227 N/mm2

Reinforcement at Pier Abutment mid span – M/bt2 = [308.88×107] ÷ [12000×(936)2]

= 0.294Pt = 0.24%At = (0.24/100)×93.6×1200

= 330 Cm2

Provide 25 Φ – 70 nos. Provide 20 Φ @ 140 c/c in transverse direction at both top & bottom.Design of Return Wall Earth Pressure at a depth At C = (0.297×1.8×0.6)+(0.297×1.2×1.8)

= 0.321+0.642= 0.963 T

At D = (0.297×1.8×2.35)+(0.297×1.2×1.8)= 1.256+0.642= 1.898 T

M = ((0.963÷2)×0.6×(3.62÷2)) + [(0.963+1.898÷2)×(1.75÷2)×(3.62÷3)]= 7.28 Tm

BM/m = 7.28÷2.35 = 3.1 Tm/mDesign Momentd = √ (3.875×107)÷(0.91×1000) = 206.4mmProvide d = 250mm

= 250 – (25+16/2) = 216mmM/bt2 = [3.875×107] ÷ [1000×2172]

= 0.83From Sp – 16 Pt = 0.67At = (0.67/100)×100×21.7

= 14.039 Cm2

Provide 16 Φ @ 130 c/c (At = 15.47 cm2) on inside face horizontally For outside face horizontally & inside ~ outside face vertically A = (0.2÷100)×100×21.7 = 4.43 m2

Provide 10 Φ @ 150 c/c (At = 5.24 cm2)

Page 13: Design of Br. No. 141.1

Design for vertical bending: -W = (0.648+1.89)+(2.203+0.33)

=5.071 TM = ( 0.648×3.6/2)+(1.89×3.6/3)+(2.203+0.33)×3.6/2

= 7.994 TmM/bt2 = [7.99×107] ÷ [250×23002]

= 0.06Pt = 0.2%At = (0.2/100)×25×230

= 11.5 Cm2

Provide 4 Nos. 20 Φ at topNos. 20 Φ at bottom.

Design of Dirt wall: - A = 0.297×1.8×1.2 = 0.642B = 0.297×1.8×0.82 = 0.438Fa = 0.642×0.82 = 0.526 TFb = ½×0.438×8.82 = 0.179F = Fa+Fb

= 0.526+0.179= 0.705 T

M = 0.526×0.82/2+0.179×0.42×0.82= 0.277 Tm

Required d = √ (0.277×107)÷(0.91×1000) = 55.20 mm= 5.5 cm

Provide d = 250mm= 250 – (25+12/2) = 219mm

M/bt2 = [0.277×107] ÷ [219×10002]= 0.0577

Refer Sp = 16Pt = 0.2%A = (0.2/100)×100×21.9

= 4.38 Cm2 Provide 10 Φ @ 150 c/c vertically & horizontally on both face.Abutment Cap: - Based on square root formula & satisfied provide 6 nos. 10 Φ bars at top & bottom & two legged 10 Φ stirrups @ 150 c/c.

******************