Top Banner
Daniel Hug, Rolf Schneider, Ralph Schuster Mathematisches Institut Universit¨atFreiburg Valuations, Integral Geometry and Linear Dependences Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005
65

Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Aug 01, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug, Rolf Schneider, Ralph Schuster

Mathematisches Institut

Universitat Freiburg

Valuations, Integral Geometry and Linear Dependences

Daniel Hug, Rolf Schneider, Ralph Schuster

Firenze

May 2005

Page 2: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Contents

1. Minkowski Functionals

2. Valuations and Integral Geometry

3. Tensor Valuations

4. Special Results

5. A General Approach

6. Linear Dependences

RTN Workshop, Firenze, May 2005 Slide 2/ 65

Page 3: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

1. Minkowski Functionals

Minkowski functionals (intrinsic volumes, quermassintegrals) are

basic functionals of convex bodies in Rn:

RTN Workshop, Firenze, May 2005 Slide 3/ 65

Page 4: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

1. Minkowski Functionals

Minkowski functionals (intrinsic volumes, quermassintegrals) are

basic functionals of convex bodies in Rn:

• Coefficients of a Steiner formula. Let K ∈ Kn and ε > 0:

Hn(K + εBn) =n

i=0

εiκn−iVi(K),

where Bn denotes the unit ball in Rn, κn its volume, and Hn is

the Hausdorff measure (volume).

RTN Workshop, Firenze, May 2005 Slide 4/ 65

Page 5: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

• Axiomatic characterization. The functionals

V0, V1, . . . , Vn−1, Vn

are real-valued additive (valuations), continuous and motion

invariant; Vk is homogeneous of degree k.

RTN Workshop, Firenze, May 2005 Slide 5/ 65

Page 6: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

• Axiomatic characterization. The functionals

V0, V1, . . . , Vn−1, Vn

are real-valued additive (valuations), continuous and motion

invariant; Vk is homogeneous of degree k.

Theorem.[Hadwiger] Let ψ : Kn → R be additive, continuous and

motion invariant. Then there exist constants c0, . . . , cn such that

ψ =n

i=0

ciVi.

RTN Workshop, Firenze, May 2005 Slide 6/ 65

Page 7: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

• Objects of integral geometry. Let Enk be the Grassmannian of

k-flats in Rn, let µnk be a Haar measure on En

k . Then, for

K ∈ Kn and 0 6 j 6 k 6 n, we have the Crofton formula∫

Enk

Vj(K ∩ E)µnk(dE) = αnjkVn+j−k(K).

RTN Workshop, Firenze, May 2005 Slide 7/ 65

Page 8: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

• Objects of integral geometry. Let Enk be the Grassmannian of

k-flats in Rn, let µnk be a Haar measure on En

k . Then, for

K ∈ Kn and 0 6 j 6 k 6 n, we have the Crofton formula∫

Enk

Vj(K ∩ E)µnk(dE) = αnjkVn+j−k(K).

Let G(n) be the motion group, and µ a Haar measure on G(n).

For K,L ∈ Kn and j ∈ {0, . . . , n}, the kinematic formula states

G(n)

Vj(K ∩ gL)µ(dg) =n

k=j

αnjkVk(K)Vn+j−k(L).

RTN Workshop, Firenze, May 2005 Slide 8/ 65

Page 9: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

2. Valuations and integral geometry

Results about valuations have been used for the proofs of integral

geometric results.

Hadwiger’s abstract integral geometric formula

Let ϕ : Kn → R be an additive, continuous function. Put

ϕn−q(K) :=

Enq

ϕ(K ∩ E)µnq (dE), K ∈ Kn.

RTN Workshop, Firenze, May 2005 Slide 9/ 65

Page 10: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

2. Valuations and integral geometry

Results about valuations have been used for the proofs of integral

geometric results.

Hadwiger’s abstract integral geometric formula

Let ϕ : Kn → R be an additive, continuous function. Put

ϕn−q(K) :=

Enq

ϕ(K ∩ E)µnq (dE), K ∈ Kn.

Theorem.[Hadwiger] For any K,L ∈ Kn and ϕ as above,

G(n)

ϕ(K ∩ gL)µ(dg) =n

q=0

ϕn−q(K)Vq(L).

Hints to the literature

RTN Workshop, Firenze, May 2005 Slide 10/ 65

Page 11: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

3. Tensor Valuations

• Schneider, Schneider & Hadwiger (’71, ’72)

• McMullen (’97)

• Alesker (’99)

• Schneider, Schneider & Schuster (’00, ’02, ’04)

• Beisbart, Mecke ... (’00 - ?)

RTN Workshop, Firenze, May 2005 Slide 11/ 65

Page 12: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Background

- Space of symmetric tensors of rank r: Tr; T

symmetric tensor product of a, b ∈ T: ab

- Tensor valuation: ϕ : Kn → ⋃r

s=0 Ts

RTN Workshop, Firenze, May 2005 Slide 12/ 65

Page 13: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Background

- Space of symmetric tensors of rank r: Tr; T

symmetric tensor product of a, b ∈ T: ab

- Tensor valuation: ϕ : Kn → ⋃r

s=0 Ts

- Translation covariance: there are ϕ0, . . . , ϕr : Kn → T such

that, for all K ∈ Kn and t ∈ Rn,

ϕ(K + t) =r

j=0

ϕr−j(K)tj

j!.

RTN Workshop, Firenze, May 2005 Slide 13/ 65

Page 14: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Background

- Space of symmetric tensors of rank r: Tr; T

symmetric tensor product of a, b ∈ T: ab

- Tensor valuation: ϕ : Kn → ⋃r

s=0 Ts

- Translation covariance: there are ϕ0, . . . , ϕr : Kn → T such

that, for all K ∈ Kn and t ∈ Rn,

ϕ(K + t) =r

j=0

ϕr−j(K)tj

j!.

- Rotation covariance: for all K ∈ Kn and U ∈ O(n),

ϕ(UK) = Uϕ(K).

RTN Workshop, Firenze, May 2005 Slide 14/ 65

Page 15: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Background

- Space of symmetric tensors of rank r: Tr; T

symmetric tensor product of a, b ∈ T: ab

- Tensor valuation: ϕ : Kn → ⋃r

s=0 Ts

- Translation covariance: there are ϕ0, . . . , ϕr : Kn → T such

that, for all K ∈ Kn and t ∈ Rn,

ϕ(K + t) =r

j=0

ϕr−j(K)tj

j!.

- Rotation covariance: for all K ∈ Kn and U ∈ O(n),

ϕ(UK) = Uϕ(K).

- Isometry covariance

RTN Workshop, Firenze, May 2005 Slide 15/ 65

Page 16: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

A detour: Support measures

Fix K ∈ Kn, ε > 0, η ∈ Σ := Rn × S

n−1, x ∈ Rn \K.

• Metric projection: p(K,x)

• Direction vector: u(K,x) := (x− p(K,x))/‖x− p(K,x)‖

• Local parallel set:

Mε(K, η) := {x ∈ (K + εBn) \K : (p(K,x), u(K,x)) ∈ η}

RTN Workshop, Firenze, May 2005 Slide 16/ 65

Page 17: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

A detour: Support measures

Fix K ∈ Kn, ε > 0, η ∈ Σ := Rn × S

n−1, x ∈ Rn \K.

• Metric projection: p(K,x)

• Direction vector: u(K,x) := (x− p(K,x))/‖x− p(K,x)‖

• Local parallel set:

Mε(K, η) := {x ∈ (K + εBn) \K : (p(K,x), u(K,x)) ∈ η}

• Local Steiner formula:

Hn(Mε(K, η)) =n−1∑

i=0

εn−iκn−iΛi(K, η);

Λn(K, ·) := λnxK on Rn

RTN Workshop, Firenze, May 2005 Slide 17/ 65

Page 18: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

A local parallel set:

RTN Workshop, Firenze, May 2005 Slide 18/ 65

Page 19: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Basic Examples. K ∈ Kn, r, s ∈ N0, 0 6 k 6 n− 1:

Φk,r,s(K) :=1

r!s!

ωn−k

ωn−k+s

Σ

xrusΛk(K, d(x, u))

and

Φn,r,0(K) :=1

r!

Rn

xrΛn(K, dx);

in all other cases, Φk,r,s := 0. Further, Q ∈ T2 is defined by

Q(x, y) := 〈x, y〉.

RTN Workshop, Firenze, May 2005 Slide 19/ 65

Page 20: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Basic Examples. K ∈ Kn, r, s ∈ N0, 0 6 k 6 n− 1:

Φk,r,s(K) :=1

r!s!

ωn−k

ωn−k+s

Σ

xrusΛk(K, d(x, u))

and

Φn,r,0(K) :=1

r!

Rn

xrΛn(K, dx);

in all other cases, Φk,r,s := 0. Further, Q ∈ T2 is defined by

Q(x, y) := 〈x, y〉.

Theorem. [Alesker] Let p ∈ N0, and let ϕ : Kn → Tp be a con-

tinuous, isometry covariant valuation. Then ϕ is a linear com-

bination, with constant real coefficients, of the basic valuations

QmΦk,r,s, where m, k, r, s ∈ N0 are such that 2m+ r + s = p.

RTN Workshop, Firenze, May 2005 Slide 20/ 65

Page 21: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Example. For p = 2 one can show that the tensor valuations

• QVj , j = 0, . . . , n,

• Φj,2,0, j = 0, . . . , n, and

• Φj,0,2, j = 1, . . . , n− 1.

form a basis ...

RTN Workshop, Firenze, May 2005 Slide 21/ 65

Page 22: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Example. For p = 2 one can show that the tensor valuations

• QVj , j = 0, . . . , n,

• Φj,2,0, j = 0, . . . , n, and

• Φj,0,2, j = 1, . . . , n− 1.

form a basis ...

The special linear relationships

2π∑

s

sΦk−r+s,r−s,s = Q∑

s

Φk−r+s,r−s,s−2,

for k, r ∈ N0, have been found by McMullen.

RTN Workshop, Firenze, May 2005 Slide 22/ 65

Page 23: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Two main tasks to be discussed here:

1. Provide a complete system of integral geometric formulae for

tensor valuations. Problem: linear dependences

RTN Workshop, Firenze, May 2005 Slide 23/ 65

Page 24: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Two main problems to be discussed here:

1. Provide a complete system of integral geometric formulae for

tensor valuations.

2. Find all linear relationships between the basic tensor valuations,

determine the dimension of the corresponding vector space.

RTN Workshop, Firenze, May 2005 Slide 24/ 65

Page 25: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

4. Special Results

The case s = 0:∫

Enk

Φj,r,0(K ∩ E)µnk (dE) = αnjkΦn+j−k,r,0(K),

G(n)

Φj,r,0(K ∩ gL)µ(dg) =n

k=j

αnjkΦk,r,0(K)Vn+j−k(L).

RTN Workshop, Firenze, May 2005 Slide 25/ 65

Page 26: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

4. Special Results

The case s = 0:∫

Enk

Φj,r,0(K ∩ E)µnk (dE) = αnjkΦn+j−k,r,0(K),

G(n)

Φj,r,0(K ∩ gL)µ(dg) =n

k=j

αnjkΦk,r,0(K)Vn+j−k(L).

The case j = n− 1:∫

Enn−1

Φn−1,r,s(K ∩ E)µnn−1(dE) = δ(n, s)Q

s2 Φn,r,0(K),

G(n)

Φn−1,r,s(K∩gL)µ(dg) = Φn−1,r,s(K)Vn(L)+δ(n, s)Qs2 Φn,r,0(K)Vn−1(L).

RTN Workshop, Firenze, May 2005 Slide 26/ 65

Page 27: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

The case j = n− 2:

Enn−1

Φn−2,r,s(K∩E)µnn−1(dE) =

b s2 c

m=0

α(n, s,m)QmΦn−1,r,s−2m(K)

and

Enn−2

Φn−2,r,s(K ∩ E)µnn−2(dE) = β(n, s)Q

s2 Φn,r,0(K).

Further results follow from McMullen’s relationships.

RTN Workshop, Firenze, May 2005 Slide 27/ 65

Page 28: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

5. A General Approach. Let r, s ∈ N0, 0 6 j 6 k 6 n− 1.

Enk

Φj,r,s(K ∩ E)µnk (dE)

RTN Workshop, Firenze, May 2005 Slide 28/ 65

Page 29: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Theorem. For K ∈ Kn, r, s ∈ N0 and 0 6 k 6 n− 1,

Enk

Φk,r,s(K ∩ E)µnk (dE) =

0, if s is odd,

αQs2 Φn,r,0(K), if s is even.

RTN Workshop, Firenze, May 2005 Slide 29/ 65

Page 30: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Theorem. For K ∈ Kn and k, j, r, s ∈ N0 with 0 6 j < k 6 n− 1,∫

Enk

Φj,r,s(K ∩ E) dµnk(E)

=

b s2 c

z=0

χ(1)n,j,k,s,zQ

zΦn+j−k,r,s−2z(K) +

with explicitly known constants χ(1)n,j,k,s,z and χ

(2)n,j,k,s,z independent

of r.

RTN Workshop, Firenze, May 2005 Slide 30/ 65

Page 31: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Theorem. For K ∈ Kn and k, j, r, s ∈ N0 with 0 6 j < k 6 n− 1,∫

Enk

Φj,r,s(K ∩ E) dµnk(E)

=

b s2 c

z=0

χ(1)n,j,k,s,zQ

zΦn+j−k,r,s−2z(K) +

b s2 c−1∑

z=0

χ(2)n,j,k,s,zQ

z

×s−2z−1

l=0

(2πlΦn+j−k−s+2z+l,r+s−2z−l,l(K)

−QΦn+j−k−s+2z+l,r+s−2z−l,l−2(K))

with explicitly known constants χ(1)n,j,k,s,z and χ

(2)n,j,k,s,z independent

of r.

RTN Workshop, Firenze, May 2005 Slide 31/ 65

Page 32: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

The first step. Let r, s ∈ N0, 0 6 j 6 k 6 n− 1.

Enk

Φj,r,s(K ∩ E)µnk (dE)

RTN Workshop, Firenze, May 2005 Slide 32/ 65

Page 33: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

The first step. Let r, s ∈ N0, 0 6 j 6 k 6 n− 1.

Enk

Φj,r,s(K ∩ E)µnk (dE)

For L ∈ Lnk , t ∈ L⊥ and Lt := L+ t (McMullen):

Φj,r,s(K ∩ Lt) =∑

m>0

Q(L⊥)m

(4π)mm!Φ

(Lt)j,r,s−2m(K ∩ Lt).

RTN Workshop, Firenze, May 2005 Slide 33/ 65

Page 34: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

The first step. Let r, s ∈ N0, 0 6 j 6 k 6 n− 1.

Enk

Φj,r,s(K ∩ E)µnk (dE)

For L ∈ Lnk , t ∈ L⊥ and Lt := L+ t:

Φj,r,s(K ∩ Lt) =∑

m>0

Q(L⊥)m

(4π)mm!Φ

(Lt)j,r,s−2m(K ∩ Lt).

Thus∫

Enk

Φj,r,s(K ∩ E)µnk(dE) =

Lnk

L⊥

Φj,r,s(K ∩ Lt)Hn−k(dt)νnk (dL)

=∑

m>0

Q(L⊥)m

(4π)mm!

Lnk

L⊥

Φ(Lt)j,r,s−2m(K ∩ Lt)Hn−k(dt)νn

k (dL).

RTN Workshop, Firenze, May 2005 Slide 34/ 65

Page 35: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Case 1: j = k

Φ(Lt)k,r,s−2m(K ∩ Lt) = 0 if s− 2m 6= 0.

RTN Workshop, Firenze, May 2005 Slide 35/ 65

Page 36: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Case 1: j = k

Φ(Lt)k,r,s−2m(K ∩ Lt) = 0 if s− 2m 6= 0.

If s is odd,

Φk,r,s(K ∩ Lt) = 0,

and thus∫

Enk

Φk,r,s(K ∩ E)µnk(dE) = 0.

RTN Workshop, Firenze, May 2005 Slide 36/ 65

Page 37: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Case 1: j = k

Φ(Lt)k,r,s−2m(K ∩ Lt) = 0 if s− 2m 6= 0.

If s is odd,

Φk,r,s(K ∩ Lt) = 0,

and thus∫

Enk

Φk,r,s(K ∩ E)µnk(dE) = 0.

If s is even,

Φk,r,s(K ∩ Lt) =Q(L⊥)

s2

(4π)s2 ( s

2 )!r!

K∩Lt

xrHk(dx).

RTN Workshop, Firenze, May 2005 Slide 37/ 65

Page 38: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Hence, if s is even,

Enk

Φk,r,s(K ∩ E)µnk (dE)

=1

(4π)s2 ( s

2 )!r!

Lnk

Q(L⊥)s2

L⊥

K∩Lt

xrHk(dx)Hn−k(dt)νnk (dL)

RTN Workshop, Firenze, May 2005 Slide 38/ 65

Page 39: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Hence, if s is even,

Enk

Φk,r,s(K ∩ E)µnk (dE)

=1

(4π)s2 ( s

2 )!r!

Lnk

Q(L⊥)s2

L⊥

K∩Lt

xrHk(dx)Hn−k(dt)νnk (dL)

=1

(4π)s2 ( s

2 )!Φn,r,0(K)

Lnk

Q(L⊥)s2 νn

k (dL)

RTN Workshop, Firenze, May 2005 Slide 39/ 65

Page 40: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Hence, if s is even,

Enk

Φk,r,s(K ∩ E)µnk (dE)

=1

(4π)s2 ( s

2 )!r!

Lnk

Q(L⊥)s2

L⊥

K∩Lt

xrHk(dx)Hn−k(dt)νnk (dL)

=1

(4π)s2 ( s

2 )!Φn,r,0(K)

Lnk

Q(L⊥)s2 νn

k (dL)

= αQs2 Φn,r,0(K),

where α is explicitly known.

RTN Workshop, Firenze, May 2005 Slide 40/ 65

Page 41: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Lemma. For m ∈ N0 and k ∈ {1, . . . , n},∫

Lnk

Q(L)mνnk (dL) =

Γ(k2 +m)Γ(n

2 )

Γ(n2 +m)Γ(k

2 )Qm.

RTN Workshop, Firenze, May 2005 Slide 41/ 65

Page 42: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Case 2: 0 6 j 6 k − 1, P ∈ Pn.

Φj,r,s(P ∩ Lt) =∑

m>0

Q(L⊥)m

(4π)mm!Φ

(Lt)j,r,s−2m(P ∩ Lt)

=∑

m>0

Q(L⊥)mαj,k,s,mωk−j

r!

Lt×(Sn−1∩L)

xrus−2mΛ(Lt)j (P ∩ Lt, d(x, u)),

RTN Workshop, Firenze, May 2005 Slide 42/ 65

Page 43: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Case 2: 0 6 j 6 k − 1, P ∈ Pn.

Φj,r,s(P ∩ Lt) =∑

m>0

Q(L⊥)m

(4π)mm!Φ

(Lt)j,r,s−2m(P ∩ Lt)

=∑

m>0

Q(L⊥)mαj,k,s,mωk−j

r!

Lt×(Sn−1∩L)

xrus−2mΛ(Lt)j (P ∩ Lt, d(x, u)),

We need the translative integral (Crofton) formula (Rataj ’99):∫

L⊥

Lt×(Sn−1∩L)

g(x, v)Λ(Lt)j (P ∩ Lt, d(x, v))Hn−k(dt)

=1

ωk−j

F∈Fn+j−k(P )

F×(N(P,F )∩Sn−1)

g(x, πL(u))‖pL(u)‖j−k

× [F,L]2 (Hn+j−k ⊗Hk−j−1)(d(x, u)).

RTN Workshop, Firenze, May 2005 Slide 43/ 65

Page 44: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

By Fubini’s theorem,

Lnk

L⊥

Φj,r,s(P ∩ Lt)Hn−k(dt)νnk (dL)

=∑

m>0

F∈Fn+j−k(P )

αj,k,s,m

1

r!

F

xrHn+j−k(dx)

N(P,F )∩Sn−1

×∫

Lnk

Q(L⊥)mπL(u)s−2m‖pL(u)‖j−k[F,L]2νnk (dL).

RTN Workshop, Firenze, May 2005 Slide 44/ 65

Page 45: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Proposition.∫

Lnk

Q(L⊥)mπL(u)s−2m‖pL(u)‖j−k[F,L]2νnk (dL)

= βn,j,k

b s2 c

z=0

ζ(1)n,j,k,s,z,mQ

zus−2z

+ βn,j,k

k − n

n+ j − k

b s2 c−1∑

z=0

ζ(2)n,j,k,s,z,mQ

zus−2z−2Q(F ).

RTN Workshop, Firenze, May 2005 Slide 45/ 65

Page 46: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Some constants:

βn,j,k :=(k − 1)!(n+ j − k)!√

πj!(n− 1)!

Γ(n2 )Γ(n+1

2 )

Γ(k2 )Γ(k+1

2 ),

γ(1)n,k,l,p,q :=

q∑

y=0

(−1)l+y

(

q

y

)

Γ(k−12 + l − p+ y)

Γ(n+12 + l − p+ y)

(

k−12 + l − p+ y

)

,

γ(2)n,k,l,p,q :=

q∑

y=0

(−1)l+y

(

q

y

)

Γ(k−12 + l − p+ y)

Γ(n+12 + l − p+ y)

(l − p+ y)

with γ(2)n,k,l,p,q = 0 if l − p+ q = 0.

RTN Workshop, Firenze, May 2005 Slide 46/ 65

Page 47: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

More constants:

ζ(1)n,j,k,s,z,m :=

m∑

l=max{0,m−z}

l∑

p=0

b s2 c−m+p∑

q=max{0,z−m+p}

(−1)m−p+q−zγ(1)n,k,l,p,q

(

m

l

)(

l

p

)

×(

s− 2m+ 2p

2q

)(

l − p+ q

z −m+ l

)

Γ( s+j2 −m+ p− q + 1)Γ(q + 1

2 )

Γ( s+n−k+j2 −m+ p+ 1)

and

ζ(2)n,j,k,s,z,m :=

m∑

l=max{0,m−z}

l∑

p=0

b s2 c−m+p∑

q=max{0,z−m+p+1}

(−1)m−p+q−z−1γ(2)n,k,l,p,q

(

m

l

)(

l

p

)

×(

s− 2m+ 2p

2q

)(

l − p+ q − 1

z −m+ l

)

Γ( s+j

2 −m+ p− q + 1)Γ(q + 12 )

Γ( s+n−k+j

2 −m+ p+ 1).

RTN Workshop, Firenze, May 2005 Slide 47/ 65

Page 48: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Some combinatorial identities of the form:

Lemma. For m ∈ N0, n ∈ N, k ∈ {1, . . . , n− 1} and a > 0,

m∑

i=0

(

m

i

)

Γ(

k+a2 +m− i

) Γ(n−k2 + i)Γ(a

2 + 1)Γ(n2 )

Γ(n−k2 )Γ(a

2 + 1 − i)Γ(n2 + i)

(−1)i

=Γ(k

2 +m)Γ(n+a2 +m)Γ(n

2 )Γ(k+a2 )

Γ(k2 )Γ(n+a

2 )Γ(n2 +m)

.

RTN Workshop, Firenze, May 2005 Slide 48/ 65

Page 49: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Putting things together and by some additional calculations, we get

Lnk

L⊥

Φj,r,s(P ∩ Lt)Hn−k(dt)νnk (dL)

= βn,j,k

b s2 c

z=0

ξ(1)n,j,k,s,z(s− 2z)!ωs−2z−j+k Q

zΦn+j−k,r,s−2z(P )

+ βn,j,k

k − n

n+ j − k

b s2 c−1∑

z=0

ξ(2)n,j,k,s,z(s− 2z − 2)!ωs−2z−2−j+k

× Qz∑

F∈Fn+j−k(P )

Q(F )Υr(F )Θs−2z−2(P, F ),

RTN Workshop, Firenze, May 2005 Slide 49/ 65

Page 50: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

where, for a k-face F of P ,

Υr(F ) :=1

r!

F

xrHk(dx)

and

Θs(P, F ) :=1

s!

N(P,F )

xse−π‖x‖2Hn−k(dx).

Hence

Φk,r,s(P ) =∑

F∈Fk(P )

Υr(F )Θs(P, F ).

RTN Workshop, Firenze, May 2005 Slide 50/ 65

Page 51: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

The final step: a lemma due to McMullen ...

F∈Fn+j−k(P )

Q(F )Υr(F )Θs−2z−2(P, F )

= QΦn+j−k,r,s−2z−2(P ) − 2π(s− 2z)Φn+j−k,r,s−2z(P )

+∑

G∈Fn+j−k+1(P )

Q(G)Υr−1(G)Θs−2z−1(P,G).

RTN Workshop, Firenze, May 2005 Slide 51/ 65

Page 52: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

... can be iterated to give

F∈Fn+j−k(P )

Q(F )Υr(F )Θs−2z−2(P, F )

=∑

l>s−2z

QΦn+j−k−s+2z+l,r+s−2z−l,l−2(P )

− 2π∑

l>s−2z

lΦn+j−k−s+2z+l,r+s−2z−l,l(P ).

RTN Workshop, Firenze, May 2005 Slide 52/ 65

Page 53: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

6. Linear Dependences

Theorem. For k, r ∈ N0,

2π∑

s

sΦk−r+s,r−s,s −Q∑

s

Φk−r+s,r−s,s−2 = 0. (∗)

Any linear dependence among those tensor valuations QlΦk,r,s,

which do not vanish trivially, can be obtained by multiplying by

Q relations of the form (∗) and by taking linear combinations of

relations obtained in this way.

RTN Workshop, Firenze, May 2005 Slide 53/ 65

Page 54: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

6. Linear Dependences

Theorem. For k, r ∈ N0,

2π∑

s

sΦk−r+s,r−s,s −Q∑

s

Φk−r+s,r−s,s−2 = 0. (∗)

Any linear dependence among those tensor valuations QlΦk,r,s,

which do not vanish trivially, can be obtained by multiplying by

Q relations of the form (∗) and by taking linear combinations of

relations obtained in this way.

Proof. Consider, for r ∈ N0 and k = 0, . . . , n+ r,

Gk,r := lin{Ql′Φk′,r′,s′ : k′ + r′ = k, r′ + s′ + 2l′ = r}

“Tensors of rank r, homogeneous of degree k”

RTN Workshop, Firenze, May 2005 Slide 54/ 65

Page 55: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Proof. Induction wrt r. Main case: r > 2, k > 1.

Assume∑

l,s

αl,sQlΦk−r+s+2l,r−s−2l,s = 0. (+)

RTN Workshop, Firenze, May 2005 Slide 55/ 65

Page 56: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Proof. Induction wrt r. Main case: r > 2, k > 1.

Assume∑

l,s

αl,sQlΦk−r+s+2l,r−s−2l,s = 0. (+)

Substitute K + t, for t ∈ Rn, and use translation covariance:

l,s

αl,sQlΦk−r+s+2l,r−s−2l−1,s = 0. (in Gk−1,r−1)

RTN Workshop, Firenze, May 2005 Slide 56/ 65

Page 57: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Proof. Induction wrt r. Main case: r > 2, k > 1.

Assume∑

l,s

αl,sQlΦk−r+s+2l,r−s−2l,s = 0. (+)

Substitute K + t, for t ∈ Rn, and use translation covariance:

l,s

αl,sQlΦk−r+s+2l,r−s−2l−1,s = 0. (in Gk−1,r−1)

Via the induction hypothesis, (+) is equivalent to

α2πr−1∑

s=1

sΦk−r+s,r−s,s+α0rΦk,0,r+∑

l>1,s>0

αl,sQlΦk−r+s+2l,r−s−2l,s = 0

RTN Workshop, Firenze, May 2005 Slide 57/ 65

Page 58: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

or to

(α0,r − 2πrα)Φk,0,r +∑

l>1,s>0

αl,sQlΦk−r+s+2l,r−s−2l,s = 0.

This is of the form

(α0,r − 2πrα)Φk,0,r = Qv, v ∈ Tr−2.

RTN Workshop, Firenze, May 2005 Slide 58/ 65

Page 59: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

or to

(α0,r − 2πrα)Φk,0,r +∑

l>1,s>0

αl,sQlΦk−r+s+2l,r−s−2l,s = 0.

This is of the form

(α0,r − 2πrα)Φk,0,r = Qv, v ∈ Tr−2.

Lemma. For all s, k ∈ N with 1 6 k 6 n − 1 and s > 2, there

exists a convex body K ∈ Kn such that

Φk,0,s(K) 6= Qv

for all v ∈ Ts−2.

RTN Workshop, Firenze, May 2005 Slide 59/ 65

Page 60: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Theorem. Let r ∈ N0, n > 1 and 0 6 k 6 n+ r. Put

j0 := min

{⌊

n+ r − k

2

,⌊r

2

}

, j1 := max

{

−1,

r − k

2

⌋}

.

Then

dim(Gk,r) = j0(min{1, n− k}+ r− j0) + 1− (j1 + 1)(r − k − j1).

RTN Workshop, Firenze, May 2005 Slide 60/ 65

Page 61: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Happy

RTN Workshop, Firenze, May 2005 Slide 61/ 65

Page 62: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Birthday

RTN Workshop, Firenze, May 2005 Slide 62/ 65

Page 63: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Dear

RTN Workshop, Firenze, May 2005 Slide 63/ 65

Page 64: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Rolf

RTN Workshop, Firenze, May 2005 Slide 64/ 65

Page 65: Daniel Hug, Rolf Schneider, Ralph Schuster Firenze May 2005web.math.unifi.it/users/salani/workshop/talks/Hug.pdfDaniel Hug Valuations, Integral Geometry and Linear Dependences •

Daniel Hug Valuations, Integral Geometry and Linear Dependences

Schneider

RTN Workshop, Firenze, May 2005 Slide 65/ 65