Top Banner
1 Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 26, 2012 MOS Transistor Basics Today MOS Transistor Topology • Threshold Operating Regions – Resistive – Saturation – Velocity Saturation – Subthreshold Penn ESE370 Fall2012 -- DeHon 2 Last Time Penn ESE370 Fall2012 -- DeHon 3 Depletion region excess carriers depleted Penn ESE370 Fall2012 -- DeHon 4 Refinement Body Contact Fourth terminal Also effects fields Usually common across transistors Penn ESE370 Fall2012 -- DeHon 5 No Field •V GS =0, V DS =0 Penn ESE370 Fall2012 -- DeHon 6
9

Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

Sep 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

1

Penn ESE370 Fall2012 -- DeHon 1

ESE370: Circuit-Level

Modeling, Design, and Optimization for Digital Systems

Day 10: September 26, 2012 MOS Transistor Basics

Today

•  MOS Transistor Topology •  Threshold •  Operating Regions

– Resistive – Saturation – Velocity Saturation – Subthreshold

Penn ESE370 Fall2012 -- DeHon 2

Last Time

Penn ESE370 Fall2012 -- DeHon 3

•  Depletion region excess carriers depleted Penn ESE370 Fall2012 -- DeHon

4

Refinement

Body Contact

•  Fourth terminal •  Also effects fields •  Usually common across transistors

Penn ESE370 Fall2012 -- DeHon 5

No Field

•  VGS=0, VDS=0

Penn ESE370 Fall2012 -- DeHon 6

Page 2: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

2

Apply VGS>0

•  Accumulate negative charge – Repel holes (fill holes)

Penn ESE370 Fall2012 -- DeHon 7

+ + + + + + + +

- - - - - - - - -

Channel Evolution Increasing Vgs

Penn ESE370 Fall2012 -- DeHon 8

Gate Capacitance

Penn ESE370 Fall2012 -- DeHon 9

Changes based on operating region. Happy if you treat as parallel plate Capacitor for HW4.

Inversion •  Surface builds electrons

–  Inverts to n-type – Draws electrons from n+ source

Penn ESE370 Fall2012 -- DeHon 10

Threshold

•  Voltage where strong inversion occurs threshold voltage – Around 2ϕF

– Engineer by controlling doping (NA)

Penn ESE370 Fall2012 -- DeHon 11

φF = φT lnNA

ni

⎝ ⎜

⎠ ⎟

Resistive Region

•  VGS>VT, VDS small

Penn ESE370 Fall2012 -- DeHon 12

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )VDS −

VDS2

2⎡

⎣ ⎢

⎦ ⎥

COX =εOXtOX

Page 3: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

3

Resistive Region •  VGS>VT, VDS small

•  VGS fixed looks like resistor – Current linear in VDS

Penn ESE370 Fall2012 -- DeHon 13

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )VDS −

VDS2

2⎡

⎣ ⎢

⎦ ⎥

COX =εOXtOX

Linear (Resistive) Region

Penn ESE370 Fall2012 -- DeHon 14

Penn ESE370 Fall2012 -- DeHon 15

Blue curve marks transition from Linear to Saturation

Linear (Resistive) Region

Penn ESE370 Fall2012 -- DeHon 16

Dimensions

•  Channel Length (L) •  Channel Width (W) •  Oxide Thickness (Tox)

Preclass

•  Ids for identical transistors in parallel?

Penn ESE370 Fall2012 -- DeHon 17

Preclass

•  Ids for identical transistors in series? –  (Vds small)

Penn ESE370 Fall2012 -- DeHon 18

Page 4: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

4

Transistor Strength (W/L)

Penn ESE370 Fall2012 -- DeHon 19

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )VDS −

VDS2

2⎡

⎣ ⎢

⎦ ⎥

S D

COX =εOXtOX

Transistor Strength (W/L)

•  Shape dependence match Resistance intuition – Wider = parallel resistors decrease R – Longer = series resistors increase R

Penn ESE370 Fall2012 -- DeHon 20

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )VDS −

VDS2

2⎡

⎣ ⎢

⎦ ⎥

R =ρLA

S D

Ldrawn vs. Leffective

•  Doping not perfectly straight •  Spreads under gate •  Effective L smaller than draw gate width

Penn ESE370 Fall2012 -- DeHon 21

Channel Voltage •  Voltage varies along channel •  Think of channel as resistor

Penn ESE370 Fall2012 -- DeHon 22

Preclass 2 •  What is voltage in the middle of a

resistive medium? –  (halfway between terminals)

Penn ESE370 Fall2012 -- DeHon 23

Voltage in Channel

•  Think of channel as resistive medium – Length = L – Area = Width * Depth(inversion)

•  What is voltage in the middle of the channel? – L/2 from S and D ?

Penn ESE370 Fall2012 -- DeHon 24

Page 5: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

5

Channel Voltage •  Voltage varies along channel •  If think of channel as resistor

– Serves as a voltage divider between VS and VD

Penn ESE370 Fall2012 -- DeHon 25

Impact on Inversion •  What happens when

– Vgs=2Vth ? – Vds=2Vth?

•  What is Vmiddle-Vs?

Penn ESE370 Fall2012 -- DeHon 26

Channel Field

•  When voltage gap VG-Vxdrops below VTH, drops out of inversion – Occurs when: VGS-VDS< VTH

– What does this mean about conduction?

Penn ESE370 Fall2012 -- DeHon 27

Preclass 3

•  What is Vm?

Penn ESE370 Fall2012 -- DeHon 28

Channel Field •  When voltage gap VG-Vxdrops below VT,

drops out of inversion – Occurs when: VGS-VDS< VT

– What is voltage at Vmiddle if conduction stops? – What does that mean about conduction?

Penn ESE370 Fall2012 -- DeHon 29

Contradiction?

•  Vg-Vx < Vt cutoff (no current) •  No current Vg-Vx=Vgs •  Vg-Vx=Vgs > Vt current flows

Penn ESE370 Fall2012 -- DeHon 30

Page 6: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

6

Way out?

•  Vg-Vx < Vt cutoff (no current) •  No current Vg-Vx=Vgs •  Vg-Vx=Vgs > Vt current flows

Penn ESE370 Fall2012 -- DeHon 31

Act like Vds at Vgs-Vt

Channel Field

•  When voltage gap VG-Vxdrops below VT, drops out of inversion – Occurs when: VGS-VDS< VT

– Channel is “pinched off”

Penn ESE370 Fall2012 -- DeHon 32

Channel Field

•  When voltage gap VG-Vxdrops below VT, drops out of inversion – Occurs when: VGS-VDS< VT

– Channel is “pinched off” – Current will flow, but cannot increase any

further

Penn ESE370 Fall2012 -- DeHon 33

Pinch Off

•  When voltage drops below VT, drops out of inversion – Occurs when: VGS-VDS< VT

•  Conclusion: – current cannot increase with VDS once

VDS> VGS-VT

Penn ESE370 Fall2012 -- DeHon 34

Saturation

•  In saturation, VDS-effecitve=Vx= VGS-VT

•  Becomes:

Penn ESE370 Fall2012 -- DeHon 35

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )VDS −

VDS2

2⎡

⎣ ⎢

⎦ ⎥

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )2 −

VGS −VT( )2

2

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Saturation

•  VDS> VGS-VT

Penn ESE370 Fall2012 -- DeHon 36

IDS = µnCOXWL

⎝ ⎜

⎠ ⎟ VGS −VT( )2 −

VGS −VT( )2

2

⎣ ⎢ ⎢

⎦ ⎥ ⎥

IDS =µnCOX

2WL

⎝ ⎜

⎠ ⎟ VGS −VT( )2[ ]

Page 7: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

7

Penn ESE370 Fall2012 -- DeHon 37

Blue curve marks transition from Linear to Saturation

Saturation Region Preclass 3

•  What is electrical field in channel? – Leff=25nm, VDS=1V – Field = VDS/L

•  Velocity: v=F*µ – Electron mobility: µn = 500 cm2/V

•  What is electron velocity?

Penn ESE370 Fall2012 -- DeHon 38

Short Channel

•  Model assumes carrier velocity increases with field –  Increases with voltage

•  There is a limit to how fast carriers can move – Limited by scattering to 105m/s

•  How relate to preclass 3 velocity? •  Encounter when channel short

– Modern processes, L is short enough

Penn ESE370 Fall2012 -- DeHon 39

S D

Velocity Saturation

•  Once velocity saturates:

Penn ESE370 Fall2012 -- DeHon 40

IDS ≈νsatCOXW VGS −VT −VDSAT

2⎛

⎝ ⎜

⎠ ⎟

VDSAT ≈Lνsatµn

Velocity Saturation

Penn ESE370 Fall2012 -- DeHon 41

Below Threshold

•  Transition from insulating to conducting is non-linear, but not abrupt

•  Current does flow – But exponentially dependent on VGS

Penn ESE370 Fall2012 -- DeHon 42

Page 8: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

8

Subthreshold

Penn ESE370 Fall2012 -- DeHon 43 €

IDS = ISWL

⎝ ⎜

⎠ ⎟ e

VGSnkT / q⎛

⎝ ⎜

⎠ ⎟

1− e−VDSkT / q⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜

⎠ ⎟ 1+ λVDS( )

Subthreshold

•  W/L dependence follow from resistor behavior (parallel, series) – Not shown explicitly in text

•  λ is a channel width modulation effect

Penn ESE370 Fall2012 -- DeHon 44

IDS = ISWL

⎝ ⎜

⎠ ⎟ e

VGSnkT / q⎛

⎝ ⎜

⎠ ⎟

1− e−VDSkT / q⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜

⎠ ⎟ 1+ λVDS( )

S D

Subthreshold Slope

•  Exponent in VGS determines how steep the turnoff is – Every S Volts – Divide IDS by 10

Penn ESE370 Fall2012 -- DeHon 45

IDS = ISWL

⎝ ⎜

⎠ ⎟ e

VGSnkT / q⎛

⎝ ⎜

⎠ ⎟

1− e−VDSkT / q⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜

⎠ ⎟ 1+ λVDS( )€

S = n kTq

⎝ ⎜

⎠ ⎟ ln 10( )

Subthreshold Slope

•  Exponent in VGS determines how steep the turnoff is – Every S Volts (S not related to source) – Divide IDS by 10

•  n – depends on electrostatics – n=1 S=60mV at Room Temp. (ideal) – n=1.5 S=90mV – Single gate structure showing S=90-110mV

Penn ESE370 Fall2012 -- DeHon 46

S = n kTq

⎝ ⎜

⎠ ⎟ ln 10( )

IDS vs. VGS

Penn ESE370 Fall2012 -- DeHon 47

Admin

•  Text 3.3.2 – highly recommend read – Second half on Friday

•  HW3 due Thursday •  HW4 out

Penn ESE370 Fall2012 -- DeHon 48

Page 9: Day10 - Penn Engineering · 2012. 9. 26. · Day10.pptx Author: Andre DeHon Created Date: 9/26/2012 11:44:57 AM ...

9

Big Idea •  3 Regions of

operation for MOSFET –  Subthreshold –  Resistive –  Saturation

•  Pinch Off •  Velocity Saturation

–  Short channel

Penn ESE370 Fall2012 -- DeHon 49