Top Banner
1 1. Introduction Storage is the art of keeping the quality of agricultural materials and preventing them from deterioration for specific period of time, beyond their normal shelf life. Cold storage Control ripening retards aging, softening, texture and color change, retards moisture loss, wilting, microbial activity, spoilage, sprouting and undesirable growth. Availability of proper cold storages are important for preserving perishable Commodities like milk, meat, eggs, vegetables, fruits, ornamental flowers and other floricultural goods. These cold storages give perishable food items a longer shelf life by preventing them from rotting due to humidity, high temperature and microorganisms. This results in a decrease in loss due to spoilage. 1.1. Principle of Refrigeration The cold storage like every other refrigerating systems of the same magnitude employs the vapour compression method of mechanical refrigeration. Fig.1 presents the T-s diagram of the vapour compression cycle, while the Fig.2 illustrates the processes of the refrigeration employed in the cold room, respectively. Fig. 1. T-s diagram Fig. 2. Processes of the refrigeration
15
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Design

1

1. Introduction

Storage is the art of keeping the quality of agricultural materials and preventing them from

deterioration for specific period of time, beyond their normal shelf life. Cold storage

Control ripening retards aging, softening, texture and color change, retards moisture loss,

wilting, microbial activity, spoilage, sprouting and undesirable growth. Availability of

proper cold storages are important for preserving perishable

Commodities like milk, meat, eggs, vegetables, fruits, ornamental flowers and other

floricultural goods. These cold storages give perishable food items a longer shelf life by

preventing them from rotting due to humidity, high temperature and microorganisms. This

results in a decrease in loss due to spoilage.

1.1. Principle of Refrigeration

The cold storage like every other refrigerating systems of the same magnitude employs the

vapour compression method of mechanical refrigeration. Fig.1 presents the T-s diagram of

the vapour compression cycle, while the Fig.2 illustrates the processes of the refrigeration

employed in the cold room, respectively.

Fig. 1. T-s diagram Fig. 2. Processes of the refrigeration

Page 2: Design

2

2. Design Procedure:

Heat load factors normally considered in a cold storage design

Wall, floor and ceiling heat gains from solar radiation due to conduction.

Load due to ingression of air by frequent door openings and during fresh air

charge.

Product load from incoming goods and heat of respiration from stored product.

Heat from workers working in the room.

Cooler fan load, light load, aging of equipment.

Miscellaneous loads, if any.

2.1. Heat transmission through walls:

H T outside air (W/K π‘š2 ) 80

H T inside air (W/K π‘š2) 3.8

T amb( oC) 38

Thickness Conductivity

Units m W/K m

Plaster 0.015 0.29

Brick 0.37 0.15

PUF 0.1 0.021

Plaster 0.015 0.29

Properties Length height breadth Temp Temp diff Area Q

Units M m m

W

Ice cream 7 10 5 -20 58 240 1829.73

Fish 7 10 5 -8 46 240 1457.17

Meat 7 10 5 -5 43 240 1356.52

Apple 7 10 5 2 36 240 1135.69

Carrot 7 10 5 0 38 240 1198.79

Banana 7 10 5 13 25 240 788.68

Q net 7760.58 Total H T C 0.131

π‘œπΆ π‘œπΆ π‘š2

Page 3: Design

3

Q = U A βˆ†T

U = 1

1

β„Žπ‘–π‘›+

π‘₯1π‘˜1

+π‘₯2π‘˜2

+π‘₯3π‘˜3

+π‘₯4π‘˜4

+1

β„Žπ‘œπ‘’π‘‘

U = 1

1

80+

0.015

0.29+

0.37

0.15+

0.1

0.021+

0.015

0.29+

1

3.8

U = 0.131 W/ π‘š2k

A = 2 x (L x H + H x W)

A = 2 x (7 x 10+10 x 5)

A = 240 π‘š2

1) For ice cream unit

Q = 0.131 x 240 x (38 - (-20))

= 1829.73 W

2) For fish unit

Q = 0.131 x 240 x (38 - (-8))

= 1451.17 W

3) For meat unit

Q = 0.131 x 240 x (38 - (-5))

= 1356.52 W

4) For Apple unit

Q = 0.131 x 240x (38 - (2))

= 1135.69 W

5) For Carrot unit

Q = 0.131 x 240 x (38 - (0))

= 1198.79W

6) For Banana Unit

Q = 0.131 x 240 x (38 - 13)

= 788.68 W

Page 4: Design

4

2.2. Heat transmission through ceiling

Thickness Conductivity

Units M W/k m

Slab 0.150 0.300

PUF 0.021 0.021

Asbestos 0.015 0.750

Length breadth Temp Temp

diff

Area Q

Units M m

W

Ice

cream

7.000 5.000 -20 58.000 35.000 1130.5

Fish 7.000 5.000 -8 46.000 35.000 896.61

Meat 7.000 5.000 -5 43.000 35.000 838.13

Apple 7.000 5.000 2 36.000 35.000 701.69

Carrot 7.000 5.000 0 38.000 35.000 740.68

Banana 7.000 5.000 13 25.000 35.000 487.29

U = 1

1

β„Žπ‘–π‘›+

π‘₯1π‘˜1

+π‘₯2π‘˜2

+π‘₯3π‘˜3

+1

β„Žπ‘œπ‘’π‘‘

U = 1

1

80+

0.15

0.3+

0.021

0.021+

0.015

0.750+

1

3.8

U = 0.557W/ π‘š2k

A = L x W

= 7 x 5

= 35 π‘š2

H T outside air (W/K π‘š2 ) 80

H T inside air (W/K π‘š2 ) 3.8

T amb( oC) 38

Q net 4794.90 Total H T C 0.557

π‘œπΆ

π‘œπΆ π‘š2

Page 5: Design

5

1) For ice cream unit

Q = 0.557x 35 x (38 - (-20))

= 1130.5 W

2) For fish unit

Q = 0.557x 35 x (38 - (-8))

= 896.61 W

3) For meat unit

Q = 0.557x 35 x (38 - (-5))

= 838.13 W

4) For Apple unit

Q = 0.557x 35 x (38 - (2))

= 701.69 W

5) For Carrot unit

Q = 0.557x 35 x (38 - (0))

= 740.68 W

6) For Banana Unit

Q = 0.557x 35 x (38 - 13)

= 487.29 W

2.3. Heat transmission through floor: -

Thickness Conductivity

Units M W/k m

Sand 0.060 0.700

Rubble 0.100 10.700

Concrete 0.080 0.300

PUF 0.100 0.021

Plaster 0.015 0.290

H T outside air (W/Kπ‘š2 ) 80

H T inside air (W/K π‘š2 ) 3.8

T amb( oC) 38

Page 6: Design

6

Length breadth Temp Temp

Diff

Area Q

Units M m oC

m2 W

Ice cream 7.000 5.000 -20 58.000 35.000 364.823

Fish 7.000 5.000 -8 46.000 35.000 289.342

Meat 7.000 5.000 -5 43.000 35.000 270.472

Apple 7.000 5.000 2 36.000 35.000 226.442

Carrot 7.000 5.000 0 38.000 35.000 239.022

Banana 7.000 5.000 13 25.000 35.000 157.251

U = 1

1

β„Žπ‘–π‘›+

π‘₯1π‘˜1

+π‘₯2π‘˜2

+π‘₯3π‘˜3

+π‘₯4π‘˜4

+π‘₯5π‘˜5

+1

β„Žπ‘œπ‘’π‘‘

U = 1

1

80+

0.06

0.7+

0.1

10.7+

0.08

0.3+

0.1

0.021+

0.015

0.29+

1

3.8

U = 0.180W/ π‘š2k

A = L x W

= 7 x 5

= 35 π‘š2

1) For ice cream unit

Q = 0.180x 35 x (38 - (-20))

= 364.823 W

2) For fish unit

Q = 0.180x 35 x (38 - (-8))

= 289.342 W

3) For meat unit

Q = 0.180x 35 x (38 - (-5))

= 270.472 W

4) For Apple unit

Q net 1547.351 Total H T C 0.180

π‘œπΆ

Page 7: Design

7

Q = 0.180x 35 x (38 - (2))

= 226.442 W

5) For Carrot unit

Q = 0.180x 35 x (38 - (0))

= 239.022 W

6) For Banana Unit

Q = 0.180x35 x (38 - 13)

= 157.251 W

2.4. Heat transmission through door: -

Avg air change per hr 0.125

Air density(kg/m^3) 1.2

Temp Amb 38

Cp(kJ/kg k) 1.005

Length Breadth Height Vol Temp Enthalpy Diff Q

Units M M m

KJ/Kg W

Ice cream 7 5 10 350 -20 58.29 850.063

Fish 7 5 10 350 -8 46.23 674.188

Meat 7 5 10 350 -5 43.215 630.2190

Apple 7 5 10 350 2 36.18 527.625

Carrot 7 5 10 350 0 38.19 556.938

Banana 7 5 10 350 13 25.125 366.406

Heat gain, Q = room volume x air changes per hour x air density x enthalpy change

1) For ice cream unit

Q = 350 x 0.125x 1.2 x 58.29

= 850.063 W

2) For fish unit

Q = 350 x 0.125x 1.2 x 46.23

= 674.188 W

3) For meat unit

Q = 350 x 0.125x 1.2 x 40.2

Q net 3605.438

π‘š3 π‘œπΆ

Page 8: Design

8

= 630.219 W

4) For Apple unit

Q = 350 x 0.125x 1.2 x 36.18

= 527.625 W

5) For Carrot unit

Q = 350 x 0.125x 1.2 x 38.19

= 556.938 W

6) For Banana Unit

Q = 350 x 0.125x 1.2 x 24.14

= 366.406W

2.5. Equipment load:-

Nos of Tube lights 10

Ratings of Tube lights (W) 40

No of Tube Lights = 10

Q = No of tube lights x rating

= 10 x 40

= 400 W

2.6. Heat extracted:-

Q net (W) 400

Storeag

e Time

Load Cp

abv

freezin

g

Pre

cool

temp

Q abv

freezin

g

Laten

t Heat

Cp

below

freezin

g

Temp Q

below

freezin

g

Total Q

Units days Tons KJ/Kg

K

KJ/kg KJ/kg KJ/KgK

KJ/kg W

Ice

cream

7

666.667 3.10 -2.0 -6.220 186.0 2.57 -20.0 55.00 25879.63

Fish 6 666.667 3.68 6.0 22.08 255.0 2.17 -8.0 17.36 37865.22

Meat 8 666.667 3.25 6.0 19.5 194.0 2.24 -5.0 11.2 21672.45

Apple 9 666.667 3.81 10.0 38.1 280.0 1.98 2.0 -3.96 26932.44

Carrot 4 666.667 3.92 10.0 39.2 293.0 2.0 0.0 0.000 64081.79

Banana 6 666.667 3.56 16.0 56.96 248.0 2.03 13.0 -26.39 35824.33

Q net 319161.111

π‘œπΆ π‘œπΆ

Page 9: Design

9

Q =

π‘š ( 𝐢𝑝(π‘Žπ‘π‘œπ‘£π‘’)π‘₯ (π‘‡π‘Žπ‘šπ‘βˆ’ 0)+πΏπ‘Žπ‘‘π‘’π‘›π‘‘+𝐢𝑝(π‘π‘’π‘™π‘œπ‘€)π‘₯ (0βˆ’π‘‡π‘“))π‘₯1000

24 π‘₯ 3600 π‘₯ π‘‘π‘Žπ‘¦π‘ 

1) For ice cream unit

Q = 50 x (3.1 x 38+190+1.67 x 20)x 1000x1000

24 x3600 x 7 =25879.63 W

2) For fish unit

Q = 60 x (3.18 x 38+276+1.67 x 8)x 1000x1000

24 x3600 x 6 =37865.226 W

3) For meat unit

Q = 30 x (3.52 x 38+200+1.51 x 2)x 1000x1000

24 x3600 x 8 =21672.454 W

4) For apple unit

Q = 50 x (3.64 x 38+280+1.76 x 1)x 1000x1000

24 x3600 x 9 =26932.442 W

5) For carrot unit

Q = 100 x (3.81 x 38+293+1.84 x 0)x 1000x1000

24 x3600 x 4 =64081.79 W

6) For banana unit

Q = 80 x (3.35 x 38+248+1.67 x(βˆ’14))x 1000x1000

24 x 3600 x 6 =35824.331 W

2.7. Human occupancy: -

Avg working hr per day per person 10

Nos of

occupants

Heat

dissipated

Q

Units NA KJ/hr W

Ice cream 2 1500 833.333

Fish 2 1500 833.333

Meat 2 1500 833.333

Apple 2 1500 833.333

Carrot 2 1500 833.333

Banana 2 1500 833.333 Q net 5000.000

Page 10: Design

10

Q = No of occupant x heat dissipated

For all individual units

Q = 2 x 1500 x 1000

3600 = 833.333 W

Total TR:

Q

Units KW

Ice cream 31.29

Fish 42.01

Meat 25.6

Apple 30.36

Carrot 67.65

Banana 38.46

Q = Qwall + Qceiling + Qfloor + Qdoor + Qequipment + Qextract + Qhuman

1) For ice cream unit

Q = 31.29 kW

2) For fish unit

Q = 42.01 kW

3) For meat unit

Q = 25.6 kW

4) For apple unit

Q = 30.36 kW

5) For carrot unit

Q = 67.65 kW

6) For banana unit

Q = 38.46 kW

Qnet = 235.96 kW = 66.92 TR

Units KW TR

Net Q 235.36 66.92

Page 11: Design

11

COP

Fig 3.Actual P-h diagram

Enthalpy outlet @ Compressor(KJ/Kg) 1780

Enthalpy inlet

@ evaporator

Enthalpy outlet @

evaporator

Refrigerating

Effect

Work

Done

Mass flow

rate

Units KJ/Kg KJ/Kg KJ/Kg KJ/Kg kg/s

Ice cream 350 1450 1100 330 0.028

Fish 350 1452 1102 0.038

Meat 350 1458 1108 0.023

Apple 350 1460 1110 0.027

Carrot 350 1461 1111 0.061

Banana 350 1474 1124 0.034

COP 3.698

RE net 6655.000

Mas flow rate 0.212

Work net 330.000

Page 12: Design

12

Refrigeration Effect:-

R.E. = Enthalpy at evaporator outlet – Enthalpy at evaporator inlet

1) For Ice cream unit

R.E. = 1450 – 350 = 1100 KJ/Kg

2) For fish unit

R.E. = 1452 - 350 = 1102 KJ/Kg

3) For Meat unit

R.E. = 1458 – 350 = 1108 KJ/Kg

4) For apple unit

R.E. = 1460 – 350 = 1110 KJ/Kg

5) For carrot unit

R.E. = 1461 – 350 = 1111 KJ/Kg

6) For banana unit

R.E. = 1474– 350 = 1124 KJ/Kg

𝑅. 𝐸𝑛𝑒𝑑 = 𝑅. 𝐸𝐼𝑐𝑒 + 𝑅. πΈπ‘“π‘–π‘ β„Ž + 𝑅. πΈπ‘šπ‘’π‘Žπ‘‘ + 𝑅. πΈπ‘Žπ‘π‘π‘™π‘’ + 𝑅. πΈπ‘π‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘ = 6655π‘˜π½/π‘˜π‘”

Mass Flow Rate:-

m = 𝑄

βˆ†β„Ž

1) For Ice cream unit

m = 202.58

1100= 0.028 π‘˜π‘”/𝑠

2) For fish unit

m = 288.79

1102= 0.038 π‘˜π‘”/𝑠

3) For Meat unit

m = 120.46

1108= 0.023 π‘˜π‘”/𝑠

Page 13: Design

13

4) For Apple unit

m = 246.56

1110= 0.027 π‘˜π‘”/𝑠

5) For Carrot unit

m = 510.08

1111= 0.061 π‘˜π‘”/𝑠

6) For Banana unit

m = 328.30

1124= 0.034 π‘˜π‘”/𝑠

π‘šπ‘›π‘’π‘‘=π‘šπ‘–π‘π‘’+π‘šπ‘“π‘–π‘ β„Ž+π‘šπ‘šπ‘’π‘Žπ‘‘+π‘šπ‘Žπ‘π‘π‘™π‘’+π‘šπ‘π‘Žπ‘Ÿπ‘Ÿπ‘œπ‘‘+π‘šπ‘π‘Žπ‘›π‘Žπ‘›π‘Ž=0.212 π‘˜π‘”/𝑠

π‘Šπ‘›π‘’π‘‘ = β„Ž2 βˆ’ β„Ž1= 330 kJ/kg

C O P = 𝑅 𝐸𝑛𝑒𝑑

π‘Šπ‘›π‘’π‘‘= 3.698

Page 14: Design

14

3. Equipment Selection

3.1. Compressor Selection [2]

R-717 refrigerant

Model Evaporator Temp Condenser Temp 40

KC42 -20 Q(kW)=242 P (kW)=86.8

3.2. Evaporative Condenser Selection [3]

R-717 refrigerant

Compressor evaporator capacity = 66TR

Compressor BHP = 116 HP

Condensing temperature = 104Β°F

Entering wet-bulb temperature = 80Β°F

Determine the total heat rejection:

Compressor evaporator capacity = 66 TR x 12 MBH/TR = 840 MBH

Compressor BHP input = 116 BHP x 2.545 MBH/BHP = 293 MBH

Total heat rejection = 1134 MBH

From Table 6, the heat rejection capacity factor for R-717 at 105Β°F condensing temperature and 80Β°F

entering wet-bulb temperature is 1.18

Multiply: 1134 MBH x 1.18 = 1340 MBH

From Tables 5 select a unit with a Base Heat Rejection equal to or greater than 1340 MBH:

Model VCL-096.

Page 15: Design

15

4. References

[1] ASHRAE hand Book (2010) chapter 24- Refrigerated-Facility Loads.

[2] Compressor manufacture catalogue of Kirloskar.

[3] Evaporative Condenser manufacture catalogue of Baltimore Air Coil.