Top Banner
Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon In cooperation with: J. F. Fennell, M. Klida, K. Kudela, V. N. Lutsenko, J. Niehof, J. S. Pickett, J. Roeder, C. T. Russell, G. L. Siscoe, W. N. Spjeldvik, and K. Trattner
28

Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Dec 17, 2015

Download

Documents

Osborne Rich
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Cusp Radiation Source: A Challenge for Theory and Simulation

Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker,Forrest S. Mozer, and Robert B. Sheldon

In cooperation with:J. F. Fennell, M. Klida, K. Kudela, V. N. Lutsenko, J. Niehof, J. S. Pickett, J. Roeder, C. T. Russell,

G. L. Siscoe, W. N. Spjeldvik, and K. Trattner

Page 2: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Theory and simulation predict:

• Cusp is a precipitation region for particles;

• A positive IMF By would move the dayside northern cusp into post-noon;

• A negative IMF By would move the dayside northern cusp into pre-noon (e.g., Cowley et al., JGR, 96, 5557, 1991).

Page 3: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Cusp Diamagnetic Cavities (CDC): |B|

CDC at 9:30 MLT

(pre-noon)

with turbulence.

Cusp energetic Particle (CEP)

Page 4: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Cusp

CDC at 14-23 UT on 5/13/99 with a size of ~ 6 Re.

Page 5: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Solar wind conditions for the 5/13/99 CDC

Since By < 0,a CDC at pre-noon

was expected.

By < 0

Page 6: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Other CDC observations under different solar wind conditions:

1. Normal solar wind speed, vsw = 450 km/s

2. Fast solar wind stream, vsw = 900 km/s

3. Slow solar wind flow, vsw = 380 km/s (two examples presented)

Page 7: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

1. Normal solar wind speed, vsw=450 km/s

4/22/99

Page 8: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

(Fritz et al., JGR, 108, A1, 1028, 2003)

Pre-noon

Post-noon

Page 9: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

By>0, <Dst>=1.6 nT, CDC at pre-noon; unexpected

By>0

CDC at10:30 MLT

Page 10: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

2. Fast solar wind stream, vsw=900 km/s

6/28/99

Page 11: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Cusp energetic He++

Cusp energetic O+

Page 12: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

By>0, <Dst>=14.7 nT, CDC at 7MLT; unexpected

CDC

+ +

Page 13: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

3a. Slow solar wind flow, vsw=380 km/s4/25/99

Page 14: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

POLAR,4/25/99

Page 15: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

By>0, <Dst>=5.5 nT, CDC at pre-noon; unexpected

By>0

CDC at10:20 MLT

Page 16: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

3b. Slow solar wind flow, vsw=380 km/s

15 UT

19 UT

15 UT

19 UT

Page 17: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

By>0, <Dst>=-82 nT, CDC at 8:30 MLT; unexpected

By>0

CDC

10/30/78

ISEE-1

ISEE-3

IMF

Page 18: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Energetic Charged Particles in CDC

CEP electron

CEP proton

CDC

Page 19: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.
Page 20: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

CEP Energy Spectrum

Page 21: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

CEP vs. Outer Radiation Belt ParticlesProton phase space density

Page 22: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

He++ & O+ phase space densities: Cusp Radiation Source

Page 23: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

CEP and Fields

1. CEP flux increase with E-field increase and B-field Decrease.

2. Emax = 50 mV/m

Page 24: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Blow up cusp E-field near peak fluctuation

Showing some polarizationWaves at different Frequencies.

Page 25: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Left-hand polarization

Page 26: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Left-hand polarization

Page 27: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.
Page 28: Cusp Radiation Source: A Challenge for Theory and Simulation Jiasheng Chen, Theodore A. Fritz, Katherine E. Whitaker, Forrest S. Mozer, and Robert B. Sheldon.

Summary• CDC is a large radiation region, and CEP is a new

radiation source.

• Under different solar wind and geomagnetic conditions, CDCs have been observed at pre-noon in the northern hemisphere when IMF By >0 (duskward).

• These observations are unexpected by the existing models and MHD simulations and provide a new challenge for the current theory and simulations.

• Cusp ions can be energized by both resonant and stochastic acceleration mechanisms.