Top Banner
Report No. FAA ;RO'76-66 DESIGN AND CONSTRUCTION OF AIRPORT PAVEMENTS ON EXPANSIVE SOILS R.GOROON McKEEN )WEe LI'RA'v JUNE 1976 Final Report Document is avai lable to the public through the -, I National Technical Information Service, Springfield, Virginia 22161. r Prepared for u.s. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590
179

DESIGN AND CONSTRUCTION OF AIRPORT PAVEMENTS ON EXPANSIVE SOILS 1976

Aug 08, 2015

Download

Documents

gugi

1976 Guidance on Airfield Pavements Design
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

ReportNo.FAA;RO'76-66 DESIGNANDCONSTRUCTION OFAIRPORTPAVEMENTS ONEXPANSIVESOILS R.GOROONMcKEEN )WEe LI'RA'v . 1 ~ t 7 6JUNE1976 FinalReport Documentisavai labletothepublicthroughthe -,I ~NationalTechnicalInformationService, Springfield,Virginia22161. r Preparedfor u.s.DEPARTMENTOFTRANSPORTATION FEDERALAVIATIONADMINISTRATION SystemsResearch& DevelopmentService Washington,D.C.20590 NOTICE Thisdocumentisdisseminatedunderthesponsorshipof theDepartmentofTransportationintheinterestofinformationexchange.TheUnitedStatesGovernmertassumesno liabilityforitscontentsorusethereof.. TechnicalReportDocumentationPage 3.Recipient $CatalogNo.1.ReportNo. 2.GoYer"me,,'AccessionNo. FAA-RD-76-66 -----..-1...--------------+--.5-."R-epo;ti>.;;;- ----- --- --- -._- .-----June1976 DESIGNANDCONSTRUCTIONOFAIRPORT 6.PerformingO,goni zarianCode PAVEMENTSONEXPANSIVESOILS f----..----------:-:------i1--:-__--;-:- ---1 8 .PerformingOrgonlzationReportNo. 1_Author' .J R.GordonMcKeen CERFAP-18 1-------------------------1--:-=---:------------19.PerlormingOrg...ilo';onNome...dAddress10.Wo,kUnitNo.(TRAISJ EricH.WangCivilEngineeringResearchFacility, \-;-;--:=__--::-_.,.,-- --1 11.Con floe'orG,ontNo.UniversityofNewr1exico,Box25,DOTFA75!.iAI-531 Univ. ersityStation,Albuquerque,Nt187131 J3.TypeofRepprtondPeriodCo"eredIf: Of Afdransporta ti 011-----------.Fi na 1Report Federal' AviationAdministrationApril1975- ;larchlJ76 SystemsResearch& DevelopmentSHvi ce14. Code . .:::-C.:.-.L-.. _ 15.SupplementaryNotes 1---:-,,---:------------------------------------16.Abstract A literaturereview\vasconductecto'lrovidetilebestavailable fordesigningairportpavementssoils.areasstudled includedidentificationandclasSlflcatlon settingofacceptablelevelsofteave,andthedeslgnofstablllzedsOll ,layers.r-1ethodsofidentificaticnandclassificationwerefoundusefulfor qualitativepurposesbutunreliableforquantitativepredictionoffield ratesofheave.Predictionofhraveiscurrentlybasedonswelltestsin consolidationtypeequipmentandti,eseI;lethodsrequireextremecaution.The technicalliteratLirefailedtoprovidesufficientdatafromwhichacceptablelimitsofsubgradeheavebeneathairpoytpavementscouldbeestablished.Stabilizationofexpansivesoilsmaybeaccomplishedwithcementor lime.AprocedureisrrovidedfCTthedesignofstabilizedlayers.Present des i gnsys-cemsdonotprovi deme-l ;lOdsfordes i 0ni ngvolumechanges;therefore,theinfluenceofstabilizersonvolunechangebehaviorisnotprODerlyaccountedforinthisprocedure.Anoutlineoftheresearchneededto a designis!wesented.Thetechnologyrequired lSpresentlyavallablebutaconsiderableeffortisrequiredtoproduceimTheapproachrecommendedconsistsofestablishingthe loadanamOlsturechangesexpectedtooccuratthesiteandevaluationof thesoilresponsetothose 17.KeyWord.18.DistributionSrotement Pavementdesign,Claysoils,Documentisavailabletothepublic Expansivesoils,Ai rrort throughtheTechnicalInforS,'/ellpotenti a1,mationService,Springfield,Virginia Swellpredictions,22151. 19.SecurityClass;" (of thisreport) I FI:-:J - "'rmDOTF1700.7(8-721 Reproducti_of completedpogeauthorized METRICCONVERSIONFACTORS S,.1Io1 ApproximateConversionstoMetricMeasures Whl.Vo.111_M.hill"II,ToFiS,.lIol '" -= = --..,.. .... -.. S,..lIol Apprexi.ateConversionstr lI.tric1I....r.. Whl.V.. lne.M.llill"IIyTeFie'S.et lID--. LEISTH

LENGTH --rmImillimeters0.04inchesin emcentimeters0in..in in ft yd inches leel yards "2.5 30 0.9 centinw,.s centimeters meters em cm m -0 ---:!l ------m m kmmeters meters kil......lers 3.3 1.1 0.6 feet y.... miles ft. yd M' mi miles1.6kllunet8fskm !; AREA -----:e AREA in2 ftl ydl mi2 squareinches squa.efeel squareyards $quare mi les 6.5 0.09 0.8 2.6 square centimeters square meters square meter 5 square cml ml ml kml 0-. ------

...-cml ml kmZ ha squarecent irre,ers squaremeters squareki lometers hfl:' dl""l,l ,'.) ' ....... l>.;l ... 01 WeIghtsandMeasures,?rlce52.25.SD'0. C13.1, ; n:r a.. -------==-E

-40 I -40 C !! I 0 !! I -20 II i \40 II 0 I 80 ! III II!I II'i4060 20 37 II II 80

I 100 C CONTENTS Section Page. 1INTRODUCTION 5 2EXPANSIVESOILS 7 3EXPANSIVESOILSTESTPROCEDURES16 4IDENTIFICATIONANDCLASSIFICATIONSYSTEMS25 Introduction25 GeneralClassificationSystems26 Expansive-SoilClassificationSystems27 Evaluation 36 5PREDICTIONOFIN-SITUHEAVE45 ConsolidometerTesting45 FactorsInfluencing1n-SituHeave47 PredictionMethods53 6STABILIZATIONOFEXPANSIVI.SOILS65 Introduction65 ChemicalStabilization66 SelectionofStabilizingAgents68 StabilizedSoilDesignandEvaluation69 SubsystemforLimeStabilization69 SUbsystemforCementStabilization77 SoilStabilizationSystemforExpansiveSoils83 .7CONSTRUCTIONOFCHEMICALLYSTABILIZEDSOILS89 8CONCLUSIONSANDRECOMMENDATIONS93 APPENDIXA:SWELLTESTPROCEDURE103 APPENDIXC:ESTIMATIONOFFINALEQUILIBRIUMMOISTURE APPENDIXH:RESIDUALSTRENGTHREQUIREMENTSFORSTABILIZED APPENDIXB:LINEARSHRINKAGETEST111 CONTENTUNDERPAVEMENTS114 APPENDIXD:SOILSUCTION116 APPENDIXE:LIMESTABILIZATIONPROCEDURES121 APPENDIXF:SSISSOILSAflPLES131 APPENDIXG:CEMENTSTABILIZATIONPROCEDURES135 SOILMIXTURES153 REFERENCES 168 ILLUSTRATIONS FigurePage 1NatureofHydrationVolumeChanges12 2SwellIndexVersusPotentialVolumeChange19 3ConsistencyLimitsandIndexes21 4DeterminationofPotentialExpansivenessofSoils30 5InterrelationshipofPlasticityIndexandVolume Shrinkage30 6ApplicabilityofProposedChartforClassificationof Twenty-SevenNaturalSoils32 7CorrelationofSwell,Li-1UidLimit,andDryUnitWeight34 8RelationshipBetweenPla,ticityIndexandPVCSwellIndex39 9ComparisonofMultiplea ldSingleParameter ClassificationSystems40 10EffectsofPlacementConlitionsonStructure49 11StagesofGenesisofNonJalGilgai50 12TypesofSwellTestData55 13SelectionofStabilizer70 14SS ISSubsystemforNonexpedi entSubgradeStabil i zati on withLime71 15pHTestVersusStrength-estasPredictorofOptimum LimeContent73 16Twenty- Ei ght- DayStrengtl\Predi ctedbyAcceleratedCure74 17Des i gnChartforFreezer-hawLoss75 18DesignChartforThree-CycleFreeze/ThawStrengthFrom Vacuum Strength76 19DesignSubsystemforNonexpedientSubgradeStabilization withLime78 20SSISSubsystemforNonexpedientSubgradeStabilization withCement79 21CorrelationBetweenSeveri-DayandTwenty-Eight-DayUnconfinedCompressiveStrength80 22CorrelationBetweenSix-CycleAcceleratedandTwelveCycleStandardFreeze/ThawWeightLoss82 23DesignSubsystemforNonexpedientSubgradeStabilization withCement84 24SelectionofTypeofAdmixtureforExpansiveSoil Stabilization85 2 ILLUSTRATIONS(Conc1'd.) Figure 25 26 27 28 29 30 31 Page SubsystemforExpansi veSoi 1Stabil i zationwi thLime87 SubsystemforExpansiveSoilStabilizationwithCement88 DiagramforComputingAllowableHeave95 RecommendedDesignProcedure96 SuctionMeasurementProcedure98 EvaluationofNaturalandStabilizedSoils100 Heave/RoughnessAmplitudeRelationshipforDesign101 3 TABLES Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Page. EstimatedSoi.1PropertiesSignificanttoEngineering8 SchematicDiagramsandPropertiesofClayMinerals10 TypicalSoilProperties17 TypicalResultsofSwellTests17 ApproximateRelationshipofExpansionIndex toOtherTests21 SummaryofExpansive-Soi!ClassificationSystems37 SwellPotentialPredictionMethodsUsedfor StatisticalComparison42 ResultsofStatisticalAnalysisofSwellPotential PredictionMethods43 SummaryofIn-SituHeavePredictionMethods54 SampleCalculationofSOilMovement59 ConversionofVolumeChat'getoPotentialVerticalRise60 VanDerMerwe'sHeavePrf:diction62 CalculationofTotalSweil63 PCASoil/Cement,Freeze/lhawWeightLossCriteria83 4 SECTION1 INTRODUCTION BACKGROUND Thepavementsofairports(i.e.,runways,taxiways,ramps,parkingaprons, etc.)constituteavitalpartoftheoverallfacilityandthereforepavement constructionandmaintenancecostsareimportantintheplanningandoperation ofairports.Prematurefailureofthesepavements(manifestedassurface roughness)effectsoperationallimitations,acceleratesaircraftfatigue,and reducessafety;ontheotherhand,initialconstructionandmaterialcosts prohibitdeliberateoverdesignof pavements. A majorcauseofprematurepavementfailureisunderlyingexpansivesoils whi chbyshri nki ngandswell i ngcausesurfaceroughness.Althoughcurrent FederalAviationAdministration(FilA).designprocedures(ref.1)donotadequatelytreatthedesignofpavemelltsoverexpansivesoils,recognitionofexpansivesoilsasasignificantengineeringproblemtookplacemanyyearsago. A concentratedeffortbytheworldengineeringcommunitytosolvethisproblem wasbegunin1965withtheFirstIliternationalConferenceandhascontinued withthefollowingnationalandinternationalconferences: (1)FirstInternationalResearchandEngineeringConferenceon ExpansiveClaySoils,August30-3,1965,Texas A&MUniversity,CollegeTexas. (2)SecondInternationalResearchandEngineeringConferenceon ExpansiveClaySoils,1969,TexasA&MUniversity,College Station,Texas. (3)ThirdInternationalResearchandEngineeringConferenceon ExpansiveClaySoils,July30- August1,1973,Haifa,Israel. (4)WorkshoponExpansiveClaysandShalesinHighwayDesignand Construction,sponsoredbytheFederalHighwayAdministration, December13- 15,1972,Denver,Colorado. (5)University-IndustryWorkshoponBehaviorofExpansiveEarth Materials,sponsoredbytheNationalScienceFoundation, October1974,Denver,Colorado. 5 Theproceedingsoftheseconferences,specialtysessionsinthemeetingsof theInternationalConferenceonSoilMechanicsandFoundationEngineering (ICSMFE),andseveralsignificantliteraturereviewsformthebasisofthis report.

Thisinvestigationwasinitiatedtl1reviewthecurrentengineeringliterature andsynthesizefromitadesignprlicedureforstabilizingexpansivesoilsbeneathairportpavements.Todoths,thestudywasbrokendowriintosixspecifi careas: (1)Methodsofidentifyingaridclassifyingthetypesofsoilthat areconsideredexpansiveandcauseearlypavementdistress (2)Laboratoryand/orfieldLestmethodstodeterminethelevel ofexpansionandshrinkal.e (3)Selectionofthetypeancamountofstabilizingagent(lime, cement,asphalt,only) (4).Testmethodstodeterminlthephysicalpropertiesofstab"j 1i zedsoi 1 (5)Testmethodstodeterminfthedurabilityofstabilizedsoil (6)Fieldconstructioncriteriaandprocedures SCOPE Thisreportaddressestheaboveobjectivesandprovidesasummaryofthecurrentliteraturepertainingtothesubject.Conclusionsandrecommendations weremadebasedonthecurrentliterature,withoutlaboratoryverification. Soilvolumechangescausedbyotherfactors(e.g.,frostheave,saltheave) werenotstudied. 6 SECTION2 EXPANSIVESOILS ORIGINANDDISTRIBUTION Expansivesoilsaremadeupofclayparticlesthatresultfromthealteration ofparentmaterials.Alterationtakesplacebyseveralprocesses:weathering, diagenesis,hydrothermalaction,neoformation,andpostdepositionalalteration (ref.2).Mostclaymineralsaretransportedbyairorwatertoareasofaccumulation.Oncedeposited,thematerialsaresubjectedtothelocalconditionsofaccumulation(overburden)1nderosionwhichmakeupthegeologic stresshistoryofthematerials(ref.3).Thus,theexistingclaysoilata siteistheproductofparentmaterial,modeofalteration,andgeologichistory.Interactionbetweenthesoilandthelocalenvironmentproducescontinualchangeinthesoilanddeterminesfuturebehavior. Expansivesoilsaredistributedallovertheworld.Usuallytheareaswith themostsevereproblemsarethose' ~ i t h localclimatesthatproducedesiccation.A recentreport(ref.4)providestheresultsofastudyofthedistributionofexpansivesoilsintheC01tinenta1UnitedStates.Distributionis generallyaresultofgeologichist:Jry,sedimentation,andlocalclimaticconditions.A moredetailedandlocalizedsourceofdistributioninformationis availablethroughsoilsurveyspub1ishedbytheU.S.DepartmentofAgriculture SoilConservationService.Thesesurveysprovidedistributionmapsandconsiderableinformationusefulinengineeringapplications(table1).Inthe initialplanningofairportfacilities,publicationsreflectingthedistributionofsoiltypesintheareashouldbecarefullyconsidered,andthelocationwiththebestsoilconditions3hou1dbeselected.Thethreeclaytypes recognizedinengineeringstudiesexhibitdistinctlydifferentstructures (table2).Kaoliniteismadeupofalternatelayersofsilicatetrahedraand gibbsiteboundtogetherbyrelativelystronghydrogenbonds(ref.6).Therelativelylargeparticlesandstablestructurearenotexpansive.Illiteismade upofa2:1structureconsistingofgibbsitesheetssurroundedbysilicatetrahedra.About20percentofthesi1iconsarereplacedbyaluminum,andtheresultingnegativechargeisbalancedbypotassiumionsbetweenthe2:1sheets. 7 -----Table1.Estimated>oi1PropertiesSignificantto Engineerinl[afterFo'lks(ref.5)J J),pth fe1m Soil series and map symbolsDepthtosurf'ere in bedrock"'I'resentltive profile f--------------,----F,uIII"Rednun:RD, RE, RG_I):{ .,>5 -... 60 TravessillapartofRG,secTranssilla ForPenapart ofRE,HrePenaserirs:fnr ecrics. Riverwash:RH. Toovariable forvalidinterpretation. "Rock outcrop:RK,RL. Tonvariableforvalidintr.rpr('tati(ln.For ChimayopartofRL,sceChimayo series. Rock slides:RO. Toovariable forvalidinterpretation. Roughbrokenland:R U Toovariableforvalidinterpretation. "SantaFe:SF, Sk, SM._01-13 ForLaFondapartofSF,HeeLa. Fonda13 series.RockoutcroppartsofSkand SMaretoovariableforvalidinterpr,,tation, "Silver:SP, SR._ 1-14 ForPojoaquepartofS p.seePojoaqu"II4:' series.4 ',-60 StonY roek land: ST. 'roovariableforvalidinterpretation. "Su!>"rviHnr:S U,SV, _____ 1-23 Rockoutrrop part ofSVistoo variable for validinterpretation,23 "Tapia:T A______________________________>5 "-21 21-60ForDeanpart,secDeanseri-es. 11-10 ForBernalpartofT S,secBernalHerirs. Rockoutcroppart ofT R istoovariable forvalid interpretation, "Trave"ilIa:T S,TR___ ___________________Tuff rock land:T U, Toovariable forvalidinterpretation. Wilcoxson,variant:we____________________2*-3 11-26 21,-31 31 "-10 11'-60 Willard:WL... __ ___ _>5 Witt:WN________________________________>5 "-:l631 .. 60 Zuni,variant:Z LJ.,1'-16 If,-20 20 IInmapping unitAocorrosivityto uncoatedsteelishi(l:h. USDAtextureUnified ClayInam ____________________CL Verytilll' sandyrlayloam..CL or1\11. VeryR",\'''llycillyloam..GC Bedrock. Clay(loam,urfa,'"layer). ______CI. Siltyrlayloam._____________CL Veryfinesandyloam __,___ML Gra\'ellyHandyloamandverySM Rravellylightsandyloam. Bedrock. Clayloam(loamsurface I..yer) _.CL Gravellyloam,.. ____81\1or SC Loam__ ______________________ML clay,clay,andgravellyCH clay.. Coarse sandy loamSM Softbedrock. Loam__ ..ML or CL ClayloamCL Clay loamand sandy clay loam __CLorMI.LoamML orCL Loamand clayloamMLorCL.ClayCH Weatheredbedrock. Inmapping unitBfcorrosivityto uncoated steelishightl,roughout. 8 AASHO A-6 orA-7 A-6 orA-4 A-2 A-6 orA-7 A-6 A-4 A-I A-6 A-4 A-4 A-7 A-2 A-4 orA-6 A-6 A-6 A-4 A-4 orA-6 A-7 CoansPercentage less than 3 inchespassing sieve-fractionAvailable greaterPermea "'ater than 3No.4No.10No.40No,200hilit)holding inches(4.7(2.0(0.42(0.074capacity mm.)mm.)mm.)mm.) lrtdl,.ptr inch Part'''''l r t ( f l ~ ' perhourof .oil .. _------- ---------10090-10080-90O.l)f'-O.2O.IBO.21 --------- ---------10090-1007(1800.1;:1-2.0o.IHI.16 ---------35-5530-5025-4520-35O.1\3-2.00.08-0.10 -----_.--95-10090-10090-10085-950.06-0.2O.14-0.16 -.-------95-10090-10090-10085-9502--0.63O.19-0.21 --------.95-1009010085-9550-6.';O.';3-2.0ll.16-0.18 5-1580-9055-6530-4015-252.0-6.30.06-0.08 ---25.:3595-10090-10085-9575-850.63-2.0O.19-0.21 80-9075-8560-7535-500.1):1-2.0 -------_ .. --0-2590-10085-9565--7550-600.63-2.0O.14-0.18 ......... _- ... -_.90-9585-9575-8565-750.06-0.2O.14-0.16 ..... - ..... - ... 10095-10055-6525-352.0-6.3O.10-0.12 .. - ..- ... -- .. --------.10085-9560-750.63-2.0O.16-0.18 -----------------.10090-10070-850.2-0.630.05-0.07 --------- ---------10080-9065-750.63-2.0O.16-0.\8 --_.... ---- ------_.. - 10085-9560-750.63-2.0 -------------------_. ------- .. 100 I 85-9560-750.2-6.3O.17-0.19 --------..- ..---_ .. - 10090-10075-950.06-0.2O.14-0.16 IIn mapping unitFs corrosivitytouncoatedsteelishighthroughout. 9 ReactionI(I :5 dilution) pH7.9-9.0 7.9-8.4 6.6-7.3 7.9-8.4 7.9-8.4 7.9-8.4 6.1-6.5 7.9-9.0 8.5-9.0 7.4-7.8 6.1-7.3 6.6-7.3 7.9-8.4 8.G-9.0 7.9-8.4 8.5-9.0 6.1-7.3 6.6-7.3 Shrink-swell potential Corrosivity touncoated steel I I High.. _. __. __ Moderate. l\loderate.. _... _.Moderate. Low __._ _.. Moderate... High..........High.:\foderate..... __.Moderate. I.ow...... _.Low. Low____ . __ __ Low. Moderate....... __Moderate.Low __ .. _._ . ___ Low. Lowtomoderate._Low. High .. __ _______ High. Low. _. _____ __ Low. Lowtomoderate._Moderate. Moderate.... _.. _High. Moderate... _. __Moderate.Low__ _ ____ Low. Moderate..... _Moderate.High ... ________ ._ High. Table2.SchematicDiagramsandPropertiesofClay (afterreference6) 11 oni te III ite Kao1i nite Schematic Structure of Clay r'li nera1s

o

,\"\... \', I\"\ I\', 0I't IOtt";0I'toO#j(}fflS,e Aluminum,0PoloSS/llm o and .5,licoIJS (onelounhreploced byoluminums) OOxyqens,eHyd1oxylS,AJumin/lm,0Po/oss/um o ond SdiCOns (one 10000Ih r(yJlocedbyaluminums) Particle 0I 0.5 to2 llmI 0.003to0.1llmI 9.5AThickness SpecificSurface,I10 - 20I65 - 180I50 - 840 m2 /g CationExchange Capaci ty,I 3 - 15I10 - 40I 80 - 150t4i 11 equi va 1ents 100grams Thepotassiumbondsarestrongandpreventwaterfromenteringbetweenthe layers.Inmontmorillonitea2:1structurelikethatofilliteispresent, butthereischaracteristicallyextensiveisomorphoussubstitution,whichdeterminesthebehaviorofthemineral.Asusedhere,isomorphoussubstitution meansthesubstitutionofonemetallicionforanotherwithinthetetrahedral oroctahedralunit.Theimportanteffectofthelatticesubstitutionsisa netnegativechargethatattractsbipolarwatermoleculesbetweenthelayers; thisresultsinanexpandedlayerstructure(fig.1). MECHANISMSOFSWELL Soilvolumechangesresultfromanimbalanceintheinternalenergyofthesystem(soil/water/plants/air).Energyimbalancesimportantinengineeringresult frommoisturemovementcausedbyloads,desiccation,andtemperaturechanges (refs.7,8).Responsetoaspecificsetofconditionsisdeterminedbythe composition,structure,andgeologichistoryofthesoil.Thelargestcomponentofvolumechangeisthatoftheclaymicellewhichsurroundstheindividual clayparticles"inthesoil(refs.6,9).Waterisforcedoutofthemicelleby loads,desiccation,ortemperaturealongenergygradientsandareductionin volumeresults.Whentheseinfluencesareremovedorreduced,theenergygradientsarereversed;theavailablewaterisforcedintotheclaymicelleand swellisproduced(ref.10).Sinceseveraldetailedstudies(refs.4,6,9, 1])arepresentedintheliterature,discussionhereislimitedtothatrequiredforanunderstandingofexpansivesoilbehavior. WaterFixationbyPolarAdsorption(Hydration) Bipolarwatermoleculesareattractedtotheclayparticlesurfacebytheelectricchargeimbalancecausedbyisomorphoussubstitution,usuallynegative (refs.2,9,12,13).A layerofsolid-likewaterformsanewsurfaceoforientedparticles,whichattractssucceedinglayersoforientedwatermolecules, o 0 uptoathicknessof10to16molecularlayersor25to40A (lA=10-Bcm ). Thewaterbeyondthisboundlayerismobileandmovesfreelyunderanystress gradient(refs.2,13,14).Theboundwaterlayerspermitadjacentparticles toslippastoneanotherwithoutelasticrebound,rupture,orappreciable ,,- uo:>"_mnlo-' 11 LUII:>I.t1I1I..ILI'''II''!''!InterparticleorIntracrystalline C= concentrationinthebulksolution,molesofions/litero Ccanbederivedfromdiffusedoublelayertheory(ref.7):c where v= valenceofion B = temperature-dependentconstant(usuallytakenasl015 cmmi 11i mo1e- 1) d= halfthedistancebetweenclayplatelets,cm X=4/vBG,whereG =surfacechargedensity,coulomb-cm-2 o o valuesofX areasofollows:illite,X ::l/vA;kaolinite,X = oo o 2/vA;montmorillonite,X ::4/vA.Ruiz(refs.9,17)modifiedtheequation o forrealsoilsasfollows: where P= realsoilswellingpressure f= functionofmoisturecontent,f< 1 Osmosisispossibleonlyinpolarfluids,suchaswater,thatareabletodisperseexchangeablecations.SwellingvarieswiththetypeofcationandgenerallydecreasesintheorderNa,Li,K,Ca,Mg,and2HforWyomingbentonite (refs.9,18,19). SurfaceTension Thespacesbetweenclayparticlesinsoilsformcapillarytubes.Aswateris removedfromthesoil,anair/waterinterfaceforms.Attractionofwatermoleculestothewallsofthecapillarytube(soilparticles)producesmenisci (refs.6,9).Tensioninthewater,u(g-cm-2 ),maybeexpressedas (ref.13) Asthewatercontentdecreases t themeniscirecedeintothecapillaries t drawingparticlesclosertogetheruntilnofurthervolumechangeispossiblebecauseofparticlecontact.Thetensioninthewaterisbalancedbycompression "inthesoilparticles.Whenadditionalwaterbecomesavailable t thewatertensionisreleasedandthesoilparticlesreboundastheassociatedcompressive stressisrelieved. Thermoosmosis Themovementofsoilmoisturecausedbytheenergygradientproducedbytemperaturedifferences t whichcausechangesinwatervaporpressure t iscalled thermoosmosis(ref.9).Thisaspectofmoisturemovement t althoughnegligible insaturatedsoils(refs.20 t 21),issignificantinunsaturatedsoils.The swellassociatedwithsuchmoisturemovementissmall(ref.9). ElasticBending Elasticdeformationandreboundofsoilparticlesunderappliedloadsmaycontributetoshrinkageandswellingbehavior t particularlyinsoilswithflat platyparticles(ref.22).UsingmicaanddunesandtGi"lboy(ref.23)illustratesthiseffect.Theresultsofhistestsshowthattheconsolidationand reboundofcompactedmixturesareproportionaltothemicacontent t andthe contributionofelasticbendingdependsonparticlestructureandproperties asshownbelow: VolumeDecreaseIncreaseinVoid Mi ca t%Under10kg/cm2 (142psU t% RatioUponRemoval ofLoad t % 103626 204731 405142 EntrappedAir Whenaninitiallydesiccatedclayisallowedtotakeupwater t airmaybetrappedwithinthesoilmass.Thisairdisplaceswaterinthedoublelayerandinducestensilestressesintheparticlessurroundingtheairpocket.Thisinfluenceisgreaterinsoilswithhigheraircontents(i.e. tdriersoils). 15 SECTION3 EXPANSIVESOILSTESTPROCEDURES Theproceduresdescribedinthissectionhavebeenusedinengineeringstudies ofexpansivesoilsandinsomecasestheliteratureprovidesconsiderabledata derivedfromtheiruse.Table3waspreparedtoshowtheresultsnormallyobtainedforgeneralsoiltypes.Thedifferentproceduresforevaluatingswell potentialarereflectedinthevariationinswellandswellpressurevalues reportedintheliterature(table4).Otherproceduresreportedintheliteraturearetooexpensive,complex,ortimeconsumingforroutineengineeringdesignpurposes.However,fortheinterestedreader,thesetechniquescanbe foundinthefollowingreferences: TechniqueReference X-RayDiffraction2,24,25,26,27 ElectronMicroscopy2,25,26 DifferentialThermalAnalysis2,24 InfraredRadiation27 DyeAdsorption6,27 SpecificSurfaceArea9,28,29 CationExchangeCapacity2,30 DielectricDispersion31 SWELL A remoldedorundisturbedsoilsampleisplaced"inaconsolidometerunderspecifiedconditionsandallowedaccesstowater.Theverticalriseofthespecimenisthen A sampleofthisprocedureispresentedinappendixA; numerousversionsinvolvingvariationsinsamplepreparation,wetting,soaking, specimensize,surchargeloading,etc.,arereportedintheliterature.Because ofthesevariousprocedures,itisdifficulttocompareonesetofresultsto another.Eventhoughnosingleprocedureiswidelyaccepted,thisisthemost popularandreliabletechniqueforevaluatingswellpotential.Thistestmay bereferredtoasaswelltestorafreeswelltest,dependingonthe 16 Table3.TypicalSoilProperties(afterreference32) TestProceduresHeavyTypi ca1Si 1tySandySoilProperty Soils ClaysClaysSoils ASTMAASHO Gradation(%ofgrainsize 40-100500422T88 80-10030-80showninthesoil) GrainSize(mm)~ O.0050.05-0.0052.0-0.050422T88 :::0.005 I ,Consistency I LiquidLimit(%)80-10025-50Nonplastic0423T89 40-60 Nonplastic0424 PlasticLimit(%)5-305-30T90 -NonplasticT91 PlasticityIndex(%)70-8020-4010-200424 D427T92 ShrinkageLimit(%)15-30NoVolume 6- 14 -Change \ I MaximumOensity(lb/ft 3 )I-Ii 90-105100-115110-135 I 0698T99 0698T99 OptimumMoistureContent(%}]- 20-3015-258-15 I I Table4.TypicalResultsofSwellTests Reference -.Rangeof Swell, % Rangeof SwellPressure, psi SoilsUsedRemarks I 330-13.60-83Texas&Israel1.4-psisurchargein swelltest. 340- 13.60-83TexasGulfCoast1.4-ps isurchargein swelltest. I 350- 15.80-284 I IsraelUSBRProcedures: surcharge. l-ps i 360- 50. 10-147~ ~ e s ternU.S.USBR 371.3- 39.8- WesternU.S.USSR 37 38 O.1-54. 0 --0-69 IpureClay&Mixtures IContinentalU.S. USBR FHA,PVCSwellIndex 17 typeofloadingappliedtothesample.Resultsmaybeexpressedinpercent swellunderthespecificloadused. SWELLPRESSURE A testsimilartothatdescribedabove,exceptthatthesampleisloadedin incrementssothatthevolumeremainsconstant,maybeperformedtodetermine swellpressure--thepressurerequiredforzerovolumechange.Thistestin combinationwiththefreeswelltestisoftenperformedonthesamesamplein sometestprocedures(appendixA).Itisalsoreferredtoasano-volumechangetes t. POTENTIALVOLUMECHANGE Potentialvolumechangeisdeterminedbyano-volume-changetestinaspecified apparatusdevelopedfortheFederalHousingAdministrationandusedforsoil classification(ref.39).Testdurationistwohours.Thepressurerequired forzerovolumechangeiscalledtheswellindex(giveninpoundspersquare foot)anditisusedinclassifyingthesoil.Figure2illustratestheuseof theswellindextoclassifysoilsbasedonthemethodofsamplepreparation (i.e.,wet,dry,moist). EXPANSIONINDEX Theexpansionindex,EI,isanindexpropertyofasoildeterminedinaspecifiedconsolidometerringapparatusdevelopedforevaluationofsoilexpansion (ref.40).TheEIiscalculatedby EI== (lOOO)t.hF where t.h== verticalexpansionmeasured F== fractionofthesample30% PlasticityIndex>12% LinearShrinkage>8% Thesecriteria,whicharebasedontheA-lineoftheplasticitychartdeveloped byCasagrande,areusedintheUnifiedSoilClassificationSystem.Thelinear shrinkagecriteriaareincludedtodetectthosesilt-clayandsiltysoilsthat areexpansive. Skempton,1953(ref.42) Theactivityofsoilsasdeterminedbytheplasticityindexand% 12>8 >1.25 >10>300 >81. 5>5>2030-60 >60 >4>20 W -...J PI I:::Reference Ca tegory VeryLow 50493837554033 %

VI..t:Cl..- Cl.. ro ..t: :::l+-' 0" > >,0::: ,......:::lLO,......uEOVI+-'..0OJ ,......U0C:0'l - V'l or- (]JOr- I/) ro(]Jor- co :::lUrocoUroco:::l ro 000 (/')I/) 1/)-'1/) I/) c::( 0 z:::r::: 0::: z:>::E:> => .;.; --.;.;.;.; .;.;.;.;.;.; .;.;.; .;.;.;.; .;.; xIx xxx xx .; .;.;.; .;.;.;.; .;.; xxxx/1 .;.;.;.;.;.;.; .;.; .;.;.;.; .; x .;.;.;.; .;.;.;.; .;.;.;.;.;xxI .;.;.;.; .;.;.; .;.;.;.;.;.;xx xxx Xxxxxxxxx xxx .;.;.; .;.;.; .;.;.;.;.; .;xx x .;.;.;.;.;x xxx xxxxxx .;.;.;.; .;.;.;.;.;.; .;.; xx x .;.;.;.; .;.; .;.;.;.;.;.;.; x x xxxxxx xxxxxxxxx .;.;xxx xxxxxxx xxx - Factors Involved inHeave .----------ClayThickness WaterTableDepth Initial01 SoilStructure

ClayParticles Particle Arrangement I ClodStructure BulkStructureI Init i a1St res s FinalMoisture IFinalStresses Load/Moisture/Volume Relationship RateofVolume Change SeasonalVariations r------,......(]J -0 0 .-+->U(]J ........Or- ........0.; .; iI /,! .; .; .; x .; I I x .; .; x x

(]J +->(]JE 0 -0(]J (]J ,........0 Note:.;= consideredintheprediction;x= notconsideredinthepredictiono '" o 'r+-' ttl a::: "'0 o >LogofLoad(P) Figure12.TypesofSwellTestData overburdenpressure,(1to2).Thenitissubjectedtoachangeinmoisture conditionandmaintainedatconstantvolumeuntilequilibriumisreached(3). Thispressureiscalledtheswell:n"essure(no-volume-changetest).Thepressureisthenreleasedtoasmallarbitrarilyselectedloadortoaspecific designload,(3to4).Anothertestprocedureloadsthesoiltotheoverburdenpressure(2),allowsittoswellunderconstantloadto(5),andloads thesampletotheoriginalvoidratio(6).Withthiskindoftestprocedure, swellmaybecalculatedasfollows: -.--6._e_(t'lH)s==- e 1 where 6.e== changeinvoidratio(finaltoinitial) e== originalvoidratio 1 6.Hthicknessofsoillayer 55 Thecurve(1to7)illustratesatestinwhichasoilisloadedtotheinitial overburdenpressure,(7),unloadedtoafinaloverburdenpressure;(2),and permittedaccesstowater;thentheswellisdetermined(analysisofcutsections).Ineachsituation,eventsfollowaspecificsequence.Thecloser theseduplicatein-situconditions,thebetterthepredictionofsoilbehavior. Thosemethodsreportedintheliteratureinwhichsomeformoftheconsolidometertestisusedareasfollows: (1)DirectModelMethod,TexasHighwayDepartment(ref.77) (2)JenningsandKnight'sDoubleOedometerTest(refs.65,78) (3)SullivanandMcClelland'sMethod(ref.79) (4)Sampson,Schuster,andBudge'sMethod(ref.80) (5)MississippiMethod(refs.81,82,83,84) (6)SalasandSerratosa'sMethod(ref.20) (7)Noble'sMethod(ref.7) (8)NavyMethod(ref.85) (9)SimpleOedometerMethod(ref.86) (10)USBRMethod(ref.63) (11)Vo1umeter(ref.87) (12)Holtz'sMethod(ref.76) Eachofthesemethodshassomesimilaritywiththeothersaswellassomedifferences.Someinvolvemultiplesamples(e.g.,2and10);othersdonot.No onemethodisclearlybetterthananotherforairportpavementconstruction. Anyprocedurethatisusedmustbeadaptedtoaparticularsituationandan effortmustbemadetosimulatetheseactualin-situconditions.Atbestthese methodsprovideestimatesofquestionableaccuracyunlesstheyareusedwith considerableexperiencewiththespecificsoilandclimaticconditionsunder study(refs.40,63). Predictionsofin-situheavearemadebytestingeachsoillayerinthesystemtodetermineitsresponsetochangesinloadandmoisture.Theindividual layersmayrepresentdifferenttypesofsoil,thesamesoilindifferentmoistureconditions,orthesamesoilatdifferentdensities.Onceeachlayeris 56 identifiedandaswellpercentageisassignedbytestingintheconsolidometer, thecalculationofsurfaceheaveisstraightforwardisshownbelow. ThicknessVerticalRise Depth, ft ofSoi 1 Layer, ft Overburden Pressure,* 1b/ft2 Swell, % VerticalRise DuetoLayer, in atLayer Surface, in 0-2212581. 927.68 2-4237540.965.76 4-10687532. 164.80 10-122137530.722.64 12-208200021. 921. 92 20-2442750000 Bedrock Inthisillustration,thepredictedsurfaceheaveis7.68in.Thedesigner shouldcarefullyevaluatetheproceduresusedinestablishingtheinitialmoistureconditionsandloadaswellasthefinalmoistureconditionsandloadused inthetests.Theseparametersandtheirrelationshiptoin-situconditions willdeterminetoalargedegreetheaccuracyoftheprediction.Withsome methodsalateralrestraint-factormaybeusedtoreduceswellvaluesforcertainsoils(e.g.,particularlyhighlyfissuredclays).Theamountoftesting requiredforthistypeofanalysiscanbegreatintermsoftimeandmoney. Thevariabilityofthesoilsystemmustbestudiedinordertoarriveatthe amountoftestingrequiredtoadequatelyevaluatetheswellpotential.Once thesedataareavailable,theeffectofsoilremoval,stabilization,compaction,etc.maybeevaluatedquantitatively,providedswelldataarealsogatheredforthestabilizedand/orcompactedmaterials. RichardsMethod(ref.88) Usingcurvesofmoisturecontentversusmatrixsuctionplottedfrommeasured values,Richardspredictsmoisturecontentchangesassoilsreachtheir *Averageatcenteroflayer,basedondensityofoverlyingmaterialandstructuralload.A densityof125lb/ft 3 wasassumedforallsoilsinthisillustration. 57 equilibriummoistureconditionsunderpavements.Assumingthevolumechange ofthesoilisequaltotheVolumeofwatertakenup,hegives and where W=initialwatercontent,% o (svl=changeinwatercontent(w - I-'J f ),~ ~o Gspecificgravityofsolids(approximately2.70) s V,L,H= volume,length,height,respectively WithempiricalrelationshipsdevelopedforAustralianconditions,thefinal equilibriummoisturecontentunderapavementispredicted.Withthisrelationship,wf maybepredictedfromthemoisture/suctioncurvespreviously determinedforeachsoillayer.A samplecalculationisshownintable10. McDowellISPVRMethod(ref."Sl) Anundisturbedsampleofeachsoillayerinthesystemisintroducedintoa triaxialcellandthesampleisallowedtoabsorbwaterunderasmall(2psi) lateralpressure.AfterthesamplehasabsorbedwaterforlSdays(oranumberofdaysequaltotheplasticityindex,ifitisgreater)thevolumechange, 6V,isconvertedtoalinearverticalrise,6L,fromanempiricalchart.With anotherempiricalchart,6Lisreducedaccordingtothestressimposedbythe overburdenload.Theremainingpercentageofverticalriseisthensummedfor eachincrement.Anexampleofthisprocedureisshownintable11.Columns show:(1)theincrementsofoverburdenloadsintowhichthesystemisdivided, (2)theaverageoverburdenload,(3)thevolumechangemeasuredundertheexistingoverburdenpressure,(4)thelinearswellcorrespondingtothevolume change,(S)thethicknessofeachincrementinthesystem,and(6)theconversionofcolumn(4)toapercentandthetotalverticalriseatthesurface. S8 --- -----------Table10.SampleCalculationofSoilMovement[afterRichards(ref.88)J FromDriestConditiontoEquilibriumProfile L,em 0-10 10- 20 20-30 30-40 40-60 60-80 Initial Suction (h ) , oemH0 2 90,000 45,000 10,000 5,000 3,200 2,500 1,80080-100 1,500100- 120 1,400120-140 FinalInitialFinalSuctionEffective Stress(00emH 0 ), (hf ) , emH 0 22 90,0001400 45,0001400 10,0001300 5,0001300 3,2001300 2,5001300 1,8001300 1,5001300 1,4001300 L_-l-__._. --------------. ------___ _______ FromDriesttoWettestCondition(i.e.,Seasonal SurfaceMovement3.21em Initial SuctionL,em (ho)' emH0 II 2 0-1090,000 10-2045,000 20-3010,000 30-405,000 40-603,200 60-802,500 80-1001,800 1,500 120- 140 100-120 1,400 Initial Effective Stress(0), ern H00 2 90,000 45,000 10,000 5,000 3,200 2,500 1,800 1,500 1,400 Effective%wo' Stress(of)' emH0 2 140011.5 140014.6 130021.0 130023.3 130024.6 130025. 1 130026.4 130027.1 27.2 1300 Final FinallSuction Effective( hfL Stress(of)' emH0emH0 2 2 --------1---------800800 700700 600600 520520 580580 870870 11201120 13501350 13001300 6w,%6L,em 15.71. 08 12.60.82 6.40.37 4. 10.23 2.80.30 2.30.25 1.00.11 0.30.03 0.20.02 w '%!"I;'/,%o

11.516.7 14.613.8 21. 07.8 23.35.8 24.64.3 2.9 25. 1 26.41.1 27. 1-27.2-6L,em 1. 15 0.90 0.45 0.33 0.46 0.32 0.13 --SurfaceMovement3.73em 59 I VanDerMerwe'sMethod(ref.89) AnotherempiricalapproachinvolvesclassifyingthesoilbytheWilliams' :lethod(ref.50)intothecategoriesshownbelow. Wi11i ams'Criteria PotentialUnitHeave, PI,%Cl ay,%Expansiveness*in/ft 28VeryHigh1. 00 Eachcategoryisassignedaunitheavevalueininchesofheaveperfootof soillayerthickness.Anempiricalrelationshipforthechangeinpotential Table11.ConversionofVolumeChangetoPotentialVerticalRise [after (ref.51)] S\'/e11, l;0 AverageLoad, Load,psi psiVolume Linear(Average) (3 )(4 ) (1)(2) --r-15. a a 1.5-2.52.009. 12.90 3.757.52.40 2.5-5.0 5.0-7.56.255.51. 80 8. 754.5 7.5- 10.01. 50 11.253.51. 1a 10.0-12.5 13.75 12. 5- 15. 02.60.80 16.252.00.60 15.0-17.5 17.5- 20.018.751.50.50 21.250.30 20.0-22.51.0 22.5-25. a 23.750.80.25 26.250.50.20 25.0-27.5 0.2 27.5-31. 029.250.10 _____L--._ DepthofLayer, ft ( 5) LOx1.15::: 2.5x1. 15::: 2.5x1. 15::: 2.5x1. 15::: 2.5x1. 15::: 2.5x 1. 15= 2.5x 1. 15= 2.5x 1. 15= 2.5x 1. 15= 2.5x 1.15 = 2.5x1.15::: 3.5x1.15::: TotalDepth::: 1. 15 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 4.03 33.88 L. VerticalMovement, 2. 2.4% 1.8% 1. 1. 1 0.8% 0.6% O.0.3% in (6) x1. 15x12 x2.87x12 x34.40x12 x34.40x12 x34.40x12 x34.40x12 x34.40x12 x34.40x12 x34.40x12 0.25%x34.40x12 0.2% 0.1% x34.40x12 x4.03x12 TotalPVR DuetoSwell ir-----AllsoilswithA =(PI < 2 12.1 Determineamount ofsulfatepresent.(appendixG) Determine after15I-- 40 ./V"l ~/ ./ "'- Second-DegreeCurve ell ./CorrelationCoefficient= 0.96ell 0 .././ Y = 0.002+2.21X- 0.02X 2 ....J ./ +-> ..t:: C"l 30 r ./OJ ::==::: . /// ./ ItS CP..t:: Nt/ First-DegreeCurve ......./OJ 20CorrelationCoefficient= 0.96 N/ Y = 2.41+1.40XOJ / OJ SI..L OJ ..... ~J/U >, 10 U I /eN .lfe oII I I II I o102030405060 6-CycleFreeze/ThawWeightLoss(AcceleratedTest),% Figure22.CorrelationsBetweenSix-CycleAcceleratedandTwelve-CycleStandard Freeze/ThawWeightLoss[afterCurrinetal.(ref.105)] Table14.PCASoil/Cement,Freeze/ThawWeightLossCriteria PCACriteria Accelerated6-Cyc1eFreeze/ThawTest WeightLoss,% AASHOSoilGroup Maximum WeightLoss, % 1st-DegreeCurve2nd-DegreeCurve A-1,A-2-4,A-2-5,A-3 A-2-6,A-2-7,A-4,A-5 A-6,A-7 ermeameter:conditionsof, of-)..... "'0..... E :::::I::I:0 N 40 Q) >..... of-) ItS

Q) e::: 20 HydraulicTensiometers1 o o I 1 I 2 I 3 IIITotal.Suction 10-3 10-2 10-1 10 DonotusePsychrometers psychrometers....I..arepracti ca1. _.. -.,. - - - - - - --....;a-95 % 'k - - - - - - - - - - - - 90%

, RT./ T=-In pipV\'/0 ----T----------- - ------,-----VeryWet..l.PracticalRangeof- Soi 1s - - - - - - - - -"1Thennocoup1 ePsychrometersL ..J.e\ _____1GypsumJ I \ e""I I 4567 DFiii 101 102 103 101f TotalSuction(T),bars Figure1.RelationshipBetweenRelativeHumidityandSuction APPENDIXE LIMESTABILIZATIONPROCEDURES Thisappendixprovidestheproceduresusedinthelaboratorytestingofsoil stabilizationwithlime.Althoughthesearenotstandardtestsineachcase, theseprocedureswereusedinthedevelopmentofthedataonwhichthesystem inthisreportisbased.Thematerialpresentedistakendirectlyfromthe citedreferences.Onlythosechangesneededforconformancetothisformat havebeenmade. 121 TESTFORpHTODETERMINELIMEREQUIREMENT(REF.103), Materials Limetobeusedforsoilstabilization Apparatus 1.pHmeter(thepHmetermustbeequippedwithanelectrodehavingapH rangeof14) 2.150-ml(orlarger)plasticbottleswithscrew-toplids 3.50-mlplasticbeakers 4.CO 2 - freedistilledwater 5.Balance 6.Oven 7.Moisturecans Procedure 1.StandardizethepHmeterwithabuffersolutionhavingapHof12.45. 2.Weightothenearest0.01grepresentativesamplesofair-driedsoil, passingtheNo.40sieve -andequalto20.0gofoven-driedsoil. 3.Pourthesoilsamplesinto150-mlplasticbottleswithscrew-toplids. 4.Addvaryingpercentagesoflime,weighedtothenearest0.01g,tothe s o i l s ~ (Limepercentagesof0,2,3,4,5,6,8,and10,basedonthe drysoilweight,maybeused.) 5.Thoroughlymixsoilanddrylime. 122 6.Add100mlofCO2 - freedistilledwatertothesoil/limemixtures. 7.Shakethesoil/limeandwaterforaminimumof30secoruntilthereis noevidenceofdrymaterialonthebottomofthebottle. 8.Shakethebottlesfor30secevery10min. 9.After1hr t transferpartoftheslurrytoaplasticbeakerandmeasure thepH. 10.RecordthepHforeachofthesoil/limemixtures.Thelowestpercentof limegivingapHof12.40isthepercentrequiredtostabilizethesoil. IfthepHdoesnotreach12.40t theminimumlimecontentgivingthe highestpHisthatrequiredtostabilizethesoil. MOISTURE/DENSITYRELATIONSHIPSOFLIME/SOILMIXTURES(REF.105) Tofindtheoptimummoisturecontentcorrespondingtothemaximumdrydensity ofalime/soilmixture t amethodsimilartothatfoundinASTM0698.. 70is used.Figure1givestheapprox"imateoptimummoistureandmaximumdrydensity baseduponknownAtterbergLimitsoftheuntreatedsoil.Theoptimummoisturecontentoflime/soilmixturesisalwayshigherthanthesoiluntreated. Themaximumdrydensityislower.A VicksburgMiniatureCompactionApparatus isusedtofabricatespecimens.Theapparatusproducesa2-in-diameterby 4-in-highspecimenwithsimilardensitiesproducedwiththecompactionequipmentemployedinASTM0698-70.Theproceduresusedindeterminingtheoptimum moisturecontentforlime/soilmixturesareasfollows: (1)TheuntreatedsoilisfirstpassedthroughaNo.4sieve.It maybe necessarytoairdrythesoiltopermitpulverizationtothepropersize. (2)Estimatetheapproximatemoisturecontentfromfigure1.Determinethe proportionsofsoil tlime t andwaterrequiredforfabricationofapproximatelyfivespecimens.Approximately2100gofmixwillberequired. Seethelime/soilmixturecalculationsthatfollowtheseprocedures. 123 15 20 +-> .r-25 E .r--l U30 or+-> VI 10 ,...a..35 2840--29-N .j:::o 45 Note: Numbersbetweencurves identifyzonesofoptimummoi sturecontentand max imumdrydens ity. 78 50 , ,LI, :".....71 12 1520 25 30 35 40 45 5055 60 65 70 LiquidLimit Example:Given:PlasticLimit- 20Find:AverageMaximumDryDensityand LiquidLimit- 35OptimumMoistureContent Answer:110lb/ft3 (Density)16percent ( ~ 1 o i stureContent) Figure1.ApproximateMoisture/DensityRelationship[after Ring,etal.(ref.127)] 30- 31-32-33 -34 75808590 (3)WeightheVicksburgMoldtothenearest0.1g andrecordondatasheet.. (4)MeasuretheinsideheightoftheVicksburgMoldwiththeentireassembly inplacetothenearest0.01in(fromthebasetothetopofthecollar). Measuretheinsidediameterofthemoldtothenearest0.01inandrecordthevaluesonthedatasheet. (5)Weighoutthesoil,lime,andwaterrequiredtothenearestg/m1asper calculations. (6)Thoroughlymixsoilandlimetogethereitherbyhandorwithanelectric soilmixeruntilallfreelimeisblendedwiththesoil. (7)Addwaterevenlytotheblendedsoilandlime(caremustbetakento preventexcesslossonthesidesofthemixingpot).Mixtheentire blendthoroughly.Afterthesoilismixed,coverwithadamppaper toweltopreventmoistureloss. (8)Weighapproximatelyfiveequalportionsofthesoilmixturetobecompacted.Approximately75to85gperlayerwillproduceaspecimenof thepropersize. (9)Poursoilintocompactionmold,levelsoil,andcompactthefirstlayer withfiveblowsoftheslidinghammer(takeweighttoitsfullheight ontheslidingrodbeforedropping). (10)Measuretheheightfromthetopofthecollartothetopofthefirst compactedlayerofsoil.Bysubtractingthisvaluefromthetotal height(step4),youwillobtainthethicknessofthecompactedlayer. Multiplythisfigureby5(numberoftotallayers)andthiswillgive youanapproximationofthetotalheightofthespecimen.Adjustthe amountofsoilinthefollowinglayerssothatthefinalspecimenwill be40.25in. (11) Scarifythetopofeachcompactedlayertoadepthof1/8inwithanice picktoinsureadequatebondwithfollowinglayers. 125 (12)Aftercompactingthelastlayer,measurefromthetopofthespecimen tothetopofthecollarusingasteelrulewithO.Ol-inaccuracyand recordonthedatasheet. (13)Removethecollarandmold.Trimtheexcesssoilfromtheinsideof themoldtomakethespecimenlevelacrossthetop. (14)Weighthemoldwiththecompactedsampletothenearest0.1gand record. (15)Extrudethesamplefromthemold. (16)Breakthespecimenintofiveequalpartsandtakeanequalamountof soilfromthecenterofeachportion.Placeallfiveportionsina preweighedtareandweightothenearest0.01g.Placetareinoven andobtainamoisturecontentthefollowingday. (17)Repeatabovestepsforvaryingwatercontents,addingwaterasper calculations.Donotrecompactsamples. (18)Calculatedrydensityofspecimensandmoisturecontent. WetDensityDryDensity= -.--+-;.:.M..:;.o';..- s--7t"'::;u:";';'re;;";""':CC'L- ""-e-n-:-tontWeightofWater100%MoistureContent= WeightofSolidsx0 (19)Plotdataandselectoptimummoisturecontentforthepercentageof 1ime. SampleProblem Given: Percentlime(byweight)required=6% DesiredinitialH20content= 15% 126 H20contentofuntreatedsoil=10% (determinedearlier) Calculations: TotalDesiredMixtureFormula: LimeWaterSoilSolids + += 21009(willmakeapproximatelyfivesamples) SolveforWs 1. 21W = 21009s W =1735.549 s = 0.06W = 104.139 Wl;me s 0.15W =260.339Wwater= s Check21009 ActualWaterRequired(consideringH20contentofnaturalsoil): WaterinUntreatedSoil Ws = 1735.549(fromabove) H20contentofuntreatedsoil= 10% 0.10(1735.54g)= 173.559ofH20naturalsoil 127 x watertoAddforDesiredH20Content Weightofwaterdesired260.33g Weightofwaterinsoil- 173.55g Weightofwatertoadd86.78g TotalSoil,Lime,andWaterRequired: (1)SoilRequired Ws +WwaterUntreatedSoil= SoilRequired 1735.54g+173.55g=1909g (2)LimeRequired W =1049lime (3)WaterRequired Wwater=879 orml WaterRequiredtoIncreaseMoistureContent: No.SpecimensLeftinBatchxOriginalWs 5 % IncreaseDesired= WatertGAdd Example(foradesired2-percentincrease,3specimensleftinbatch) ~ x1735.549x0.02=219 ormlofwater Note:Actualmoisturecontentswillbehigherthancalculateddueto lossofsoilduringfabrication. 128 SPECIMENFABRICATION(REF.105) Theproceduregivenaboveisfollowedbyspecimenfabrication.Nomorethan threespecimensmaybecompactedfromabatchofsoil/lime/watermixtureto insurepropermixingandgoodqualitycontrol.Approximately1450g ofsoil isrequiredforfabricationofthreespecimens.A moisturecontentistaken fromtheuncompactedmixduringcompactionofeachspecimen.Eachspecimen height,moisturecontent,anddrydensityisdeterminedandmustmeetthe followingspecifications: SpecimenHei ght4+0.125in MoistureContentOptimum!1% DryDensityMaximumDryDensity!2 lb/ft3 Thespecimensaretriplewrappedinthinplasticmembraneandtapedtopreventmoistureloss. RAPIDCURE(REF.105) Lime/soilspecimensareplacedinanovenfor30hr+15min.Theovenmust becapableofholdingatemperatureof120,!2Fwithquicktemperaturerecoverywhenthedoorisopenedforremovalofspecimens.Aftercompletion ofcuring,thespecimenisallowedtocoolfor15minpriortostrengthtestingand2hrpriortowaterimmersiontesting.Caremustbetakenduring curetototallypreventspecimenmoistureloss. FREEZE/THAW,DURABILITY(REF.'lOS) Thistestisforthedeterminationofthechangeinunconfinedcompressive strengthforcured2-in-diameterby4-in-highlime/soilspecimenswhichhave beensubjectedtorepeatedcyclesofalternatefreezingandthawing.The apparatus,usedconsistsof:(a)aconlmercialwidemouthvacuumflaskwith aninternaldiameterofabout2.5inanddepthofabout6in;(b)aspecimenholderoflowthermalconductivityluciteforholdingthecylindrical 129 specimeninsidethevacuumflask.Thebaseofthespecimenholderwasperforatedtopermittheaccess' ofwatertothebottomofthelime/soilspecimens;(c)demineralizedwater;(d)afreezermaintainedat22+2F. Theprocedureforconductingthefreeze/thawdurabilitytestisasfollows: (1)Thespecimensareplacedintheplasticspecimenholders.Thespecimenholdersaretheninsertedintothevacuumflasks.Enoughdemineral..izedwaterisplacedinthevacuumflaskssothatthebottom1/4inof thelime/soilspecimenswillbeimmersedwhenplacedintheflasks. Thiswaterlevelismaintainedthroughouttheentiretest. (2)Thevacuumflasksandspecimensareplacedinthefreezer(22~ 2F) for16hr. (3)Afterthe16-hrfreezingperiod,thevacuumflasksareremovedfromthe freezer.Thespecimensintheplasticholderareremovedfromtheflasks andallowedtothawfor8hrat77+2F.Thebottom1/4inofthe specimensremainimmersedinwaterduringthethawingperiod.Onefreeze/ thawcyclein16hroffreezingand8hrofthawing. (4)Theprocessisrepeatedforthreecyclesoffreezingandthawing,after whichthespecimenisremovedandtheunconfinedstrengthdetermined (ASTM02166-66). LIMEREACTIVITY(REF.105) Samplesatthreelimepercentages(pHestimatedlimepercent,+2percentand - 2percent)arepreparedusing2-in-diameterby4-in-highmoldsandthe Vicksburgcompactionapparatus.Specimensarethoroughlywrappedtototally preventmoisturelossandthenrapidcuredfor30hrat120F.Afterrapid cureiscomplete,determinetheunconfinedcompressionstrength(ASTM02166-66). Thesoilislimereactiveifthestrengthisinexcessof110psi.Should lowerstrengthsresult,limetreatmentshouldnotbeused. 130 APPENDIXF 5515SOILSAMPLES Inthedevelopmentofanydesignmethodit isdesirabletoincludeawide varietyofmaterialswhicharerepresentativeofmosttypeslikelytobe encounteredinpractice.It was,therefore,desiredtoutilizeawide varietyofsoilsinthetesting.Thesoilsusedinthedevelopmentof theAirForceSoilStabilizationIndexSystem(5515)aredescribedin tables1through3.Examinationofthedatainthesetablesindicates thewiderangeofsoilmaterialsused. 131 ------------Table1.SoilsUsedinInitialValidationofSSIS(ref.103) --Soil TuyHoa AltusSB Dyess AltusSG Ty1 er Houma PerrinB PerrinA PerrinAB PanamaA PanamaB NorthCarolina DallasRegn'l WESClay Buckshot Chenault Consistency LL*,%PI*,% 14.5 40.3 40.7 52.5 63.7 65.0 72.0 69.4 72.5 75.5 61.0 68.0 37.5 67.1 45.6 NP NP 23.2 19.8 21. 1 40.8 41. 7 40.0 43.3 32.8 35.5 26.9 50. 1 13.6 43.0 29.6 *LL= LiquidLimit,PI= PlasticityIndex,Yd OMC= OptimumMoistureContent. Moisture/DensitypH Yl,1b/ft3 OMC*,% -- - 5. 1 -- -7.4 102.719.77.4 97.723.67.5 91. 722.32.3 86.423.76.95 92.424.17.3 97.523.74.5 95.023.96.7 83.435. 15.3 82.835. 16.27 98.623.55.05 -- - 7.73 107.817.8 --- - --- - 7.70 = MaximumDryDensity, Classification AASHOUnified A-1-b A-2-4 A-7-6{l2) A-7-6( 12) A-7- 5( 15) A-7-6(20) A-7-6(20) A-7-6(20) A-7-6(20) A-7-6(20) A-6( 9) A-7-6(20) A-7-6(l7) G SC CL CL OH CH CH CH CH CH CH CH CH CL CH CH 132 Table2.LimeStabilizedSoils.AFACADValidation(ref.105) Soil Dyess Altus Tyler Houma PerrinA PerrinB PerrinAB Bergstrom Carswell Ii nker LeMoore Malmstrom Cannon Estiraodo. Ell i ngton Barksdale Ell sworth Moody Robbins . Classification AASHOUnified A-7-6(l2)CL A-7-6(12)CL . A.,. 7-5( 15)OH A-7-6( 20)CH A-7-6(20)CH A-7-6(20)CH A-7-6(20_CH A-6(7)CL A-7-6(20)CH A-6CL A-7-6( 16)CH A-6CL A-1-bSM A-7-5(8)CL A-7(20)CH. A-2-4CL-ML A-2-7SW-SC A-2-5SM A-2-4ML Consistency AtterbergLimits LL*.%PI*.% 40.323.2 40.719.8 52.521. 1 63.740.8 72.030.0 65.041. 7 69.443.3 32.014. 1 48.618.6 30.012.0 58.433.4 34. 114.9 25.03.5 28.79.7 60.032.5 30.08.3 30.724.0 26.04.8 25.23.6 Moisture/DensitypH Yd*lb/ft 3 OMC*.% 102.719.77.40 97.723.67.50 91. 722.32.30 86.423.76.95 97.523,74.50 92.423.17.30 95.023.96.70 121. 9014.758.70 101.622.68.62 112.816.58.18 8.25 7.50 114.014.08.80 102.725.08.70 114.017. 18.53 8.83 8.00 8.95 *LL= LiquidLimit.PI=PlasticityIndex.Yd=MaximumDryDensity. OMC= OptimumMoistureContent 133 Table3.CementStabilizedSoils,AFACADValidation(ref.105) Soi]Cl ass ifi cati on AASHOUnified ConsistencyMoisture/Density LL*,%PI*,% Yl, lb/ft 3 OMC*,% pH TuyHoa Altus A-l-bNP5.10 SubbaseA-2-4SC14.5NP7.40 Dyess Altus A-7-640.323.2102.719.77.40 SubgradeA-7-6CL40.719.897.723.67.50 TylerA-7-5OH52.521.191. 722.32.30 HoumaA-7-6CH63.740.892.424.1 ;7.30 PerrinBA-7-6CH65.041. 792.424.17.30 PerrinA Clark Patrick Holloman Moody Robbi ns Laughlin Charl eston Norton Vance Ell i ngton George.I Hami 1ton Tinker Kelly A-7-6CH A-l-bSM-SC A-l-b A-l-b A-l-b A-2-7 A-6CL A-l-aGW A-l-bSP A-l-b A-2-4SW A-3 A-4 A-6 A-7-5 _.72.040.097.523.7 NP117.211.2 NP 1 112 . 510.6 NP139.05.9 NP121.011.3 45.222.0122.611. 1 33.213.0105.018.7 NP125.09.8 NP102.516.9 NP8.4 126.29.0 118.012.5 27.45.7112.016.5 37.320.4107.918.6 82.045.289.020.0 4.50 * LL= LiquidLimit,PI= PlasticityIndex,Yd= MaximumDryDensity, OMC= OptimumMoistureContent 134 APPENDIXG CEMENTSTABILIZATIONPROCEDURES Thisappendixprovidestheproceduresusedinthelaboratorytestingofsoil stabilizationwithcement.Theseproceduresaretakendirectlyfromthel i t ~eraturecited.Thedataandproceduresdescribedinthisreportarebasedon testinginaccordancewiththeseprocedures. 135 TESTFORpHOFSOIL/CEMENTMIXTURES(REF.103) Materials Portlandcementtobeusedforsoilstabilization Apparatus 1.pHmeter(thepHmetermustbeequippedwithanelectrodehavingapH rangeof14) 2.150-mlplasticbottleswithscrew-toplids 3.50-mlplasticbeakers 4.Di sti 11 edwater 5.Balance 6.Oven 7.Moisturecans Procedure 1.StandardizethepHmeterwithabuffersolutionhavingapHof12.00. 2.Weightothenearest0.01g,representativesamplesofair-driedsoil, passingtheNo.40sieveandequalto25.0gofoven-driedsoil. 3.Pourthesoilsamplesinto150-mlplasticbottleswithscrew-toplids. 4.Add2.5gofthePortlandcement. 5.ThoroughlymixsoilandPortlandcement. 136 6.Addsufficientdistilledwatertomakeathickpaste.(C'aut10n:too muchwaterwi 11reducett1epHand;producean7.Stirthesoil,cement,andwateruntilthoroughb1end1ngisachieved. 8.After15mi n,transferpartofthe:pastetoaplasti cbeakerandmeasure thepH. 9.Ifthe pHis12.1orgreater,thesoilorganicmattercOntents.hou1d not withthecementstabilizingmechanism.Todeterminethe requi redpercentofcement,refertodes i gn methodsoutl tnedinsecti on 6ofthisreport. DETERMINATIONOFSULFATEINSOILS- GRAVIMETRICMETHOD(REF.103) Scope Thismethodisapplicabletoallsoil typ,eswiththeP9ssib1eexceptionof' soi 1scontai ni ngcertai n organi ccompounds.Thi s . methodshou1 dp.ermi tthe ,'.'. detectionofaslittle as0.05percent'sulfa.teas504, Reagents 1.Bar.iumch10r-ide,10-percentsoJutionofBaC1 2 . (Add 1m1of 2percentHe1toeach100mlofsolutionto.preventformationofcarbonate. ) 2.Hydroch1ori caci d,2- sQ:1uti on- (0.55'N) 3...Magnesiumchloride,10-percentsolutionof'MgC1 2 .6H20. 4.Demineralizedwater 5.Silverriitrate,0.1Nsolution 137 Apparatus 1.Beaker,1000ml 2.Burnerandringstand 3.Filteringflask,500ml 4.Buchnerfunnel,9cm 5.FilterNo. 40,9 cm 6.Filterpaper,WhatmanNo.42,9cm 7.Saranwrap 8.Crucible,ignition,oraluminumfoil,heavygrade 9.Analyticalbalance 10.Aspiratororothervacuumsource Procedure (1)Selectarepresentativesampleofair-driedsoilweighingapproximately 10g.Wetgh.tothenearest0.01g.(Note:Whensulfatecontentis anticipatedtobelessthanO.1percent,asampleweighing20gormore maybeused.)(Themoisturecontentoftheair-driedsoilmustbeknown forlaterdeterminationof.dryweightofthesoil.) (2)Boilfor1-1{2hrinbeakerwithmixtureof300mlwaterand15mlHel. (3)FilterthroughWhatmanNo.40paper,washwithhotwater,dilutecombinedfiltrateandwashingsto50ml. (4)Take100mlofthissolutionandaddMgC1 2 solutionuntilnomoreprecipitateisformed. 138 (5)FilterthroughWhatmanNo.42paper.washwithhotwater.dilutecom.. binedfiltrateandwashingsto200ml. (6)Heat100mlofthissolutiontoboilingandaddBaC1 2 solutionvery slowlyuntilnomoreprecipitateisformed.Continueboilingfor about5 minandletstandovernightinwarmplace.coveringbeaker wi thSaranwrap. .' (7)FilterthroughWhatmanNo.42paper.Washwithhotwateruntilfree fromchlorides(filtrateshouldshownoprecipitatewhenadropof AgN03 solutionisadded). (8)Dryfilterpaperincrucibleoronsheetofaluminumfoil.Ignite paper.WeighresidueonanalyticalbalanceasBaS04. Calculation P0WeightofResidue4116ercentS4=Oven-DryWeightofInitialSamplex. where oven-dryweightofinitialsample=Air-DryWeightofInitialSample 1+Air-DryMoistureContent(percent)100percent Note:Ifprecipitatedfromcoldsolution.bariumsulfateissofinelyd i s ~persedthatit cannotberetainedwhenfilteringbytheabovemethod.Precipitationfromawarm.dilutesolutionwillincreasecrystalsize.Dueto theabsorption(occlusion)ofsolublesaltsduringtheprecipitationof BaS04 asmallerror isintroduced.Thiserrorcanbeminimizedbypermitting theprecipitatetodigestinawarm.dilutesolutionforanumberofhours. ThisallowsthemoresolublesmallcrystalsofBaS04todissolveandrecrystallizeonthelargercrystals. 139 DETERMINATIONOFSULFATEINSOILS- TURBIDIMETRICMETHOD(REF.103) Reagents 1.Bariumchloridecrystals(Grindanalyticalreagentgradebariumchloride topassl-mmsieve.) 2.Ammoniumacetatesolution(0.5N)(Adddilutehydrochloricaciduntil thesolutionhasapHof4.2.) 3.Distilledwater Apparatus 1.Moisturecan 2.Oven 3.200-mlbeaker 4.Burnerandringstand 5.Fil teri ngfl ask 6.Buchnerfunnel,9cm 7.Fi 1terpaper,WhatmanNo.40,9cm 8.Vacuumsource. . 9.Spectrophotometerandstandardtubes(BauschandLombeSpectronic20or equivalent) 10.pHmeter 140 Procedure (1)Takearepresentativesampleofair-driedsoilweighingapproximately 10gandweightothenearest0.01g.(Themoisturecontentofthe air-driedsoilmustbeknownforlaterdeterminationofdryweightof thesoil.) (2)AddtheaR11lOniumacetatesolutiontothesoil.(Theratioofsoilto solutionshouldbeapproximately1:5byweight.) (3)Boilforabout5 min. (4)FilterthroughWhatmanNo.40filterpaper.Iftheextractingsolution isnotclear,filteragain. (5)Take10m1ofextractingsolution(thismayvarydependingontheconcentrationofsulfateinthesolution)anddilutewithdistilledwater toabout40m1.Addabout0.2gofbariumchloridecrystalsanddilute tomakethevolumeexactly50m1.Stirfor1min. (6)Immediatelyafterthestirringperiodhasended,pouraportionofthe solutionintothestandardtubeandinsertthetubeintothecellofthe spectrophotometer.Measuretheturbidityat30-secintervalsfor4min. Maximumturbidityisusuallyobtainedwithin2minandthereadingsremainconstantthereafterfor3to10min.Considertheturbiditytobe themaximumreadingobtainedinthe4-mininterval. (7)Comparetheturbidityreadingwithastandardcurveandcomputethesulfateconcentration(asS04)intheoriginalextractingsolution.(The standardcurveissecuredbycarryingouttheprocedurewithstandard potassiumsulfatesolutions.) (8)Correctionshouldbemadefortheapparentturbidityofthesamplesby runningblanksinwhichnobariumchlorideisadded. 141 SampleProblem Given: Weightofair-driedsample= 10.12g WaterContent= 9.36% Weightofdrysoil= 9.27g Totalvolumeofextractingsolution= 39.1ml 10mlofextractingsolutionwasdilutedto50mlafteraddition ofbariumchloride(step5).Thesolutiongaveatransmission readingof81. Calculations: Fromthestandardcurve,atransmissionreadingof81corresponds to16.0ppm(fig.1).Therefore,concentrationoforiginalextractingsolution=16.0x5= 80.0ppm. -- 80.0 x 39.1x 100%PercentS04=1000x1000x9.27= 0.0338 DeterminationofStandardCurve: (1)Preparesulfatesolution.of0,4,8,12,16,20,25,30,35,40, 45,50ppminseparatetesttubes.Thesulfatesolutionismade frompotassiumsulfatesaltdissolvedin0.5N arnnoniulTIacetate (withpHadjustedto4.2). (2)Continuesteps5and6oftheprocedure. (3)Drawstandardcurveasshowninfigure1byplottingtransmission readingsforknownconcentrationsofsulfatesolutions. 142 10 0 1 r - - ~ - - - - - - - - - - - - - - - - - - - - - - - .~\90- 0\ 80:--+---\ .. I0s:: o .,... VI VI .,... 70E :\VI s:: ~ 277psi Thelaboratory28-dayqumustbe369psitodeveloptherequiredfieldstrength of110psiafterfivefreeze/thawcycles.(Note:Foraplantmix.operation,the laboratorystrengthrequirementwouldbereducedto249psibecauseofincreased mixingefficiencyandreducedfieldvariability.) Thepavementdesignershouldbecognizantthattheprecedinganalysishasbeen concernedwithpavementresponsetorepeateddynamicwheelloadings;thatis, flexuralfatiguewasthemainconsideration.Itisrecognizedthatstabilized pavementsectionsdevelopultimatestrengthfarinexcessofthestressesthat . , leadtoinitialcracking(ref.138).Forasituationwherelowtrafficvolumesareanticipated,therequiredstrengthsofstabilizedlayersmaybe 166 significantlyoverestimatedbyfigures1through4.Examinationofthedata presentedbySuddathandThompson(ref.l3S)indicatesthatultimatestrengths maybeatleasttwotothreetimesaslargeasthosepredictedbyMeyerhof's ultimateloadtheory.Clearly,forthesesituations,thedesignerisjustifiedinacceptinglowerstrengthsthanthoseindicatedbyfigures1through 4. 167 REFERENCES 1.IIAirportPavementDesignandEvaluation,1IAdvisoY'YCiY'culaY'3ACNo.150/ 5320-6B,FAA,DepartmentofTransportation,May28,1974. 2.Grim,R.E.,ClayMineY'alogy,McGraw-HillBookCo.,SecondEdition,1968. 3.Tourtelot,HarryA.,IIGeologicOriginandDistributionofSwellingClays,1I PY'oceedingsof aWOY'kshoponExpansiveClaysandShalesinHighwayDesign andConstY'uction,D.R.LambandS.J.Hanna,editors,Vol.1,May1973, pp.44-69. 4.Snethan,DonaldR.,Townsend,FrankC.,Johnson,L.D.,Patrick,DavidM., andVedros,PhillipJ.,AReviewof EngineeY'ingExpeY'ienceswithExpansive SoilsinHighwaySubgY'ades,ReportNo.FHWA-RD-75-48,U.S.ArmyEngineer WaterwaysExperimentStation,Vicksburg,Miss.,June1975,139p. 5.Fo"lks,JamesJ.,SoilSUY'veyof SantaFeNewMexico,UnitedStates DepartmentofAgriculture,August1975. 6.Woodward-ClydeandAssociates,AReviewPapeY'onExpansiveClaySoils, Vol.1,LosAngeles,California,1968. 7.Noble,C.A.,IIS we llingMeasurementsandPredictionofHeaveforLacustrine Clays,"CanadianGeotechnicalJouY'nal,Vol.3,No.1,February1966,pp. 32-41. 8.Lambe,T.William,and RobertV.,liTheRoleofEffectiveStress intheBehaviorofExpansiveSoils,"QuaY'teY'lyoftheColoY'adoSchoolof Mines,Vol.54,No.4,October1959,pp.33-65. 9.Johnson,L.D.,Reviewof LiteY'atuY'eonExpansiveClaySoils,Misc.Paper S-69-24,U.S.ArmyEngineerExperimentStation,Vicksburg,Miss., June1969,48p. 10.Seed,H.B.,Mitchell,J.K.,andChan,C.K.,IIStudiesofSwellandSwell PressureCharacteristicsofCompactedClay,"HighwayReseaY'chBoaY'dBuUetinNo.313,1962,pp.12-29. 11.Budge,W.D.,Schuster,R.L.,andSampson,E.,AReviewof LiteY'atuY'eon SwellingSoils,UniversityofColorado,1964. 12.Low,PhillipF.,"FundamentalMechanismsInvolvedinExpansionofClays asParticularlyRelatedtoClayrlineralogy,1IPY'oceedingsof aWOyikshopon ExpansiveClaysandShalesinHighwayDesignandConstY'uction,Vol.1, May1973,pp.70-91. 13.Means,R.E.,"BuildingonExpansiveClays,"QuaY'teY'lyoftheColoY'ado Schoolof Mines,Vol.54,No.4,October1959,pp.1-32. 14.Lytton,R.L.,Theol'yof Moistul'eMovementinExpansivectays,Research Report118-1,CenterforHighwayResearch,UniversityofTexas,Austin, Texas,September1969,161p. 168 i... ' 15.Scho1ander,P.F.,"0smoti cMeehani smandNegati vePressure,"science, Vol.158,No.3805,Dece!J1ber1967,p.'1210. 16.Bolt,G.H.,"Physico-ChemicalAnalysisoftheCompressibilityofPure Clays,"Geotechnique,Vol.6,1956,pp.86-93. 17.Ruiz,C.L.,"OsmoticInterpretationoftheSwellingofExpansiveSoils," HighwayReseapchBoapdBulletinNo.313,1962,pp.47-77. 18.Baver,L.D.,andWinterkorn,H.F.,"SorptionofLiquidsbySoilColloids," SoilScience,Vol.40,1935,pp.403-419. 19.Baver,L.D.,SoilPhysics,JohnWileyandSons,Inc.,SecondPrinting,1959. 20.Salas,J.A.J.,andSerratosa,J."FoundationsonSwellingClays," ppoceedingsof the4thInternationalConferenceonSoilMechanicsand FoundationEngineeping,Vol.I,London,1957,pp.424-428. 21.Haliburton,T.Allan,and B.Dan,"SubgradeMoistureVariationsin ExpansiveSoils,"Proceedingsof theSecondIntepnationalConfepenceon ExpansiveClaySoils,TexasA&MPress,1969,pp.291-307. 22.Redlich,K.A.,Terzaghi,K.,andKampe,R.,Ingeniepgeolgie(Engineering Geo logy),Spri nger,Vi enna,1929. 23.Gilboy,Glennon,liTheCompressibilityofMixtures,"ppoceedings, ASCE,Vol.V,No.2,February1928,pp.555-568. 24.Hardy,R.M.,"IdentificationandPerformanceofSwellingSoilTypes," CanadianGeotechnicalJournal,Vol.11,No.2,May1965,pp.141-161. 25.Compton,PhilV.,AStudyof theSwellingBehaviopof AnExpansiveClay asInfluencedbytheClay SoilandExtepnal Loading,AFWL-TR-70-26,AirForceWeaponsLaboratory,KirtlandAirForce Base,NewMexico,June1970,135p. 26.Pearring,JeromeR.,AStudyof Basic andEngineepingIndexppopeptiesofLatePiticSoils,AFWL-TR-69-21,Air ForceWeaponsLaboratory,KirtlandAirForceBase,NewMexico,May1969,136 p... 27.Rich,C.I.,andKunze,G.W.,(ed.),SoilClayMinepalogy,Universityof NorthCarolinaPress,Raleigh,NorthCarolina,1964. 28.DeBruyn,C.M.A.,Collins,L.E.,andWilliams,A.B.A.,liTheSpecific Surface,WaterAffinityandPotentialExpansivenessofClays,"ClayMinepalsBulletin,Vol.3,No.17,August1956,pp.120-128. 29.Diamond,S.,andKinter,E.B.,"Sur faceAreasofClayMineralsasDerived fromMeasurementsofGlycerolRetention, IIFifthNationalConfepenceonClaysandClayMinepals,Publication566,NationalAcademyof Sciences,NationalResearchCouncil,1958,pp.334-347. 169 30.Taylor,A.W.,"Physico-CheillicalPropertiesofSoils:IonExchange Phenomena,"JournaloftheSoilMechanicsandFoundationsDivision, ASCE,Vol.85,No.SM2,Pt.1,April1959,pp.19-30. 31.Basu,R.,andArulanandan,K.,"ANewApproachfortheIdentificationof SwellPotentialofSoils,"Proceedingsof aWorkshoponExpansiveClays andShalesinHighwayDesignandConstruction,D.R.LambandS.J.Hanna, editors,May1973,pp.315-339. 32."SignificanceofTestsforHighwayt1aterials- BasicTests,"Progress ReportoftheCommitteeonSignificanceofTestsforHighwayMaterials oftheHighwayDivision,Journalof theHighwayDivision,ASCE,No.HW4, September1957,pp.1385-1to1385-37. 33.Vijayvergiya,V.N.,andGhazzaly,Osman1.,"PredictionofSwellingPotentialforNaturalClays,"Proceedingsof theThirdInternationalCon onExpansiveClaySoils,Haifa,Israel,1973,pp.227-236. 34.Vijayvergiya,V.N.,andSullivan,R.A.,"SimpleTechniqueforIdentifyingHeavePotential,"Proceedingsof aWorkshoponExpansiveClaysand ShalesinHighwayDesignand D.R.LambandS.J.Hanna, editors,May1973,pp.275-294. 35.Komornik,Amos,andDavid,David,"PredictionofSwellingPressurein Clays,"JournaloftheSoilMechanicsandFoundationsDivision,ASCE, Vol.95,No.SM1,January1969,pp.209-225. 36.Dawson,RaymondF.,"ModernPracticesUsedintheDesignofFoundations forStructuresonExpansi veSoil s," oftheColoradoSchoolof Mines,Vol.54,No.4,October1959,pp.66-88. 37.Seed,H.B.,Woodward,R.J.,andLundgren,Raymond,"PredictionofSwellingPotentialforCompactedClays," oftheSoilMechanicsand FoundationsDivision,ASCE,Vol.88,No.SM3,Part1,June1962,pp.53-87. 38.IIGui detotheUseoftheSo; 1PVCMeter,"TechnicalStudiesNo.595, FederalHousingAdministration,January1965,31p. 39.Lambe,T.William,TheCharacterandIdentificationof ExpansiveSoils, TechnicalStudiesReportNo.701,FederalHousingAdministration,Washington,D.C.,December1960. 40.Krazynski,LeonardM.,"TheNeedforUniformityinTestingofExpansive Soil s, IIProceedingsof aWorkshoponExpansiveClaysandShalesinHighway Designand Vol.I,May1973,pp.98-136. 41.RecommendedPracticeforConstructionof ResidentialConcreteFloorson ExpansiveSoil,Vol.II,PortlandCementAssociation,September1971,39p. 42.Skernpton,A.W.,"TheColloidalActivityofClay,"ProceedingsoftheThird InternationalConferenceonSoilMechanicsandFoundationEngineering,Vol. 1,1953,pp.57-61. 43.Holtz, G.,andGibbs,H.J.,"EngineeringPropertiesofExpansiveClays," Transactions,ASCE,Vol.121,1956,pp.641-663. 1j' () 44.Altmeyer,T.,DiscussionofPaperbyHoltzandGibbson"EngineeringPropertiesofExpansiveClays,IITroansaotions,ASCE,Vol.121,1956,. pp.664-666. 45.Grossman,R.B.,Brasher,B.R.,Franzmeier,D.P.,andWalker,J.L., "LinearExtensibilityasCalculatedfromNaturalClodDryBulkDensityMeasurements,"Proooeedings,Vol.32,SoilScienceSocietyofAmerica, 1968,pp.570-573. 46.Yoder,EldonJ.,Reviewof SoilClassifioationSystemsApplioabletoAiroporotPavementDesign,FAA-RD-73-169,FederalAviationAdministration, May1974,123p. 47.EngineeroingSoilClassifioationforoResidentialDevelopments,Comp"ll edand editedbytheFederalHousingAdministration,November1961,168p. 48.Kantey,B.A.,andBrink,A.B.A.,LaboroatoroyCroiteroiaforotheReoognitionof ExpansiveSoils,BulletinNo.9,NationalBuildingResearchInstitute,SouthAfricanCouncilforScientificandIndustrialResearch,December1952. 49.Holtz,W.G.,"ExpansiveClays-PropertiesandProblems,1IQuaroterolyof the ColoroadoSohoolof Mines,Vol.54,No.4,October1959,pp.89-126. 50.Williams,A.A.B.,DiscussiononJ.E.B.JenningsandK.Knight'spaper,liThePredictionofTotalHeavefromtheDoubleOedometerTest,"TroansaotionsSouthAfroioanofCivilEngineeros,Vol.8,No.6, June1958. 51.McDowell,Chester,"InterrelationshipofLoad,VolumeChange,andLayerThicknessesofSoilstotheBehaviorofEngineeringStructures,"Proooeedings,HRE,Vol.35,1956,pp.754-772. 52.Lambe,T.William,The.Chal'aoteroandIdentifioationof ExpansiveSoils, TechnicalStudiesReportNo.701,FederalHousingAdministration, Washington,D.C.,May1960. 53.Ladd,CharlesC.,andLambe,T.William,liTheIdentificationandBehavior ofCompactedExpansiveClays,1IProooeedingsofthe5thInteronationalConferoenoeonSoilMeohaniosandFoundationEngineeroing,Vol.I,Paris,1961, pp.201-205. 54.Ranganatham,B.,andSatyanarayana,B.,"ARationalMethodofPredicting SwellingPotentialforCompactedExpansiveClays,"Pr'oaeedings,8thIntc:tnationalConferenoeonSoilMeohaniosandFoundationEnginee:ting,Vol.1,1965,pp.92-96. 55.Chen,FuHua,liTheUseofPierstoPreventtheUpliftingofLightlyLoaded StructuresFoundedonExpansiveSoils,"Engineer'ingEffea1;Bof Mo7..atufle ChangesinSoils(ConoludingProoeedingsoftheInteronationalReBeaflahand EngineeroingConfer'enoeonExnansiveClay TexasA&MUnivers1ty,1965, pp.152-171. 'ill 56.Packard,RobertG.,"DesignofConcreteAirportPavement,"Engineering Bulletin,PortlandCementAssociation,1973,61p. 57.Fernando,Jonas,Smith,Robert,andAru1anandan,K.,"NewApproachto DeterminationofExpansionIndex,"JournaloftheGeotechnicalDivision, ASCE,September1975,pp.1003-1008. 58.Seed,H.B.,Mitchel,J.K.,andChan,C.K.,"StudiesofSwellandSwell PressureCharacteristicsofCompactedC1ays,"HighwayResearchBoard BulletinNo.313,1962,pp.13-29. 59.Fredu1 und,D.G.,"Conso1i dometerTestProceduralFactorsAffecti ngSwell Properti es, IIProceedingsof theSecondInternationalConferenceonExpansiveClaySoils,TexasA&r,lPress,1969,pp.435-456.. 60.Ring,G.W.,"Shrink-SwellPotentialofSoi1s,"PublicRoads,Vol.33, No.6,1965,pp.97-105. 61.Heidema,P.B.,liTheBar-linearShrinkageTestandthePracticalImportance ofBar-linearShrinkageasanIdentifierofSoi1s,"Proceedingsof the4th InternationalConferenceonSoilMechanicsandFoundationEngineering,Vol. I,1957,pp.44-49. 62.Taylor,DonaldW.,Fundamentalsof SoilMechanics,JohnWileyandSons, Inc.,FourthPrinting,1965. 63.Gibbs,HaroldJ.,"UseofConso1idometerforMeasuringExpansionPotential ofSoi 1S, IIProceedingsof aWorkshoponExpansiveClaysandShalesinHighwayDesignandConstruction,Vol.1,May1973,pp.206-213. 64.Goris,J.,"PressuresAssociatedwithSwellinginSoils,"MasterofScience Thesis,UniversityofA"lberta,1965. 65.Jennings,J.E.,liThePredictionofAmountandRateofHeaveLikelytobe Experi encedinEng i neeri ngCons tructi ononExpans i veSoil s, IIProceedings of theSecondInternationaZConferenceonExpansiveClaySoils,TexasA&M Press,1969,pp.99-109. 66.Lambe,T.William,liTheStructureofCompactedC1ay,"Journalof theSoil MechanicsandFoundationsDivision,ASCE,Vol.84,No.SM2,Part1,May 1958,pp.1654-1to1654-34. 67.Lytton,R.L.,Boggess,R.L.,andSpotts,J.W.,"Characteristicsof ExpansiveClayRoughnessofPavements,"PaperpresentedtotheTransportationResearchBoard,January1975. 68.Williams,A.A.B.,liTheDeformationofRoadsResultingfromChangesinExpansiveSoilsinSouthAfrica,"Sympos.iuminPrint,Butterworths,1965,pp.143-155. 69.Aitchison,G.D.,andWoodburn,J.A.,"Soi1SuctioninFoundationDesign," Proceedingsofthe7thInternationalConferenaeonSoilMechaniasand FoundationEngineering,Vol.2,MexicoCity,1969,pp.1-8. 172 70.Al-Dhahir,Z.A.,andTan,S.B.,"ANoteonOne-DimensionalConstant-Hea