Top Banner
The Leader in QuickTurn HDI PCBs Weigh Design Choices for Soldermask on Microwave PCBs www.protoexpress.com Strategies for soldermask at the design stage influence fabrication yield, which ultimately governs PCB cost
15
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design Choices for Soldermask on Microwave PCBs

The Leader in QuickTurn HDI PCBs

Weigh Design Choices for Soldermask on Microwave PCBs

www.protoexpress.com

Strategies for soldermask at the design stage influence fabrication yield, which ultimately governs PCB cost

Page 2: Design Choices for Soldermask on Microwave PCBs

• PTFE-based laminates are the materials of choice for microwave circuits because of their low loss at microwave frequencies

• The processes to fabricate boards with such laminates differ in several respects from those for FR4-type materials, but are well-established and documented

• One aspect that may be unfamiliar to many PCB designers involves the treatment of copper post-etch and the implications for design to ensure good manufacturing yields

Page 3: Design Choices for Soldermask on Microwave PCBs

• Whatever laminate is used, PTFE or otherwise, the copper remaining after etch must be cleaned or automated optical inspection (AOI) to detect shorts or opens will be unreliable, and soldermask will not stick

• The best way to clean the copper is an abrasive scrub

• However, all the suppliers of PTFE-based laminates advise that the laminate surface fresh from copper etch is best for adhesion and is compromised by scrubbing

Page 4: Design Choices for Soldermask on Microwave PCBs

• There are alternative cleaning methods, but none are as effective as scrubbing to support AOI and soldermask adhesion

• Consequently, the copper is scrubbed before inspection

Page 5: Design Choices for Soldermask on Microwave PCBs

• A plasma process is used after scrubbing the copper to reinvigorate the exposed laminate, to return the “tooth” to the surface so that soldermask will adhere, if it is an outside layer, or to aid subsequent lamination

• However, the plasma oxides the copper, which must be cleaned again if soldermask will be applied

Page 6: Design Choices for Soldermask on Microwave PCBs

• To avoid compromising the PTFE laminate surface by another scrubbing, a chemical cleaning of the copper follows in lieu of scrubbing, in preparation for soldermask

• The panel must be dried immediately to eliminate moisture that could stain the copper and thereby inhibit soldermask adhesion

• The process is a balancing act: Sometimes it doesn’t work and the soldermask has to stripped, the panel has to be cleaned again and dried, and the soldermask reapplied

Page 7: Design Choices for Soldermask on Microwave PCBs

• Instead of the standard practice of covering a board in soldermask, leaving openings for pads and so forth, microwave-PCB designers commonly soldermask only the circuitry except for the pads, etcetera, leaving the PTFE laminate surface open

• The copper can be scrubbed, AOI can be performed successfully, the soldermask is applied to the copper where it sticks, and there is no need to worry about it on the laminate because it develops off

Page 8: Design Choices for Soldermask on Microwave PCBs

• Another common approach is to restrict the deposit of soldermask to little dams next to pads, which limit solder from traveling down the traces (see figure 1).

• This approach may be easy to implement for simple circuits, but tedious if thousands of dams are required

(see figure 2)

Page 9: Design Choices for Soldermask on Microwave PCBs

A third design choice

• The need for scrubbing or chemical cleaning of the copper can be avoided altogether, and therefore the need to plasma treat the surface of the PTFE dielectric if a lamination will follow, if gold is plated over the copper before etch

• The gold does not oxidize, remaining bright after etch, so does not require cleaning to be ready to AOI

• Furthermore, if desired, a full soldermask with conventional solder openings can adhere to the board

Page 10: Design Choices for Soldermask on Microwave PCBs

© 2011 Sierra Circuits, Inc. All Rights Reserved. | www.protoexpress.com 10

Concerns have answers

• Gold is expensive, of course, but one or more cleaning processes and a plasma process are eliminated

• There is with gold the issue of copper migration to consider

• Over time, copper and gold tend to diffuse into each other, the copper brought to the surface oxidizes, and contact resistance increases as a result of the oxidation. Higher temperatures accelerate the process.

Page 11: Design Choices for Soldermask on Microwave PCBs

© 2011 Sierra Circuits, Inc. All Rights Reserved. | www.protoexpress.com 11

• Nickel ordinarily is used as a barrier layer between copper and gold to prevent diffusion, however nickel cannot be used for rf and microwave circuits

• At rf and microwave frequencies, the skin effect predominates in conductors: Most of the current flows in the outside of traces

• Nickel is a lossy metal compared to copper especially at high frequencies, and the skin effect would tend to concentrate much of the current through the nickel near the trace surface

Page 12: Design Choices for Soldermask on Microwave PCBs

© 2011 Sierra Circuits, Inc. All Rights Reserved. | www.protoexpress.com 12

• Copper diffusion into gold really is not a problem, unless the fabricated boards are kept in inventory a long time before assembly

• Once components are soldered to their gold-plated contacts, there is no worry about contact deterioration

Page 13: Design Choices for Soldermask on Microwave PCBs

© 2011 Sierra Circuits, Inc. All Rights Reserved. | www.protoexpress.com 13

• Regarding the cost of gold, the plating amounts to a few microns thick

• Yet there are fewer process steps with full-body plated gold

• The copper is simply plated and then etched, with the gold as an etch resist, leaving the final metal surface finish

Page 14: Design Choices for Soldermask on Microwave PCBs

© 2011 Sierra Circuits, Inc. All Rights Reserved. | www.protoexpress.com 14

• Yield ultimately governs the cost of fabrication

• If panels must be reprocessed because soldermask fails to adhere to blemished board traces, or worse if panels must be scrapped, cost accrues

• For prototypes that are manufactured according to a flat price, that may make no difference to designers

• But production quantities are a very different story

Page 15: Design Choices for Soldermask on Microwave PCBs

© 2011 Sierra Circuits, Inc. All Rights Reserved. | www.protoexpress.com 15