Top Banner
Dependence of the decay width for exotic pentaquark Θ + (1540) on its mass and the mass of N*(1685) in a chiral soliton model Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), Inha University HEP (Center for High Energy Physics), Kyungpook Nat‘l University New Frontiers in QCD”, 27 th – 28 th October 2011, Engineering Research Park, Yonsei University, Seoul, Republic of Korea
39

Dependence of the decay width for exotic pentaquark Θ + (1540) on its mass

Feb 24, 2016

Download

Documents

tuan

Dependence of the decay width for exotic pentaquark Θ + (1540) on its mass and the mass of N*(1685) in a chiral soliton model. Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim. HEP (Center for H igh E nergy P hysics), Kyungpook Nat‘l University. NTG - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Dependence of the decay width for exotic pentaquark Θ+(1540) on its mass

and the mass of N(1685) in a chiral soliton model

Ghil-Seok Yang Yongseok Oh Hyun-Chul Kim

NTG (Nuclear Theory Group)

Inha University

HEP (Center for High Energy

Physics) Kyungpook Natlsquol

University

ldquoNew Frontiers in QCDrdquo 27th ndash 28th October 2011 Engineering Research Park Yonsei University Seoul Republic of Korea

bull Prehistory of SU(3) Baryons

bull Motivation (Θ+ N )

bull Chiral Soliton Model

bull Masses and Decay Width

bull Summary

Outline

Naiumlve Quark Model (up down strange light quarks) SU(3) scheme to classify particles with the same spin and parity

Fundamental Particles multiplets (proton neutron) isospin [ SU(2) ] rarr higher symmetry (Σ K) SU(3)

SU(3) Baryons

Hadron [ baryon (qqq) meson (qq) ] SU(3) color singlet

Why not 4 5 6 hellip quark states representation 10 (10)

Nothing prevents such states to exist

Y s Oh and H c Kim Phys Rev D 70 094022 (2004)

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 2: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

bull Prehistory of SU(3) Baryons

bull Motivation (Θ+ N )

bull Chiral Soliton Model

bull Masses and Decay Width

bull Summary

Outline

Naiumlve Quark Model (up down strange light quarks) SU(3) scheme to classify particles with the same spin and parity

Fundamental Particles multiplets (proton neutron) isospin [ SU(2) ] rarr higher symmetry (Σ K) SU(3)

SU(3) Baryons

Hadron [ baryon (qqq) meson (qq) ] SU(3) color singlet

Why not 4 5 6 hellip quark states representation 10 (10)

Nothing prevents such states to exist

Y s Oh and H c Kim Phys Rev D 70 094022 (2004)

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 3: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Naiumlve Quark Model (up down strange light quarks) SU(3) scheme to classify particles with the same spin and parity

Fundamental Particles multiplets (proton neutron) isospin [ SU(2) ] rarr higher symmetry (Σ K) SU(3)

SU(3) Baryons

Hadron [ baryon (qqq) meson (qq) ] SU(3) color singlet

Why not 4 5 6 hellip quark states representation 10 (10)

Nothing prevents such states to exist

Y s Oh and H c Kim Phys Rev D 70 094022 (2004)

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 4: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 5: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 6: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 7: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Motivation Experimental Status

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010

MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [Signals are confirmed by LEPS SVD KEK hellip]

GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 8: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 9: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 10: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Mixing coefficients

Chiral Soliton Model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 11: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

-frac12 frac12

940

11161193

1318

Mass

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking

Chiral Soliton Model (mass)

Collective Hamiltonian for flavor symmetry breakings

α β γ

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 12: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-tersHowever

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 13: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches1

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 14: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)Collective Hamiltonian for flavor symmetry breakings

α β γ

+ α β γ

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 15: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

In order to determine the values of model parame-ters ldquoModel-independent approachrdquo needs more informa-tion(at least 2 inputs for antidecuplet baryons)

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 16: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 17: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

Chiral Soliton Model (mass)

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 18: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 19: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Motivation

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710 )Θ+(1539plusmn2)

Ξ--

(1862plusmn2 )

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 20: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 21: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 22: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetryG S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 23: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 24: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)

Coleman-Glashow relation

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 25: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 26: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 27: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 28: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Motivation

DPP EKP χQSM This WorkConsidered Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

Input Masses

[MeV]

N(1710 )

Θ+(1539plusmn2)

Ξ--(1862plusmn2 )

Θ+ 1500-1580 MeV

ΣπN [MeV] 45 73 Predicted rarr 41

Re-sults

I2 [fm] 04 049 048

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for sym

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

Problems in the previous solitonic approaches123

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 29: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 30: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model (axial-vector)Axial-vector transitions

036plusmn008

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 31: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Results

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 32: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Baryon octet masses

Results

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 33: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Baryon decuplet masses

Results

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 34: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Various experimental data for Θ+

and N

Mass of Θ+ 1525 ndash 1565 MeV

Mass of N 1665 ndash 1695 MeV

DIANALEPS

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 35: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

NA49 Mass of Ξ--32 = 1862 MeV

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 36: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

DIANALEPS

GRAALSAID

MAMI

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 37: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

DIANA

LEPS DIANA

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 38: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM in the range of MΘ+ = 1500-1600MeV used as input

Masses of octet and decuplet are not sensitive to the MΘ+ input rarr very good agreement with experimental data

Small value of pion-nucleon sigma term is estimated (ΣπN = 35 - 40MeV)

MΘ+ = 1524 MeV [LEPS] MN = 1685 MeV [GRAAL] ΓΘ+ = 038plusmn011 MeV [DIANA]

reliable values within a chiral soliton model

Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
Page 39: Dependence of the decay width  for exotic  pentaquark Θ + (1540)  on its mass

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39