Top Banner
REPÚBLICA DE COLOMBIA MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL DECRETO NÚMERO DE 2019 ( ) Por el cual se adopta la Política Pública Social para Habitantes de la Calle 2020 - 2030 y se crea una Comisión Intersectorial para su implementación EL PRESIDENTE DE LA REPÚBLICA DE COLOMBIA En ejercicio de sus facultades constitucionales y legales, en especial las que le confiere el numeral 11 del artículo 189 de la Constitución Política, los artículos 13 de la Ley 1641 de 2013 y 45 de la Ley 489 de 1998, y CONSIDERANDO Que en desarrollo de lo previsto en el artículo 13 de la Constitución Política, es obligación del Estado desarrollar acciones afirmativas a favor de los ciudadanos habitantes de calle atendiendo a las especiales condiciones socioeconómicas de vulnerabilidad y marginación de la que es objeto esta población, que garanticen una protección constitucionalmente debida en el marco de la igualdad y la solidaridad como pilares del ordenamiento colombiano. Que teniendo en cuenta lo previsto en el artículo 16 de la Constitución Política, dichas acciones deben respetar el libre desarrollo de la personalidad. Que para tal fin, la Ley 1641 de 2013 estableció los lineamientos generales para la formulación de la Política Pública Social para Habitantes de la Calle, con el propósito de lograr su atención integral, rehabilitación e inclusión social. Que, para el cumplimiento de dichos objetivos, el Estado debe encausar las acciones pertinentes para la protección y el restablecimiento de los derechos de las personas habitantes de calle, así como para su inclusión social, mediante el establecimiento de lineamientos para una atención integral a las personas habitantes de la calle del territorio nacional. Que, en virtud del principio de coordinación, entre los años 2014 y 2018 se surtió un proceso de articulación liderado por el Ministerio de Salud y Protección Social, con las instituciones nacionales y entidades territoriales, a través de diversos espacios técnicos para la formulación de la Política Pública Social para Habitantes de la Calle PPSHC. Que, atendiendo el anterior proceso, y lo dispuesto en el artículo 7 de la Ley 1641 de 2013, para la implementación, seguimiento y evaluación de la Política Pública Social para Habitantes de la Calle - PPSHC, se hace necesario crear una Comisión Intersectorial como instancia de articulación interinstitucional que oriente el diseño, ejecución y seguimiento del Plan Nacional de Atención Integral a Personas Habitantes de la Calle.
41

Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Aug 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Derivation of the Drift-Diffusion Equation

Lecture Prepared By:Sanjoy Mukherjee

Page 2: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation - Applicability

• Instances where Drift-Diffusion Equation cannot be used– Accelerations during rapidly changing electric fields (transient

effects)• Non quasi-steady state• Non-Maxwellian distribution

– Accurate prediction of the distribution or spread of the transport behavior is required

• Instances when Drift-Diffusion Equation can represent the trend (or predict the mean behavior of the transport properties)– Feature length of the semiconductors smaller than the mean free

path of the carriers• Instances when Drift-Diffusion equations are accurate

– Quasi-steady state assumption holds (no transient effects)– Device feature lengths much greater than the mean free paths of

the carrier

Basic equations governing transport in semiconductors and semiconductor devices:

Page 3: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

The Method of Moments

In the Method of Moments, both sides of a equation are multiplied by a function (a moment generating function) raised to a integer power, and then integrated over all space

( ) ( ) ),,(,,,, tkxCtkxBtkxA =+∴

Multiplying by the Moment generating Function Θn(k)( n = order of the moment)

( ) ( ) ( ) ( ) ( ) kdtkxCkkdtkxBkkdtkxAk kkk 333 ),,(,,,, ∫∫∫ Θ=Θ+Θ

Page 4: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Method of Moments Applied to the Boltzmann Transport Equation

τ0fffvfF

tf

xkext −

−=∇⋅+∇⋅+∂∂ vrv

h

v

The Boltzmann Transport Equation with relaxation time approximation:

f = a classical distribution function at nonequilibrium state that represents the probability of finding a particle at position x, with momentum k and at time t. The subscript 0 corresponds to the equilibrium state

Multiplying throughout by the moment generating function Θn and integrating over all k space

( ) ( ) kdffkdfvkdfFkdtf n

xn

kextnn 30333 1

∫∫∫∫−

Θ−=∇⋅Θ+∇⋅Θ+∂∂

Θτ

vrvv

h

Page 5: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Method of Moments Applied to the Boltzmann Transport Equation

( ) ( ) kdffvkdfvvkdfFvkdtfv xkext

30333 1∫∫∫∫

−−=∇⋅+∇⋅+

∂∂

τrvrrvvr

h

r

If Θ = 1 and n = 1 then:

( ) ( ) kdffkdfvkdfFkdtf

xkext30333 1

∫∫∫∫−

−=∇⋅+∇⋅+∂∂

τvrvv

hSimplifies to

( ) 0=⋅∇+∂∂ vntn

xvv

Carrier Continuity Equation

If Θ = v and n = 1 then:

Simplifies to

nqDFnqJ xnnn ∇+=vv

µ Drift-Diffusion Equation

In the subsequent slides we would derive the Drift-Diffusion Equation from Boltzmann Transport Equation by utilizing this Method of Moments

Page 6: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation Derivation – 1st. Term

∫∂∂ kfdvt

3r

( ) ( ) kdffvkdfvvkdfFvkdtfv xkext

30333 1∫∫∫∫

−−=∇⋅+∇⋅+

∂∂

τrvrrvvr

h

r

Velocity is time independent

( )vnt

kdtfv vr

∂∂

=∂∂

∫ 3

( )

∫∫

==∴

===

=

==

kdkfkdkfn

dkdN

V

statesofDensitykG

kdkfkGionconcentratcarriern

333

33

3

)(')(4

14

12

21)(

)()(

π

ππ

Page 7: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation Derivation – 2nd. Term

( ) ( ) kdFvfkdFfv extkextk33 11

∫∫ ⋅∇−⋅∇vvr

h

vvr

h

( ) ( ) kdffvkdfvvkdfFvkdtfv xkext

30333 1∫∫∫∫

−−=∇⋅+∇⋅+

∂∂

τrvrrvvr

h

r

f is finite and so the surface integral (integral of divergence of fvFext) at infinity vanishes identically

( ) FgFggFIdentityvvvvvv

⋅∇−⋅∇=∇⋅:

( ) ( )[ ]{ }kdvFfFvf kextextk31

∫ ∇⋅−∇rvvvrv

h

( ) ( ) ( )FgGGFgGFgIdentityvvvvvvvvv

⋅∇−⋅∇=∇⋅:

( )∫ ∇⋅− kdvFf kext31 rvv

h

Page 8: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation Derivation – 2nd. Term (Continued)

( ) ( ) kdFvfkdvFf extkkext33 11

∫∫ ⋅∇−∇⋅−vvr

h

rvv

h

extx FEngSubstitutivv

=∇−

Substituting:

( ) ( ) kdEvfkdvEf xkkx33 11

∫∫ ∇⋅∇+∇⋅∇vvr

h

rvv

h

vEE xkxxkvv

hvvvv

⋅∇=∇⋅∇=∇⋅∇

( ) kdvvf x3∫ ⋅∇ vvr

Substituting, the second term is finally reduced to:

( ) ( ) ( ) kdvvfkdvEfkdfFv xkxkext333 11

∫∫∫ ⋅∇+∇⋅∇=∇⋅ vvrrvv

h

vvr

h

Page 9: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation Derivation – 3rd. Term

( ) ( ) kdffvkdfvvkdfFvkdtfv xkext

30333 1∫∫∫∫

−−=∇⋅+∇⋅+

∂∂

τrvrrvvr

h

r

( ) FgFggFIdentityvvvvvv

⋅∇−⋅∇=∇⋅:

( ) ( )∫ ∫ ⋅∇−⋅∇ kdvfvkdvfv xx33 vvvvvv

( ) ( ) ( )GFgGFgFgGIdentityvvvvvvvvv

∇⋅−⋅∇=⋅∇:

( ) ( )∫ ∫ ∇⋅−⋅∇ kdvvfkdvvf xx33 vvvvvv

( ) ( ) ( ) ( )∫∫ ∫∫ ⋅∇−∇⋅−⋅∇=∇⋅ kdvfvkdvvfkdvvfkdfvv xxxx3333 vvvvvvvvvvrr

Substituting, the third term is finally reduced to:

Page 10: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation Derivation – Right Hand Term

( ) ( ) kdffvkdfvvkdfFvkdtfv xkext

30333 1∫∫∫∫

−−=∇⋅+∇⋅+

∂∂

τrvrrvvr

h

r

( ) kdffv 30

1∫ −−r

τ

τ0vvn −

nvkfdvandnkfdcall == ∫∫ 33Re v

n = carrier concentration v = average velocity

At equilibrium the ensemble velocity v0 (by definition) = 0

ττvnkdffv −=

−− ∫ 30r

Substituting, the right hand term is finally reduced to:

Page 11: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation Derivation – General Form

( ) ( ) kdffvkdfvvkdfFvkdtfv xkext

30333 1∫∫∫∫

−−=∇⋅+∇⋅+

∂∂

τrvrrvvr

h

r

( ) ( ) ( )

( ) ( ) ( )τvnkdvfvkdvvfkdvvf

kdvvfkdvEftvn

xxx

xkx

−=⋅∇−∇⋅−⋅∇

+⋅∇+∇⋅∇+∂

∫∫ ∫

∫∫333

331

vvvvvvvvv

vvrrvv

h

( ) ( ) ( ) ( )τvnkdvvfkdvvfkdvEf

tvn

xxkx −=∇⋅−⋅∇+∇⋅∇+∂

∂∫ ∫∫ 3331 vvvvvvrvv

h

Page 12: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes

• Assumptions– The energy of the carriers,

– Mass is isotropic and constant

– Material is isotropic, and so the spatial temperature gradient is zero

The general Drift-Diffusion derived in the previous slides may be further simplified with the help of certain assumptions

mkE

2

22h=

2

21

iizyx mvEEEE ====∴

0=∇ ixEv

Page 13: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes-Text Version

( ) ( ) ( ) ( )τvnkdvvfkdvvfkdvEf

tvn

xxkx −=∇⋅−⋅∇+∇⋅∇+∂

∂∫ ∫∫ 3331 vvvvvvrvv

h

∫ ∇⋅− kdvFf kext31 rvv

h

extx FEngSubstitutivv

=∇−

mv

mE

mkEagain

EvEvmkE

mkE

k

k

kkkvmk

k

hvv

hvh

v

h

vvv

h

vv

hvh vv

=∇∴

=∇⇒=

∇=∇⇒∇= →=∇⇒= =

22

22

2222

2

112

∫− kfdmFext 3

v nkfdrecall =∫ 3

nmFextv

Page 14: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes-Text Version

( ) ( ) ( ) ( )τvnkdvvfkdvvfkdvEf

tvn

xxkx −=∇⋅−⋅∇+∇⋅∇+∂

∂∫ ∫∫ 3331 vvvvvvrvv

h

( ) [ ]

( ) [ ]nEEnm

kdvvf

fEEfmz

fEyfE

xfE

mvvfnow

mvEEEEtakingfE

fEfE

mv

vv

fvvf

xiixx

xiixzyx

x

iizyx

z

y

x

z

y

x

∇+∇=⋅∇∴

∇+∇=

∂∂

+∂

∂+

∂∂

=⋅∇

====

=

=

∫vvvvv

vvvvv

vv

2

22

21

000000

2

000000

3

2

2

2

2

Assuming the mass is isotropic and constant and therefore:

Assuming the material is isotropic i.e. temperature or energy is spatially independent

( ) [ ] nEm

nEEnm

kdvvf x

EE

xiixxi

∇ →∇+∇=⋅∇∴=

∫vvvvvv

322 3

13

0

Page 15: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes-Text Version

( ) ( ) ( ) ( )τvnkdvvfkdvvfkdvEf

tvn

xxkx −=∇⋅−⋅∇+∇⋅∇+∂

∂∫ ∫∫ 3331 vvvvvvrvv

h

( )τvnnE

mn

mF

tvn

xext −=∇+−

∂∂ v

v

32

etemperaturTwhereTkE

fieldFechelectronicqwhereFqF

B

ext

==

==−=

,23

,argvvv

( ) ( ) nTkmqn

mFqvqn

tvqn

xB ∇+=−+∂−∂ v

vτττ

2

mqmobilityelectron

vqnJdensitycurrentelectron

n

n

τµ ==

−==

nTkFnqJtJ

xBnnnn ∇+=+

∂∂ vv

µµτ

Notice that this term is completely ignored in the text

Page 16: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes-My Version

( )∫ ⋅∇ kdvfv x3vvv

( ) ( ) ( ) ( )τvnkdvvfkdvvfkdvEf

tvn

xxkx −=∇⋅−⋅∇+∇⋅∇+∂

∂∫ ∫∫ 3331 vvvvvvrvv

h

( ) ( ) ( )GFgGFgFgGIdentityvvvvvvvvv

∇⋅−⋅∇=⋅∇:

( ) FggFFgIdentityvvvvvv

⋅∇+∇⋅=⋅∇:

[ ] [ ]∫∫ ∇⋅+⋅∇ kdfvvkdvfv xx33 vvvvvv

EEvcall xkkxx ∇⋅∇=∇⋅∇=⋅∇vv

h

vv

h

vv 11Re

[ ]∫∫ ∇⋅+

∇⋅∇ kdfvvkdEfv xxk

331 vvvvv

h

v

Assuming the material is isotropic i.e. energy is spatially independent

0

0=∇ Exv

Next Slide

Page 17: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes-My Version

∫ ∇⋅ kfdvv x3vvv

Assuming the mass is isotropic and constant and therefore:

[ ]

[ ]nEm

kdfvv

fEmz

fyf

xf

mEfvvnow

mvEEEEtakingE

EE

mv

vv

vv

xix

xii

x

iizyx

z

y

x

z

y

x

∇=∇⋅∴

∇=

∂∂

+∂∂

+∂∂

=∇⋅

====

=

=

∫vvvv

vvvv

vv

2

22

21

000000

2

000000

3

2

2

2

2

Previous Slide

[ ] nEm

nEm

kfdvv x

EE

xixi

∇ →∇=∇⋅∴=

∫vvvvv

322 3

13

Page 18: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Standard Drift-Diffusion Equation for Electrons/Holes-My Version

( ) ( ) ( ) ( )τvnkdvvfkdvvfkdvEf

tvn

xxkx −=∇⋅−⋅∇+∇⋅∇+∂

∂∫ ∫∫ 3331 vvvvvvrvv

h

( )τvnnE

mn

mF

tvn

xext −=∇+−

∂∂ v

v

32

nTkFnqJtJ

xBnnnn ∇+=+

∂∂ vv

µµτ

ALTHOUGH BOTH THE TEXT VERSION AND MY VERSION ENDS UP WITH THE SAME ANSWER MY APPROACH IS ACCURATE SINCE IT ACCOUNTS FOR ALL THE TERMS IN THE GENERAL DRIFT-DUFFUSION EQUATION.

As before in the text version

Page 19: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Drift-Diffusion Equation for Electron and Holes – And Finally

nTkFnqJtJTaking xBnnnn ∇+=+

∂∂ vv

µµτ

If the above equation is restricted to only zero order in Jn, then

nTkFnqJ xBnnn ∇+=∴vv

µµ

0~tJ n∂∂

Similarly, for holes (moves in opposite direction);

qTkDlationEinsteincoeffDiffusion B

nn µ=

Re

( )1..........................nqDFnqJ xnnn ∇+=∴vv

µ

)2.....(....................ppDFnpJ xppp ∇−=∴vv

µ

Equation (1) and (2) are the Drift-Diffusion Equations for Electrons and Holes respectively

Page 20: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

Resources

• Books– The Physics of Semiconductors, Kevin F. Brennan, Cambridge University Press,

New York (1999)– Introduction to Modern Statistical Mechanics, David Chandler, Oxford University

Press, New York (1987)– Introduction to Statistical Thermodynamics, Terrell L. Hill, Dover Publications

Inc., New York (1986)• Websites

– A great site hosted by the UIUC, Some great 1-D derivations in statistical mechanics

• http://www-ncce.ceg.uiuc.edu/tutorials/bte_dd/html/bte_dd.html– A good site with introductory derivations on statistical mechanics and some

classical physics derivations, hosted by James Graham in UC-Berkeley• http://astron.berkeley.edu/~jrg/ay202/lectures.html

– The Mathworld® site. I find it one of the most helpful to check out theorems and formulae (I checked out the divergence theorem for this derivation)

• http://mathworld.wolfram.com/

Page 21: Derivation of the Drift-Diffusion Equationalan.ece.gatech.edu/ECE6451/Lectures/Student...The Method of Moments In the Method of Moments, both sides of a equation are multiplied by

End of Lecture