Top Banner
DDS design status Task 9.2-Sub-task 2 Alessandro D’Elia on behalf of Roger M. Jones 1
20

DDS design status Task 9.2-Sub-task 2

Feb 24, 2016

Download

Documents

Deon

DDS design status Task 9.2-Sub-task 2 . Alessandro D’Elia on behalf of Roger M. Jones. CLIC_DDS_A. PRELIMINARY. CLIC_DDS_B. Analysis of structures with different phase advances: 5 /9 and 5 /6 in comparison with the standard 2 /3 - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: DDS design status Task 9.2-Sub-task 2

1

DDS design statusTask 9.2-Sub-task 2

Alessandro D’Elia on behalf of Roger M. Jones

Page 2: DDS design status Task 9.2-Sub-task 2

2

CLIC_DDS_A

PREL

IMIN

ARY

Page 3: DDS design status Task 9.2-Sub-task 2

3

CLIC_DDS_B• Analysis of structures with different phase advances: 5/9 and

5/6 in comparison with the standard 2/3• The basic idea is to explore if we can find a compromise between a

possible larger bandwidth (5/9) to the detriment of higher kicks or lower kicks (5/6) to the detriment of a smaller bandwidth

New Design: better but still not in the limits

Page 4: DDS design status Task 9.2-Sub-task 2

4

Comparative tablesParameters 5/9 2/3 5/6

a (mm) in/out 3.8/1.8 3.95/1.94 4.3/2.4

<a >/ 0.112 0.118 0.134

a/<a> 0.357 0.341 0.284

t (mm) in/out 3.3/0.7 4/1 4/2.5

eps 1.5/2 1.5/2 2/2

nb x 109 4.59 4.69 5.05

bX (m-2) 1.506 1.518 1.562

Hs/Ea (mA/V) (first cell) 5.027 4.993 4.951

Es/Ea (last cell) 1.666 1.721 1.619

/2 (GHz) 2.537 2.508 2.237

Ksyn (V/pC/mm/m) in/out 15.142/111.136 41.905/84.182 32.48/54.594

Av. Cross (MHz) in/out 755/811 679/759 609/761

Vg (%c) in/out 2.282/0.505 2.041/0.473 1.933/0.281

R/Q (k/m) in/out 10.779/23.342 9.975/20.522 9.202/14.857

Pin (MW) 75 75 75

Eacc (MV/m) (first cell) 94.4 96 94.7

Page 5: DDS design status Task 9.2-Sub-task 2

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 510

-2

10-1

100

101

102

s (m)

Wak

e (V

/[pC

mm

m])

GdfidL wakeWake limitFirst Dipole Wake <Q>=205First Dipole Wake <Q>=14

2/3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

-2

10-1

100

101

102

s (m)

Wak

e (V

/[pC

mm

m])

GdfidL wakeWake limitFirst Dipole Wake <Q>=205First Dipole Wake <Q>=14

To efficiently damp the first trailing bunch staying this detuning (~2.5GHz), we would need a <Q>~14

Linear tapering

Page 6: DDS design status Task 9.2-Sub-task 2

610 15 20 25 30 35 40 45 500

1

2

3

4

5

6x 10

4

freq (GHz)

Abs

(Zx) (

/[m

m m

])

10 20 30 40 50-2

0

2

4

6x 10

4

freq (GHz)

Real

(Zx) (

/[m

m m

])

10 20 30 40 50-4

-2

0

2

4

6x 10

4

freq (GHz)

Imag

(Zx) (

/[m

m m

])

0 2 4 6 8 1010

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

Quite high kicks and a very high-Q resonance in the 5th-7th bands

5/9

Linear tapering

Page 7: DDS design status Task 9.2-Sub-task 2

7

0 50 100 150

15

20

25

(deg)

Freq

uenc

y (G

Hz)

0 50 100 15010

15

20

25

30

(deg)

Freq

uenc

y (G

Hz)

0 50 100 150 20012

14

16

18

20

22

24

26

28

(deg)

Freq

uenc

y (G

Hz)

Parameters First Cell Mid Cell Last Cell

a (mm) 4.3 3.35 2.4

L (mm) 10.4145 10.4145 10.4145

t (mm) 4 3.25 2.5

eps 2 2 2

b (mm) 12.696 12.086 11.641

Delta (mm) - 0.61 1.055

Elip 0.1 0.1 0.1

Rounding (mm) 1 1 1

WGW (mm) 6 6 6

WGH (mm) 5 5 5

SlotW (mm) 2.81 2.81 2.81

SlotH (mm) 1 1.61 2.055

InSlot (mm) 2 2 2

Htot (mm) 16.696 16.696 16.696

Hs/Ea (mA/V) 4.951 4.082 -

Es/Ea - 1.681 1.619

fsyn (GHz) [email protected]

[email protected]

[email protected]

Ksyn (V/pC/mm/m) 32.48 36.926 54.594

Av. Cross (MHz) 609 673 761

Vg (%c) 1.933 0.877 0.281

R/Q (k/m) 9.202 11.776 14.857

Mid Cell

Last Cell

First Cell

5pi/6

Page 8: DDS design status Task 9.2-Sub-task 2

815 20 25 30 35 40 45

0

5

10

x 104

freq (GHz)

Abs

(Zx) (

/[

mm

m])

10 20 30 40 50-5

0

5

10

15x 10

4

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

10 20 30 40 50-1

-0.5

0

0.5

1x 10

5

freq (GHz)

Imag

(Zx) (

/[

mm

m])

0 2 4 6 8 1010

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

<Qdip>=184

<Qdip>=495

Q=1438 (not yet saturated)

80 100 120 140 160 18014

15

16

17

18

19

(deg)

Freq

uenc

y (G

Hz)

Last Cell

5pi/6

Linear tapering

Page 9: DDS design status Task 9.2-Sub-task 2

9

First Dipole Wake

0 2 4 6 8 1010

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

GdfidL WakeWake limitFirst Dipole Wake

0 0.2 0.4 0.6 0.8 110

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

GdfidL WakeWake limitFirst Dipole Wake

<Qdip>=382

dipole kick=61 V/pc mm m

Even if we get rid of the “higher” higher order modes, we are not able to efficiently damp first trailing bunches staying this detuning (~2.2GHz) and this damping (<Q>~382)

Linear tapering

Page 10: DDS design status Task 9.2-Sub-task 2

10

Change Manifold WidthIf I change WGW: Dipole distribution stays the same but Manifold mode distribution will become higher and will “squash” against dipoles. This will move back the avoided crossing region. Drawback is a reduction of avoided crossing and a slight reduction of the fsyn of the cell.

fsyn (GHz) [email protected]

Av. Cross (MHz) 576

0 50 100 15015

16

17

18

19

20

(deg)

Freq

uenc

y (G

Hz)

Light Line

Manifold

Dipole

WGW=5mm

80 100 120 140 160 18014

15

16

17

18

19

(deg)

Freq

uenc

y (G

Hz)

WGW=6mm

0 50 100 15015

16

17

18

19

20

(deg)

Freq

uenc

y (G

Hz)

But…

First Cell, WGW=5mm

Page 11: DDS design status Task 9.2-Sub-task 2

11

0 50 100 150

15

20

25

(deg)

Freq

uenc

y (G

Hz)

0 50 100 150

16

18

20

22

24

26

28

(deg)

Freq

uenc

y (G

Hz)

Parameters First Cell Mid Cell Last Cell

a (mm) 4.3 3.35 2.4

L (mm) 10.4145 10.4145 10.4145

t (mm) 4 3.25 2.5

eps 2 2 2

b (mm) 12.696 12.088 11.643

Delta (mm) - 0.608 1.053

Elip 0.1 0.1 0.1

Rounding (mm) 1 1 1

WGW (mm) 6 5.5 5

WGH (mm) 5 5 5

SlotW (mm) 2.81 2.81 2.81

SlotH (mm) 1 1.608 2.053

InSlot (mm) 2 2 2

Htot (mm) 16.696 16.696 16.696

Last Cell

First Cell

Tapered Manifold Width

Page 12: DDS design status Task 9.2-Sub-task 2

1215 20 25 30 35 400

5

10

x 104

freq (GHz)

Abs

(Zx) (

/[m

m m

])

10 20 30 40 50-5

0

5

10

15x 10

4

freq (GHz)

Real

(Zx) (

/[m

m m

])

10 20 30 40 50-1

-0.5

0

0.5

1x 10

5

freq (GHz)

Imag

(Zx) (

/[m

m m

])

16 17 18 19 20 21 22

0

1

2

3x 10

4

freq (GHz)

Abs

(Zx) (

/[m

m m

])

10 20 30 40 50-5

0

5

10

15x 10

4

freq (GHz)

Real

(Zx) (

/[m

m m

])

10 20 30 40 50-1

-0.5

0

0.5

1x 10

5

freq (GHz)

Imag

(Zx) (

/[m

m m

])24.7 24.8 24.9 25 25.1 25.2 25.3 25.4 25.5

0

2

4

6

8

10

x 104

freq (GHz)

Abs

(Zx) (

/[

mm

m])

10 20 30 40 50-5

0

5

10

15x 10

4

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

10 20 30 40 50-1

-0.5

0

0.5

1x 10

5

freq (GHz)

Imag

(Zx) (

/[

mm

m])

0 2 4 6 8 1010

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

Linear tapering

Page 13: DDS design status Task 9.2-Sub-task 2

13

0 2 4 6 8 1010

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

GdfidLWake LimitOnly 1st band

0 2 4 6 8 1010

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

GdfidL WakeWake limitFirst Dipole Wake

Previous wake

Linear tapering

Page 14: DDS design status Task 9.2-Sub-task 2

14

10 15 20 25 30 35 40 45 500

1

2

3x 10

4

freq (GHz)

Abs

(Zx) (

/[m

m m

])

0 20 40 60-1

0

1

2

3x 10

4

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

0 20 40 60-2

-1

0

1

2x 10

4

freq (GHz)

Imag

(Zx) (

/[m

m m

])

0 0.2 0.4 0.6 0.8 110

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

1 1.2 1.4 1.6 1.8 210

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

2 2.2 2.4 2.6 2.8 310

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

3 3.5 4 4.5 510

0

101

102

s (m)

Wak

e (V

/[pC

mm

m])

10 15 20 25 30 35 40 45 500

2000

4000

6000

8000

10000

freq (GHz)

Abs

(Zx) (

/[m

m m

])

10 20 30 40 50-1

-0.5

0

0.5

1x 10

4

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

10 20 30 40 50-10000

-5000

0

5000

freq (GHz)

Imag

(Zx) (

/[m

m m

])

10 20 30 40 500

2000

4000

freq (GHz)

Abs

(Zx) (

/[

mm

m])

0 20 40 60-4000

-2000

0

2000

4000

freq (GHz)

Real

(Zx) (

/[m

m m

])

0 20 40 60-4000

-2000

0

2000

4000

freq (GHz)

Imag

(Zx) (

/[m

m m

])

10 15 20 25 30 35 40 45 500

1

2

3

4x 10

4

freq (GHz)A

bs(Z

x) (

/[mm

m])

10 20 30 40 50-4

-2

0

2

4x 10

4

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

10 20 30 40 50-2

0

2

4x 10

4

freq (GHz)Im

ag(Z

x) (

/[m

m m

])

Page 15: DDS design status Task 9.2-Sub-task 2

1524 24.5 25 25.5 26 26.5 27 27.5 28

0

5

10

x 104

freq (GHz)

Abs

(Zx) (

/[

mm

m])

24 26 280

2

4

6

8

10x 10

4

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

25 26 27

-5

0

5

x 104

freq (GHz)

Imag

(Zx) (

/[

mm

m])

1st Cell

E-Field@27GHz-7th Band

15 20 25 30 35 40 45 500

5

10x 10

5

freq (GHz)

Abs

(Zx) (

/[

mm

m])

20 30 40 50-5

0

5

10x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

20 30 40 50-1

-0.5

0

0.5

1x 10

6

freq (GHz)

Imag

(Zx) (

/[

mm

m])

0 50 100 150

15

20

25

(deg)

Freq

uenc

y (G

Hz)

Page 16: DDS design status Task 9.2-Sub-task 2

1624 24.5 25 25.5 26 26.5 27 27.5

0.5

1

1.5

2

2.5x 10

5

freq (GHz)

Abs

(Zx) (

/[m

m m

])

20 30 40 50-5

0

5

10

15x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

20 30 40 50-1

-0.5

0

0.5

1x 10

6

freq (GHz)

Imag

(Zx) (

/[

mm

m])

0 50 100 15014

16

18

20

22

24

26

28

(deg)

Freq

uenc

y (G

Hz)

Mid Cell

[email protected] Band

15 20 25 30 35 40 45 500

5

10

15x 10

5

freq (GHz)

Abs

(Zx) (

/[

mm

m])

20 30 40 50-5

0

5

10

15x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

20 30 40 50-1

-0.5

0

0.5

1x 10

6

freq (GHz)

Imag

(Zx) (

/[

mm

m])

Page 17: DDS design status Task 9.2-Sub-task 2

17

Last Cell

15 20 25 30 35 40 45 500

5

10

15x 10

5

freq (GHz)

Abs

(Zx) (

/[

mm

m])

20 30 40 50-5

0

5

10

15x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

20 30 40 50-1

-0.5

0

0.5

1x 10

6

freq (GHz)

Imag

(Zx) (

/[

mm

m])

18 20 22 24 260

5

10

x 105

freq (GHz)

Abs

(Zx) (

/[

mm

m])

20 30 40 50-5

0

5

10

15x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

20 30 40 50-1

-0.5

0

0.5

1x 10

6

freq (GHz)

Imag

(Zx) (

/[

mm

m])

0 50 100 150

16

18

20

22

24

26

28

(deg)

Freq

uenc

y (G

Hz)

[email protected] Band

Page 18: DDS design status Task 9.2-Sub-task 2

18

Brillouin Diagram–EField

1st Band 5th Band

fsyn (GHz) [email protected] [email protected]

Ksyn (V/pC) (r=1mm) 0.05005 0.038333

Dangerous 5th BandLast Cell

0 50 100 15021

22

23

24

25

26

27

28

(deg)

Freq

uenc

y (G

Hz)

1st CellCoupling

5th Band

6th Band

7th Band

0 50 100 15021

22

23

24

25

26

27

28

(deg)

Freq

uenc

y (G

Hz)

Mid Cell

Hybrid

5th Band

6th Band

7th Band

Last Cell

0 50 100 15021

22

23

24

25

26

27

28

(deg)

Freq

uenc

y (G

Hz)

No Coupling

5th Band

6th Band

7th Band

Page 19: DDS design status Task 9.2-Sub-task 2

19

Different cell geometries

18 19 20 21 22 23 24 250

5

10

15

x 105

freq (GHz)

Abs

(Zx) (

/[

mm

m])

10 20 30 40 50-5

0

5

10

15

20x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

10 20 30 40 50-2

-1

0

1

2x 10

6

freq (GHz)Im

ag(Z

x) (

/[m

m m

])

With SlotOriginal w/o Slot

17 18 19 20 21 22 23 24 250

5

10

15

x 105

freq (GHz)

Abs

(Zx) (

/[m

m m

])

10 20 30 40 50-5

0

5

10

15

20x 10

5

freq (GHz)

Real

(Zx) (

/[m

m m

])

10 20 30 40 50-2

-1

0

1

2x 10

6

freq (GHz)

Imag

(Zx) (

/[m

m m

])

data1data2

SlotOriginal w/o Slot

17 18 19 20 21 22 23 24 250

5

10

x 105

freq (GHz)

Abs

(Zx) (

/[

mm

m])

10 20 30 40 50-5

0

5

10

15x 10

5

freq (GHz)

Rea

l(Z x) (

/[

mm

m])

10 20 30 40 50-1

-0.5

0

0.5

1x 10

6

freq (GHz)

Imag

(Zx) (

/[

mm

m])

Slot WiderOriginal Slot

3.2mm

Page 20: DDS design status Task 9.2-Sub-task 2

20

Conclusions• 5/9 (100 phase advance) structure exhibits, as expected, higher kicks

than 2/3 without any improvement in bandwidth (only 30MHz!)• 5/6:

– Pulse temperature rise limits the aperture of first iris to be lower than 4.3mm– This implies that in order to have a reasonable bandwidth last iris aperture must

be well below 3mm– Iris aperture lower than 3mm exhibits enhancement in the kicks of 5th-7th band– This enhancement is difficult to cure– From this analysis it comes out that:

1. With <Eacc>=100MV/m it looks very difficult to meet at the same time both CLIC beam dynamics (long range wake) and RF constraints

2. For CLIC_Zero with <Eacc>=80MV/m there could be some margin

• Nevertheless, CLIC_DDS_A prototype is (almost) ready to be tested: breakdown measurements will be crucial for DDS

• Started to apply DDS design to other facilities (ELI) and the results are very promising