Top Banner

of 26

Describing Fn Note1

Nov 05, 2015

Download

Documents

Dev Paul

describing function
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Chapter9 Describing Function Method

DI INTRODUCTION

The describing function method is useful in determining stability of a nonlinear system. This method is classified as frequency-response method and is based on an analysis that neglects the effect of harmonics in the system. This approximation will be most successful in a system containing sufficient low-pass filters. Thus, in general, this method improves in accuracy with higher-order systems and a complimentary to phase plane technique.Let us consider single-loop servo-mechanism having a nonlinear element, N and a linearelement, Gas shown in Figure 9.1. The linear element has a transfer function G. It is a frequency sensuive function but does not depend on amplitude. The nonlinear element, N depends only on amplitude and is frequency insensitive.

r e mN

G(s) c

Relay or nonlinear Linear element element

Figure 9.1 Feedback control with a nonlinear element.

Let the input to the nonlinear element be sinusoidal, i.e. e = E sin wt. In general, the transfer function of the nonlinear element can be expressed as

m =/(e) (9.1) Equation (9.1) shows a functional relationship between e and m. It will be found moreconvenient in this development to represent the relationship with an expression consisting of twoports-a quasilinear gain and a distortion term.

284

SI? u;:i:uM ;:iq Ul?O mdino ;:itp JO iuouoduroo J1?1U;:iumput1J;:i4.L 'u U!S 3 = a mdur ll1? JOJ mdmo Sl! JO iueuoduroo oruourraq pnusnrepnnj ;:itp ounnrorap01 pannbar S! l! '1u;:iw;:i1;:i .rn;:iunuou 1? JO UO!PUOJ 8u!qosap ;:i41 8undwoo lOJ ';:iioJ;:iJ;:i4.Ltn ,\ou;:inb;:i.IJ JO mdur ;:i41 01 ro i\ou;:inb;:i.IJ JO indrno ;:i41 8upu;:is;:iid;:iJ srosaqd JO oi?~ =

1~)

O.\\lJO 1:uow ~

(1 6)(9'6)

1psna4 ainpaoord aAoqi? ;:i4.L

souroooq iuouoduroo J1?1u;:iumpun1 a41 pue S!SA(i?lll? JO osodmd;:itp lOJ p;:i1:>d18;:iu ;:iq Ul?O UJ JO iueiuoo O!UOUUlH.J. ;:i41 SUO!l!PUOO qons 1apU[l 'ft?P!OSOU!S SU!l?W;:lJ (1)x ;:i1 'tC JO iuouoduroo [1?1u;:iumpullJ ;:itp ssooord ;:itp U! pun mo p;:i1;:i1m ;:i.11? tC JO so1uoW.I1?4 ;:itp Ill? 11?41 Aoi?m:>ol? JO ;:iai8;:ip poof 1? 01 poumsse aq ueo 1! '(sw;:i1si[;:l 11?;'.lUH ;'.lt(l JI '(S')Q 'lU;:lW;:l{;} .Jl?;:lU!l ;:itp 48nOllp mdur Sl! 01)[Ol?q p;:iJ S! N 1u;:iw;:i1a .Il?aU!{UOU JO tu mdino ;:itp '(O = .1 ;:ii) mdm [l?W;:iJx;:i JO aou;:isqi? ;:itp UJJ(T) SO:> 1 El + J(T) U!S IV= UI

soruotnreqqns St? n;:iM St? soruourrsq 1;:i4814 a1ru;:iu;:i8 iou soop N 8U!wnssv

f -0 1tZ:9p (9u)soo (9w)w = "u. ui I

f -0 1tZ:9p(9u)u1s(9u)w = uVuz I

f-=0 ltZ:9p(9)w 0vui I,!JJdOO 1anod ;:i.re ru8 s , ig '1 El pue 'v s , ''v '1 v ov ;:iia4M... + J(T) SO:> "a + J(T) soo I El + ... + J(T) U!S 'v + J(T) U!S 1 v + ov = UI

uo ,(

-.faU;}~.roaun ~

'Pl\\ dwa1s.(,S'l:>d[&S!4.1 uSi\\O[[OJ SI? souss ianod JO SUJl;}l ut possardxa ;:iq OS(l? Ul?O UI 1uaw/ u!)sa1:>en4:> 1nchno

(:v)i(

W:;:~O(S

onsuaioareqo ../Sg1BU!PJOO:> UB!Sglltl::) u1 uo:>un1 ~U!q::isgp = ~"(~J _ T ~ ,'.q ll = f) SO:> ,'.q ll =~ Wv Wv

J19 :!Jll f)pf)U!SW -=19-u Z

J f'o+u 3 ll 19 3 xf)pf)U!SW- -+f)pf)U!SW -=(3)8'6-uz I 19-:u 1

~6Z PO\l\&W UO\\:IUR~ GU\IUJ:IS9Q

292 AdvancedControl Systems

The output is given by

O, 0 1XJ - u '(XJ U!S X)tulX) > lL > XJ > 1XJ W = ((} )t\IX)> X) > 0 '(XJ U!S X)UI:SMOCTOJ Sl? paquosop oq ueo mdmo ;;i4.L '')/ SJ UOJPUrlJ 2u1q::is;;ip ;;i41 ll?4l OS 'mdtn c-;;i41 soum tu S! mdmo ;;i41 '(v > x) uo!2;;iJ reouq a41 U! pouuuoo oq 01 paurnssa s~ mdui a4J.

(a)/(T)

(q)(I---,------------ w-

uo .------=u_,,z:L.......,/1--r+---...,.:.:.----,10

':o -JLZ,

O!JS!J:Jl::ll?.IU4J !Od!OQ

w+ w+(8).l :>!Jsp;11oe11140 ..-z

1t'(XJSOOX)UIS+. XJ)--zJ;

= b~.,.,, JO1t-z = g = X) punu

aa-z > x o

(6Z"6) [ ( gsoos + XJSOO ~ - )p + (X)z; U!S- gz; U!S)-(XJ- g)z;] ~ =

(3)8 =(3)q + (3)8 = ~

[( g SO:> s + XJ SO:>~ - ) p + (XJZ U!S - gz, U!S) - (XJ - g)z] ~ = ~: = (3)8 'os

u

[ ( -=z ) f} D z z DJ(1ro)p1rou!S --S "ff 3+(1ro)p1rou1sf3--(1ro)p(1roz;soo-1)- fa uu ff ITT '.FJ)f ff P[{(lro)p1rou!s(~ =S }H}1+ro)p1rou!s ~ -1ro ,msmH]: ~ 'v 10

{ gsoo( ~ -s )+(XJSOO- gsoo) ~}Ht+ [{(XJZU!s-gz; U!S)3-(x:>-g).nJ] ~ =

a uu a ff t[ (Jro)p J(IJ U!S(!:._- s) '.FJ')f J + (1(1)) p J(IJ U!S(!:._- J(IJ U!S '3) 'ff l1t =

0 uxop 1(1) U!SUI f - =Zill p

0 xunp J(IJ U!S UI f - =ui Iiusuoduroo ;::)St?4du1 = 1v 'MONo = (3)8 ';::)10p1;;il!.L 01;::iwwi\s ;::)Al?M-Jfell SJ indino ;::itU

296 Advanced Control Systems

Again, from Eq. (9.30), two cases arise:Case I: Saturation nonlinearity (i.e. D/2 = 0, a= 0) Substituting D/2 = 0 and a= 0 in Eq. (9.21),l, X tu = 1gJIC: I

(P"6)

("6)

uz 5 J(T) 5 (ff - lt(;) o I(ff - 1LZ,) 5 J(T) 5 (XJ - 1L) w-(XJ + 1L) 5 /(T} 5 (ff - lt) o =.{(ff - 1L) 5 J(I} 5 X) w+X) 5 J(T} 5 0 o

L6Z po1naw uon3un:1 fiU!Q!J3sao -

298 AdvancedControl Systems

Therefore, m1 = amplitude of the fundamental component of the output

=~A~ +B~

and ~1 = tan-1 (~:)

keq = describing function in Cartesian coordinates

= ~A~+ B~ Larg~1

D X>-= 2D0, X!lS!];JPRJeq::> ;JIU 41gg1 Jeg8 g41 U;};}Ml;}q dl:?8 dlfll!J 01 onp SJl:?g8 U! Sln:>::JO 'A[reJ;JU;}8 'qSl:?ppeg

1/.WJ'fJq :ht?fZVl/ KVJ"H

z-x a

(xz) uis-7 xu.}

H t- . HP W= b:>"_'O H

unnqo ;}M '(~z-6) b:3U! G = H 8u!)m!lsqns a = H 'gSl:?::> S!~ U] "(::>)Ql "6 ;:im8ttJ U! UMOqS S! ::>!lS!J;:!l::JRJl:?q:> Al:?f;JJ gq.LS!S;}Jg1s,x a

z a GP

'o

b~ W'la

66Z po1nawuon3un;jllU!Q!J3saa

300 Advanced Control Systems

where /3 = sin-1(1 - b/X)Let us rewrite Eq. (9.7)1 2ir

x -b/2, 0 $ cot $ ;r/2x -b/2, ;r/2 $cot$ (Tr - /3)y= x +b/2, (Tr - /3) $ cot $ (2Tr - /3)-X + b/2, 3;r/2 $ (27r - /3)x-b/2, (2Tr - /3) s cot $ 2Tr

(9.40)B1 = - J mcoscot d(cot)Tr 0

2 ir= - J mcoeox d(cot)no

2irf= ~

(x sin cot - !!..)cos cot d(cot) + ~ r(x _!?..)cos cot d(cot)Tr 0 2 Tr a 2

+-2 aJ

( X sin cot+-b)mcoscot d(cot)ti ir-f3 2

-c=- x osTr

2 /3

Now rewriting Eq. (9.8), we haveI 2irA1 = - J m sin cot d(cot)Tr 0

211"=- J msin cot d(cot)Tr 0= ~ nf (x sincot-!?..)sincot d(cot) +~ nJ'3(x _!?..)sin cot d(cot)Tr 0 2 n n/2 2+ ~ j (x sin cot_ !?_)sin cot d(cot)Tr n-{3 2

Therefore,

=~A2 +B2 k 1 I eq X

[from Eq. (9. l)]

fl?:l!l~l:) d4l dSOF)Ud lOU seop (ro()o (3)N JO 101d rejod d4l J! pddlUUlt.mg S! WdlSAS .IUdU![UOU1? JO Al!(!q1ns doo] pasop d4l 'WdlSAS ll?dU!]UOU lOJ B!Jdl!JO lS!nbAN cures dl\1 au!pUdlX3

WI

n6 dlng!d U! UM04S S! S!l\J:(o!'l-) iuiod (EO!l!JO ;}4l dSO(::>Ud lOU S;}Op [(ro()9 S! 101d ;}41 W;}lSAS ){Oeqp;Y.)J Al!Un lOJ] (rof)H (00()9 JO 101d rejod ;}ljl J! p;};}lut?Jeng S! ieqp;Y.)J Al!Un 10do = (ro()H (ro.f)!) + T

(s:N - = (ro!)9 JO

0 = (ro.f)9(3)N + l

S;}WOO;}q UO!JEOb;} 0!1S!];}l0U.Ie40 d4l ";}J0jdld4.1

(ro!)a(:J)N + T (ro!)"8 (ro!)a(:J)N = (ro!):)

,(q U;}A!g S! umurop AOU;}Ob;}lJ U! UO!l:>UOJ l;}JSUUJl doo] pcsop d4J. wdJSASdoo] pasop u JO ured p.rnMJOJ ;}41 U! ;}Je (ro()9 UO!l:>UnJ 1;}1sue11 n gu!AU4 1ue1d JUdU!f u pun N'lU;}W;}jd lUdU!(UOU u ;}l;}H T6 dlng!d U! UM04S se W;}lSAS Je;}U!(UOU O!SUq ;}41 l;}P!SUOO sn 1;}1

NOll:JNill !>NUffil:JS3G .!IO SWllll NI vnIB.LnI::) A..LITU:IV.LS ID

(W6) = b~)f 10z-q >X o

~0 po1nawuou:iun~liu1qp:1saa

302 AdvancedControl Systems

point (-1, JO). Therefore, the condition for closed loop stability of a nonlinear system can be stated as follows:l. If -(llkeq) locus is completely enclosed within G(jw) locus, as shown in Figure 9.13(a), then the system is unstable.2. If -(llkeq) locus is not enclosed by i.e. G(jw) locus, as shown in Figure 9.13(b), then the system is stable.3. If -(llkeq) locus is such that it has few intersection with G(jw) locus, as shown inFigure 9.13(c), then the system exhibits limit cycle.

Im Im Im

---+-----!--Re

(a) Unstable

Dt'"";"'-(1/keq) Locus

(b) Stable

-( l/keq) Locus

(c) Limit cycle

Figure 9.13 Nyquist plot of nonlinear system.

In Figure 9.13(a), the complete -(llkeq) locus is inside the G(jw) locus. Therefore, the closed loop system is unstable for all values of the input amplitude M, whereas in Figure 9.13(b), the complete -(llkcq) locus is outside the G(jw) locus. Therefore, the closed loop system is stable for all values of the input amplitude M. In Figure 9.13(c) it is observed that -(1/keq)locus intersects the G(jw) locus at points A and B, respectively. Therefore, part of -(llkeq) locus is outside the G(jw) locus and so that part is stable. But the part of -(1/keq) locus, which is inside the G(jw) locus, is unstable. So it is a case of limit cycle.

EXAMPLE 9.2 For the system shown in Figure 9.14, where an ideal relay is connected with a plant having G(s) = lls(s + l)(s + 2). Determine whether a limit cycle exists and if exists,determine the amplitude and frequency of the limit cycle.

r(t) = 0 x Ti

yG(s)

c(t)

Figure 9.14 Example 9.2.

Solution: The describing function of an ideal relay [as per Eq. (9.18)] is

k =4Meq n:EHere, M = 1 unit.

01n S! (ro!)!) JO ired ,(1eu!8-ew!'d4l 'UO!l::>'dSJ'dlU! JO lUJOd 'dlU l'v' ''dP!S 'dA!ll!8'dU Sl! uo srxn {l'!'dJ 'd4l l[l!M 'd UOJl::>'dSJ'dlU! JO nnod eS! 'dl'dl,P pua sixe Jl'l'dl 'dAJll!8'dU ll1 S! iojd (b~)(/l)- ll!lp poxrosqo 'dq uao l! 'sts 'dJn8!d WOld

.ozz- o86'ZSC:- o68'9C:- o86T- o95:'l9I- o06- ;>[lJUll JlJUOJ 8u1q::>S'dp 'd4.L

--=--!/lt l

0 poinaw UO!}:JUO::J 6U!Q!J:IS90

304 Advanced Control Systems

Now,

1 (1 - Jro)(2 - Jro) 2 - J3ro - ro2G(jro) = = = ---=-------Jro(l + Jro)(2 + Jro) JltJ(l + ro2)(4 + ltJ2) JltJ(l + ro2)(4 + ltJ2)

Separating G(jltJ) into real and imaginary parts, we obtain

2 - (1)2Im G(jro) = =0Jro(l + ro1)ltJ(4 + ltJ2)

or

Now,

Re G(jro) = -----=J3-ro----

(1)2 = 2 =} (1) =J2

-3 3-----=--=--Jro(l + ltJ2 )(4 + ro2)

Therefore, at the point of intersection

1 n:E l

(1+2)(4+2) 18 6

-3-=--=--keq 4 6

E = _i_ = 0.212 unit and frequency= 1.414 rad/s.6n:So, the coordinate of Pis (-0.212, JO) and is very much within the critical point (-1, JO).Therefore, a stable limit cycle of magnitude of 0.212 unit at a frequency of 1.414 rad/s exists.

EXAMPLE 9.3 For the system shown in Figure 9.16 where a relay with saturation type nonlinearity is connected .with a plant having G(s) = [l/s(s + l)(s + 2)]. Determine whether a limit cycle exists.

r(s)

x +lie:-=

~

yc(s) G(s)

Figure 9.16 Example 9.3.

Solution: The describing function for saturation, for the given set of parameters, is given by

JXJl

The describing function is real; therefore, -(1/kcq) plot will be on the negative side of the real axis. It will start from (-1,JO) and move towards negative infinity as X assumes large value'

1s!xa iou saop apk) l!W!( 'aJopJa4J. s!XI? reaJ a41 41!M uouoosronn ou aq IJ!M;iJ;i41 oOL'l sauroooq a18ur. ;i eqd ;)41 'oo f--- ro sn A(a1uwp1n aJow S! a18ul? oseqd 8u!puodsaJJO::>a41 put? sascaJ::>u! to pue o08T- ! a18ue oseqd a41 'news AJaA JO o = ro ua4M 'aJOpJal[J.z(w) 1_ uc1- =

- = a12lun oseud21( zizro + I )rof

I

pUl?

= apm!u8t?w au

lfo!Sl?:IJJU( SO:>Oj+ -UUOO S! uof2~u Jl?U![ snU! )/ U!l?8 JO J!]![dwe 8U!)l?JOll?S l? :m4M 'OZ'6 m8!d U! UM04S W1SAS 41 JO::{ 96 3'1dWVX3

SlS!X SfPl?J ('!:f a!) Pli>I JO ,(ouanb.IJ I? 11? nun ZIZ'OPll1!U8l?W JO ap,(o l!urrr 1qe1s 'E? 'JOJJ4..L co.r '1-) iurod (l?O!lO 41 U!lfl!M qonur AJl

The plot of -( llkeq) starts from (-1, JO) and travels along the negative real axis for increasing was shown in Figure 9.21. The phase angle of

G(jw) =- n -tan-1(ro)-tan-1(2ro)2

At the point of intersection [i.e. at (-1, JO)] with the negative real axisLG(jw) = -180 = x

Im

Increasing, X Re

Figure 9.21 Describing function plot.

Therefore, - n -tan-1(ro)-tan-1(2ro)=n2

tan -i(ro+2ro)

=-nor

or or

Now,

G(Jw) =

1-2ro2 2l -2cJ = 0

1to = J2 rad/s

K = k(-Jw)(l-Jw)(2- Jw) K(2- J3w-w2)

So,

Jw(1+Jw)(2+Jw) ro2(l+ro2)(4+ro2) ro2(1+ro2)(4+ro2)

=111K(2-ro2)ReG(jro)=(02 (1 + (02 )( 4 + (02)Substituting w = 11J2, we obtain K = 2.0 = largest value of K.Any value of K more than 2.0 will cause limit cycle. Therefore, for K = 5, the plot fordescribing function will intersect the negative side of real axis beyond (-1, JO) as shown inFigure 9.21. This intersection will take place at w = 11J2, rad/s. The point of intersection on the

[s1s!x;;i soop ;;ii::i.-b l!WH pus sirun ~'9 JO opruqdnra uu pua stpBJ oz: JO i\::iu;;inb;;iJJB lB S!XB fB;;!J JO opts ;;!A!lB~fau ;;i41 uo iojd (ba)f/I)- JO UO!}::l;;!SJ;;!lU! ;;iq IT!M ;;)l;;l4.1 -snv](,;;ip,(::i 1rwrr i\u-e ;;iq ;;iJ;;i41 [[!A\ w;;i1si\s ;;i41 JO Al!!!GBlS ;;itp ssnostrj ;;iw-es ;;i41 urauraisJ;;i1;;iw-eJ-ed J;;i410 (s~z:oo + I)(sro + nvsz = (s)o .roptsuoo 'urojqord ;;iAoq-e ;;i41 JOd n('lS!X;;> lOU soop ;;ip,(::i lffil!l OS pua S!XB fB;;!J JO opts ;;!A!ll38;;iu ;;i41 uo iojd (b~)f/l)- JO UO!P;;!Sl;;!lU! ou oq [HM ;;iJ;;i4.L 'nrarpenb p1 S! i\ruo S! iojd HD se ;;irq-e1s oq [[!M w;;iisi\s ;;i4.L -suv](,;;ip,(::i lfWH ,\uu ;;iq ;;i1;;i41 U!A\ w;;iisi\s ;;i41 JO Al![!qu1s ;;itpssnosrrj 'OT+ JO mdmo ua seq AU[;;)J ;;i4.L (q 'O + l)S/OOI = (s)o UO!PUTlJ J;;!JSUUll plUMlOJ4l!M w;;i1si\soAJ;;is ru;;iu!I ){::>nqp;;i;;iJ i\1run u ut i\1-e;;iunuou u se poonponm S! i\u1;;i1 1u;;ip! uv n'uonounj 8u!G!J::>s;;ip JO suusi ut -ep;;i1p::i i\1mqu1s uo ssnosrrj 01

(,W;;llSAS u JO Aimqu1s ;;i41 8up::i;;iyu S! l! M04 pun ;;ip,(::i lfWH S! lBl{M "64s-epp-eq 8U!AUl{ AU[;;)J u JO uonounj 8urq::is;;ip JO UO!SS;;>Jdx;;i ;;i41 ;;!A!J;;!Q ssrs;;i1;;i1s,(4 pun ouoz peep 8urAuq AU{;;)J u JO uonounj 8ufq::>s;;ip JO uotssardxo ;;i41 ;;!A!J;;!Q "L

-uouanues pun ouoz peep 8U!AU4 AU[;;)J B JO UO!PUTlJ 8ufq::>s;;ip JO uotssordxa ;;i41 ;;!A!J;;!Q 9,(ruo uonarrues 8U!AU4 AU[;;)J B JO UO!)::>UtlJ 8urq::is::ip JO UO!SS;;>Jdx;;i ;;i41 ;;!A!l;;!Q s'A[UO ;;>UOZ peep 8ll!AUI.[ AB(;;ll B JO UO!PUnJ 8u!q::is;;ip JO UO!SS;;>Jdx;;i oqi ;;>A;;>Q t

,(upl (U;;lP! tre JO UO!PUllJ 8u!qp::is;;ip ::llfl ::lA!J::lQ "

'S::l!lSp;;>pUJBl{::llptp MBJQ (,UO!PUOJ 8urq::is;;ip JO S!SA(UUB ::ll{l JOJ posn SAU[;;)J JO s;;id,(1 ;;)JU lB4A\ z:lPOlfl;;lW uonounj lJuN::>s;;ip ,(q UO!PUllJ u ;;)ZA[UUU01 opeur suondumsss ;;iq1 ;;iru lUlfM 'uorssardxa sn unnqo pun uonounj 8urq::is;;ip ;;iuy;;ia 1

SNOLLsmb M3IAIDI

'(Of 'zzz-) lUsrxs {B;;!J ;;!A!lU8;;iu ;;i41 p;;>SJ;;!lU! [I!M 4::l!l{M gp,(::i lfWH ;;iq II!M ::)J;;!4l 's = ')/ U;;>l.[M ,(r;;iirug;;ia(o! 'zz'z-) = uonoosrann JO nnod JO ;;llBU!PJOO::> dlfl ';;>JOp1;;i4.L(Z: I 6) (Z: I) (Z: /l) (zro + V)( zro + I) zroz:z:z: = tu I - z:)~ = (zro- Z:)X

S! UO!P;;>SJ::llU! JO ;;ipm!u8-ew ;;i41 'os (ro!)o {B;;lJ JO UO!SS;;>Jdx;;i ;;i41 U! SfPUJ y11 = (lJ pun ~ = ')/ 8u!1nv1sqns ,(q pounnqo S! S!XB [B;;!J JO cprs ;;!A!lU8;;iu

60 po1naw uonaun:f6u1q1Jasaa

lOJ