Top Banner
Derivation of Mueller matrix from Zemax 2018.03.10 Tetsu Anan
14

Derivation of Mueller matrix from Zemax

Nov 28, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Derivation of Mueller matrix from Zemax

Derivation of Mueller matrix from Zemax

2018.03.10 Tetsu Anan

Page 2: Derivation of Mueller matrix from Zemax

Definition of Stokes Q, U, & V

View towards the sun, that is, from the direction of the observer• Signs of Stokes U & V change, when light is reflected• Coordinates in Zemax doesn’t change, when light is reflected

=> We should change the sign of U & V in Zemax manually

Ichimoto et al. 2008Stenflo 1994

Page 3: Derivation of Mueller matrix from Zemax

Jones vector• “Polarization Ray Trace” procedure in Zemax can calculate

polarization state of light passing (X, Y) field & pupil coordinates, in Jones description, at each surface

• Jones vector J

! = #$%&'()#*%&'(+

,

where the electric field vector of light E

, = Re #$%&' /01()#*%&' /01(+

• Interaction with a medium!2 = 3! ω: 2 � 2 complex matrix

Jones vector cannot describe depolarization

Page 4: Derivation of Mueller matrix from Zemax

Mueller matrix• Mueller matrix M derived from ω

! = # $⨂$∗ #'(,

where ⨂ is tensor product, � is complex conjugation,

• However, the definition of V in the output is opposite to our definition. Then

! = )# $⨂$∗ #'(), where * =1 0 0 00 1 0 000

00

10

0−1

Stenflo 1994 ‘Solar Magnetic Fields’ chap. 2

T =

1 0 0 11 0 0 −10 1 1 00 −i i 0

⎜⎜⎜⎜

⎟⎟⎟⎟

T −1 =12

1 1 0 00 0 1 i0 0 1 −i1 −1 0 0

⎜⎜⎜⎜

⎟⎟⎟⎟

, and

Page 5: Derivation of Mueller matrix from Zemax

Method

Page 6: Derivation of Mueller matrix from Zemax

Step 1

1. Edit Lens Data2. Open the ‘Polarization Ray Trace’

Page 7: Derivation of Mueller matrix from Zemax

Step 2• Edit ‘Settings’ in ‘Polarization Ray Trace’

– Generate a polarized light source (JX, JY, X, Y-Phase)– Specify the ray path (HX, HY, PX, PY) and wavelength

No check

Page 8: Derivation of Mueller matrix from Zemax

Step 3• Read ‘E field before (after) coating ’ of S & P pol. at the interestring surface

from output of the ‘Polarization Ray Trace’• An example of the output regarding with a surface

(surface 3, silver coated mirror)Tracing ray to surface 3:

Path length through air (tau): 0.0000000E+00Internal absorption per mm (alpha): 0.0000000E+00Internal Transmittance of ray (IT): 1.000000000000Propagation Phase Factors (pc,ps): 1.000000000000 -0.000000000000Coordinates on surface (x,y,z): 0.0000000E+00 0.0000000E+00 0.0000000E+00Direction cosines of incident ray (l1,m1,n1): 0.000000000000 -0.707106781187 0.707106781187Cosine of angle of incident ray : 0.707106781187 (45.000000 deg)Cosine of angle of exit ray : 0.707106781187 (45.000000 deg)Direction cosines of exit ray (l2,m2,n2): -0.000000000000 0.707106781187 0.707106781187Direction cosines of normal (ln,mn,nn): 0.000000000000 0.000000000000 -1.000000000000Direction cosines of S vector (sx,sy,sz): -1.000000000000 -0.000000000000 -0.000000000000Direction cosines of P vector (px,py,pz): 0.000000000000 -0.707106781187 -0.707106781187E field before coating (xyz) (Exr,Eyr,Ezr): 0.056728078820 -0.228864797933 -0.228864797933

(Exi,Eyi,Ezi): -0.892626419659 -0.218222144309 -0.218222144309E field before coating (s&p) (Esr,Epr): -0.056728078820 0.323663701187

(Esi,Epi): 0.892626419659 0.308612716092Ray intensity before coating (I1): 1.000000000000Coating : SILVERIntensity Reflection coefficients (Rs,Rp): 0.964552361746 0.930361258549Intensity Transmission coefficients (Ts,Tp): 0.035447638254 0.069638741451Intensity Absorption coefficients (As,Ap): 0.000000000000 0.000000000000Diattenuation (D): 0.018043621002Field Amplitude Reflection S pol (rsr,rsi): -0.894113163503 0.406342235802Field Amplitude Reflection P pol (rpr,rpi): -0.634324336553 0.726631883835Field Amplitude Transmission S pol (tsr,tsi): 0.047476359022 0.182191200633Field Amplitude Transmission P pol (tpr,tpi): 0.118627893187 0.235724764097Field Reflection Phase (Prs,Prp): 2.715032677668 2.288472701745Field Reflection Retardance (P-S) (Sr): -0.426559975922 (-24.440086 deg)Field Reflection Retardance (P-S+pi) (Sr): 2.715032677668 (155.559914 deg)

Field Transmission Phase (Pts,Ptp): 1.315880054209 1.104554111076Field Transmission Retardance (P-S) (St): -0.211325943133 (-12.108085 deg)Field Transmission Retardance (P-S+pi) (St): 2.930266710457 (167.891915 deg)Ray Amplitude Reflection S pol (rsr,rsi): -0.894113163503 0.406342235802Ray Amplitude Reflection P pol (rpr,rpi): -0.634324336553 0.726631883835Ray Amplitude Transmission S pol (tsr,tsi): 0.047476359022 0.182191200633Ray Amplitude Transmission P pol (tpr,tpi): 0.118627893187 0.235724764097Ray Reflection Phase (Prs,Prp): 2.715032677668 2.288472701745Ray Reflection Retardance (P-S) (Sr): -0.426559975922 (-24.440086 deg)Ray Reflection Retardance (P-S+pi) (Sr): 2.715032677668 (155.559914 deg)Ray Transmission Phase (Pts,Ptp): 1.315880054209 1.104554111076Ray Transmission Retardance (P-S) (St): -0.211325943133 (-12.108085 deg)Ray Transmission Retardance (P-S+pi) (St): 2.930266710457 (167.891915 deg)Electric field after coating (Esr,Epr): -0.311990493087 -0.429555601791

(Esi,Epi): -0.821160046288 0.039423808535Ray intensity after coating (I2): 0.957714141106Direction cosines of new S vector (sx,sy,sz): -1.000000000000 -0.000000000000 -0.000000000000Direction cosines of new P vector (px,py,pz): 0.000000000000 -0.707106781187 0.707106781187E field after (Exr,Eyr,Ezr): 0.311990493087 0.303741678923 -0.303741678923

(Exi,Eyi,Ezi): 0.821160046288 -0.027876842356 0.027876842356X, Y, and Z direction Amplitude (Ax, Ay, Az): 0.878431493855 0.305018238561 0.305018238561X, Y, and Z direction Phase (Px, Py, Pz): 1.207702869709 -0.091521732210 3.050070921379Phase difference between X and Y (Pxy): 1.299224601919 (74.440086 deg)Major, Minor semi axis XY ellipse (EM, Em): 0.882706442588 0.292416400814Angle of XY polarization ellipse (Ap): -3.037222448442 (-174.020028 deg)Ray intensity out (I2): 0.957714141106

Page 9: Derivation of Mueller matrix from Zemax

Polarization property of the surfacein Jones description

• 2 sets of E field before/after coating with different polarized light source!",$!%,$ = '(( '()

')( '))!",*!%,*

!′",$!′%,$ = '(( '()

')( '))!′",*!′%,*

where E(S,P),(a,b) is E field (after, before) in (S, P) pol.– If you consider rays pass some points on a pupil, you need to derive average ω

matrix after calculation of the ω for each ray• Sampling points on a pupil should be in symmetry around the optical axis

Þ ω00, ω01, ω10, ω11Þ Mueller matrix� positive Q-direction is S-direction� no depolarization� zemax2mm.pro

Page 10: Derivation of Mueller matrix from Zemax

Example

Page 11: Derivation of Mueller matrix from Zemax

Exercise 1

• Folding mirror– Silver coating

Page 12: Derivation of Mueller matrix from Zemax

Exercise 1

Zemax1.000 0.016 0.000 0.0000.016 1.000 0.000 0.0000.000 0.000 −0.924 −0.3830.000 0.000 0.383 −0.924

• λ: 587.6 nm• Silver coating

– n=0.150160 − 3.4727 i• A ray pass center on pupil • Normalized by (0,0)

Stenflo 19931.000 0.016 0.000 0.0000.016 1.000 0.000 0.0000.000 0.000 −0.924 −0.3830.000 0.000 0.383 −0.924

• n=0.150160 − 3.4727 i• Incidence angle 45�• Normalized by (0,0)

Page 13: Derivation of Mueller matrix from Zemax

Summary• I present a principle, a method, and an example of derivation of the

Mueller matrix from Zemax– We should manually change the sign of U & V in case of

reflector– Definition of V in Mueller matrix derived with a method

described in Stenflo 1993 is opposite to our definition– It does not have depolarization effect

• I developed a IDL function named ‘zemax2mm.pro’– It is succeed in derivation of Mueller matrix of silver coated

folding mirror – It does not have depolarization effect

Page 14: Derivation of Mueller matrix from Zemax

Coating

• COATING.DAT���– Coating Materials: e.g. AIR, AG

• Wavelength, Index (n), Extinction (k)– Coating Definitions:

• Coating name: e.g. HEAR1, 3 layer(s)– Material, Thickness, Absolute, Loop, Taper– e.g. MGF2, 0.25, 0, 0

ZRO2, 0,50, 0, 0CEF3, 0.25, 0, 0

or– S or P Polarization: T, tr, ti. R, rr, ri, A, TIR

or– Wavelength, Rs, Rp, Ts, Tp, Ars, Arp

Absolute: �����- 0���������- 1���� μmLoop: ������� ������Taper:

����� η=n+ik