Top Banner
Design and dynamic simulation of a 200 kW th laboratory sCO 2 ‐test rig 2 nd European sCO2 Conference August, 30 th -31 st 2018 - Essen - Germany Gregor Klemencic, Markus Haider, Andreas Werner, Helmut Leibinger, Thomas Fellner, Norbert Steinschaden, Thomas Bergthaller, Tim Nowack
18

Design and dynamic simulation of a 200 kWth laboratory sCO ...

Apr 27, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig

2nd European sCO2 ConferenceAugust, 30th-31st 2018 - Essen - Germany

Gregor Klemencic, Markus Haider, Andreas Werner,Helmut Leibinger, Thomas Fellner, Norbert Steinschaden,

Thomas Bergthaller, Tim Nowack

Page 2: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Project Partners

2

FFG

Klima und Energie Fonds

Rohrdorfer Zement

Maschinenfabrik Liezen

Salzburg AG

Firma Scheuch

Firma Zauner GesmbHDesign and dynamic simulation of a 200 kWth laboratory sCO2‐test rig,

2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Page 3: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Overview

Design of the sCO2 test rig

Phase 1 and Phase 2

Dynamic simulation

Simulation results and first experiments

Outlook

3Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Page 4: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Objectives of the sCO2 project

Planning, constructing and taking into operation a sCO2 test rig at the laboratory of TU Wien

Performance of the different components of the sCO2 cycle process (heat exchangers, control valves, etc.) at different operating conditions (stationary, transient,...) should be investigated

this includes: developing control strategies for the cycle processes, validation of heat exchanger designs, influence of thermal property variations on performance, etc.

Final result: reliable overall concept for sCO2 heat recovery systems for industrial purposes (also including solutions for heat transformation and heat storage)

4Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Page 5: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Design of the test rig: Basic Concept

5Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Phase 1

Phase 2

Pump

high pressure level (tRC) 220 bar

low pressure level (tRC) 60 bar

min. mass flow (100 kWth) 0.2 kg/s

max. mass flow (200 kWth) 0.4 kg/s

max. CO2 temperature (hot air) 380 °C

max. CO2 temperature (thermal oil) 360 °C

Phase 1 and Phase 2 in T, s‐Diagramm

Selection of CO2 process data:

Calculation of the tRC in IPSEPro (Thermal Oil, 200 kWth)

Page 6: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Photo of the test rig

6Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Page 7: Design and dynamic simulation of a 200 kWth laboratory sCO ...

R&I Scheme – Phase 1:

7Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

01-E100

01-A101

01-P106-D

N40-1.4571

01-SV102

FIC001

PI002

M

TI003

PI005

TI004

01-E102

01-P114-D

N40-1.4571

01-P106-1-DN25-1.4571

01-SV101

LI030

P

01-A100 (FS)01-P111-DN50-1.4571

PIC022

TI023

TIC028

PI029

PIC021

TIC020

TI011

TI012

TI015

PI016

TI008

PI007

01-P105-D

N25-1.4571

PI026

TI019

01-SV103

01-P113-D

N25-1.4571

01-P122-DN40-1.0345

01-P102-DN40-1.4571

01-P106-2-DN40-1.4571

01-V

101

01-P

101-

DN

40-1

.457

1

P

01-A

103

(FC

)P

01-A

111

(FC

)

P

01-A102 (FO

)

P

01-A104 (FC)

01-E103

01-P103-2-D

N25-1.4571

01-P103-1-DN25-1.4571

01-V102

TI018

TI017

01-P100

01-A117

01-V103 01-V104

cooling Water OUT

cooling Water IN01-P112-DN65-1.0345

P

01-A113 (FO

)

01-P112-DN65-1.0345

01-A105

TI027

TI025

PI031

01-A125

01-A107

01-A108

P

01-A116 (FC)

P

01-A120 (FC)

01-P107-DN40-1.0345 01-P107-DN25-1.0345

TI036

01-A114

TI014

01-P107-DN40-1.0345

01-A106

01-P107-DN25-1.0345

01-A110

01-A109

TI010

PI035

01-P124-D

N125-1.0345

01-P123-D

N80-1.0345

01-A

119

01-A

118

to drainage

01-P125-D

N50-1.0345

01-P122-DN125-1.0345

01-A132

01-A124

01-A123

01-A131

01-A130

01-A129

01-A128

01-A127

01-A126

01-A115

PI009

TI006

P

01-A122 (FO)

P

01-A121 (FO)

TI035

AH

AH AH

ZHHHSHHAH

AH

AL

AH

AH

AL

ALAH

AL

ZHHHSHHAH

YC037

YC038

YC039

YC040

YC041

YC042

OH

OL

OH

OL

OH

OL

YC043

YC044

YC045

OH

OL

OH

OL

IH

IL

IH

IL

IH

IL

IH

IL

YC046

IH

IL

UY047

SCZ048

UZ049

SIL2

UY050

SCZ051

UZ052

SIL2

SLL

ALSLL

AL

to chimney

Thermal Oil Plant flow (TO-building)

TI013

TIC031

TI024

01-A

117

01-A

111

01-A

118

trace heating circuit 1

01-P107-DN40-1.0345

Thermal Oil Plant return (TO-building)

TI032

TIC034

TI033

01-A

121

01-A

119

01-A

22

01-P107-DN40-1.0345trace heating circuit 2

AH

SL

SHH SHH

SL

AH

AH

AL

SHH

SHH

Page 8: Design and dynamic simulation of a 200 kWth laboratory sCO ...

R&I Scheme – Phase 2:

8Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

PI005

PI021

TI022

TI001

01-T101

01-E102 TI001

FIC001

TI001

PI001

TI001

PI001

TI001

PI001

GS

01-A101

01-A101

PI001

M

01-SV102

CO2-Vent Line

TI019

PI018

TI017

01-B101Ambient Air

Natural Gas

01-C101 Ambient Air

01-C100

Ambient Air

SC

M

M

01-E101

01-BK100

TI033

01-E100

01-V101

01-A101

TI003

PI002

01-SV101

LI030

CO2-Vent Line

TI025

TI027

FI026

01-A113 (FO

)

Cooling W

ater OU

T

Cooling W

ater IN

TIC028

PI029

CO2-Vent Line

01-A104 (FC)

PI032

01-SV104

01-A115

01-A114

TI031

01-SV103

CO2-Vent LineSC

01-A102 (FO

)

01-A

103

(FO

)

01-A

111

(FO

)

M

turbine orexpansionvalve used

air or water

cooled condenser

Page 9: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Dynamic Simulation I:

9Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Reason for:

• To test the process control system and the general dynamic behavior of the complete test rig,

applied to:• both operating modes of the test rig: transcritical and supercritical

Page 10: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Dynamic Simulation II:

10Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Simulation tool: APROS (Advanced Process Simulator, VTT)

Page 11: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Dynamic Simulation III: Results TC

11Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Temperature rise: Pressure increase:

Level in buffer tank:

Page 12: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Dynamic Simulation IV: Results SC

12Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Temperature rise: Pressure increase:

Level in buffer tank:

Page 13: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Filling the test rig

The temperature of the rig and the gas bottle limits the amount of CO2 that can be fed into theplant.• A heater can be used to heat the

gas bottle.• Natural circulation can be used to

cool the plant.

Page 14: Design and dynamic simulation of a 200 kWth laboratory sCO ...

First Experiment

Page 15: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Pressure Oscillations at Pump

Page 16: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Lessons learned

HAZOP study revealed the need for additional safety mechanisms• Hard wired over-temperature shut-down (SIL2)• Protection of heat exchangers against rupture of CO2 tubes

Burst disks are used to protect the HEX shell, but…• Burst pressure limits pressure in thermal oil circuit.• Thermal oil pressure, in turn, limits the temperature (370 °C).• Pressure surges in may cause a rupture of the disks when

operating valves too quickly.

Page 17: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Acknowledgements

Recent and Current Research Projects on sCO2 at TU Wien:

SuCritDioCyc „(s)-CO2-Prozesse zur Abwärmenutzung“ (FFG, Project Number: 848889, duration: 01.04.2015‐31.03.2016)

sCO2-Phase 1 „CO2 als Arbeitsmedium in der Energierückgewinnung“ (FFG, Project Number: 853568, duration: 01.03.2016‐28.02.2019)

17Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen

Page 18: Design and dynamic simulation of a 200 kWth laboratory sCO ...

Thank you very much for your

attention !

18Design and dynamic simulation of a 200 kWth laboratory sCO2‐test rig, 2nd European sCO2 Conference, Aug. 30th‐31st, 2018, Essen