Top Banner

of 124

Curs 12 13 Cmaie Micu

Apr 04, 2018

Download

Documents

Paunescu Mihai
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Curs 12 13 Cmaie Micu

    1/124

    Curs 12-13

    Special Numerical Methods for solving Partial Differential Equations

    - Electrical Engineering Applications -

    Course: Numerical Methods forEngineers, Southern IllinoisUniversity Carbondale College ofEngineering, Dr. L.R. Chevalier, Dr.

    B.A. DeVantier

    Course: Applied NumericalComputation Methods, Shang-Xu, Hu

    of ZJU

    Course: Numerical Integration of PartialDifferential Equations, Th. Wiegelmann,International Max Planck Research Schoolon Physical Processes Universities of

    Braunschweig and Gttingen

    Course: Numerical Methods for electricalengineering, Dan D. Micu, ElectricalEngineering Department, UTCN

    Complemente de matematiciMaster an I

    2011-2012

  • 7/30/2019 Curs 12 13 Cmaie Micu

    2/124

    Modelul matematic cel mai des ntlnit al fenomenelor care

    stau la baza multor aplicaii electrotehnice este ecuaia cuderivate partiale.

    Rezolvarea exact a ecuaiilor cu derivate partiale este

    posibil pentru o clas foarte restrns de aplicatii!!! Comportarea dinamic a sistemelor fizice conduce la modele

    matematice formate din ecuaii cu derivate partiale care nu

    pot fi rezolvate pe cale analitic (funcii complicate ca formsau funcii cunoscute doar pe baza unor valori n puncte date

    tabelari obinute pe cale experimental). Din acest motiv se

    recurge la rezolvarea numeric a acestora. Metodele numerice de aproximare a soluiilor conduc la tabele

    de valori ale funciei necunoscute.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    3/124

    Differential Equations

    A differential equation is an equation for

    an unknown function of one or severalvariables that relates the values of thefunction itself and of its derivatives ofvarious orders.

    Ordinary Differential Equations:

    Function has 1 independent variable. Partial Differential Equations (PDEs):

    At least 2 independent variables.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    4/124

    An equation involving partial derivatives of an unknownfunction of two or more independent variables

    General (implicit) form for one function u(x,y):

    Highest derivative defines order of PDE Explicit PDE => We can resolve the equation

    to the highest derivative of u. Linear PDE => PDE is linear in u(x,y) and

    for all derivatives of u(x,y) Semi-linear PDEs are nonlinear PDEs, which

    are linear in the highest order derivative.

    Partial Differential Equations

    )(u)(ax

    u)(a

    xx

    u)(a f

    n

    i i

    i

    n

    i

    n

    j ji

    ji xxxx 011 1

    2

    =++ == =

  • 7/30/2019 Curs 12 13 Cmaie Micu

    5/124

    Aceste ecuaii sunt de fapt modele matematice carerezult din studiul unor fenomene i aplicaii diningineria electric ca de exemplu:

    propagarea undelor electromagnetice funcionarea liniilor electrice lungi n regim armonic

    ecuaia de tip Poisson care definete potenialul

    electric ntr-un punct probleme de echilibru sau stri staionare

    ecuaia Laplace etc.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    6/124

    Multe fenomene studiate n cadrul electrotehnicii sunt rezultatul aciunii combinate a maimultor factori i prin urmare sunt descrise din punct de vedere matematic de ecuaii demai multe variabile. Cele mai des ntlnite sunt fenomenele dependente de doi factorii care satisfac ecuaiile cu derivate pariale de forma (unde a, b, c, d, e, f, g sunt funciicare pot depinde de cele dou variabile independente precum i de soluia nsiu=u(x,y)):

    0gufy

    u

    ex

    u

    dy

    u

    cyx

    u

    bx

    u

    a 2

    22

    2

    2

    =++

    +

    +

    +

    +

    Observations: We still speak of linear PDEs, even if the coefficients a(x,y) ... e(x,y)might be nonlinear in x and y. Linearity is required only in the unknown function uand all derivatives of u.Further simplification are: constant coefficients a-e; vanishing mixed derivatives (b=0);no lower order derivates (d=e=0)

    ecuaia lui Poisson:

    0gy

    u

    x

    u2

    2

    2

    2

    =+

    +

    ecuaia lui Laplace: 0y

    u

    x

    u2

    2

    2

    2

    =

    +

    0y

    v

    x

    v2

    2

    2

    2

    =

    +

    +

    - fluxul total prin orice suprafa

    nchis Gauss

    2

    2

    22

    2

    xuc

    tu

    =

    - propagarea undelorelectromagnetice

    0t

    H

    x

    H2

    z2

    2z

    2

    0t

    E

    x

    E2

    y2

    2y

    2ecuaia undelor electromagnetice:

  • 7/30/2019 Curs 12 13 Cmaie Micu

    7/124

    How to solve PDEs?

    PDEs are solved together with appropriateBoundary Conditions (B.C) and/orInitial Conditions.

    B.C.

    -Dirichlet B.C.: Specify u(x,y,...) on boundaries (at x=0, x=Lx, y=0, y=Ly in arectangle)-von Neumann B.C.: Specify normal gradient of u(x,y,...) on boundaries.

    In principle boundary can be arbitrary shaped (but difficult to implement in

    computer codes)

  • 7/30/2019 Curs 12 13 Cmaie Micu

    8/124

    Initial value problem

    Boundary values are usually specified on

    all boundaries of the computational domain. Initial conditions are specified in the entire

    computational (spatial) domain, but only

    for the initial time t=0. Initial conditions as a Cauchy problem:-Specify u and du/dt for t=0[for hyperbolic problems like electromagnetic wave

    equation.]

  • 7/30/2019 Curs 12 13 Cmaie Micu

    9/124

    Cauchy Boundary conditions

    Cauchy B.C. impose both Dirichlet and Von Neumann B.C. onpart of the boundary (for PDEs of 2. order).

    More general: For PDEs of order n the Cauchy problemspecifies u and all derivatives of u, up to the ordern-1 on partsof the boundary.

    In electrical engineering applications the Cauchy problem isoften related to temporal evolution (initial conditions specifiedfor t=0)

    Fenomenele care apar in aplicatii din IE au semnificaii fizice clare, condiiile la limit (pefrontiera domeniului n care are loc procesul fizic) i condiiile iniiale (care descriu stareainiial a sistemului analizat) definindu-se alturi de problema principal.

    Avem urmtoarele categorii de probleme:

    1

    Cauchy

    initialeconditiiledause limitlaconditiiledausenu ;

    2

    la limit

    initialeconditiiledausenu

    limitlaconditiiledause;

    3 mixt

    initialeconditiiledauselimitlaconditiiledause .

  • 7/30/2019 Curs 12 13 Cmaie Micu

    10/124

    B2-4AC Category Example

    < 0 El lipt ic Laplace equation (steady state with2 spatial dimensions)

    = 0 Parabolic Heat conduct ion equat ion (time variable

    with one spatial dimension)

    >0 Hyperbolic Wave equat ion (t ime-variable with onespatial dimension

    kT

    x

    T

    t

    2

    2=

    2

    2 2

    2

    2

    1y

    x c

    y

    t=

    0y

    u

    x

    u2

    2

    2

    2

    =

    +

    Tipul de metode numerice preferat n rezolvarea ecuaiilor cu derivate pariale suntmetodele de diferene finite. Vom insista pe ecuaiile utilizate mai mult n electrotehnicadic hiperbolice i eliptice!

    Because of their widespread application in engineering, our study of PDE will focuson linear, second-order equations (specific for electrical engineering applications)

    The following general form will be evaluated forB2- 4AC

    Au

    xB

    u

    x yC

    u

    yD

    2

    2

    2 2

    2 0+ + + =

  • 7/30/2019 Curs 12 13 Cmaie Micu

    11/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    12/124

    Exemple de aplicaii care au ca model ecuaiidiferentiale sau ecuatii cu derivate partiale

  • 7/30/2019 Curs 12 13 Cmaie Micu

    13/124

    Analiza comportrii descarctoarelor de supratensiuni, datorate comutrii liniilor

    electrice cu sarcin capacitiv, presupune modelarea liniei ca i circuit, innd cont deprezena sursei de energie, de amplasarea descrctoarelor (surge-arresters) i de naturasarcinii electrice (capacitiv), precum n figura de mai jos:

    Modelul de cricuit electric

    Soluionarea numeric a ecuaiei difereniale

    corespunztoare circuitului, cu variabil necunoscut tensiunea la bornele descrctorului, indicvariaiile care apar pentru diferite sarcini capacitive:

    Variaa tensiunii pentru diferite sarcini capacitive

    Analiza comportrii descarctoarelor de supratensiuni

  • 7/30/2019 Curs 12 13 Cmaie Micu

    14/124

    Analiza stabilitii la mari perturbaii a unui generator electric racordat la SE

    Se consider

    un sistem electroenergetic (SEE) de configuraie simpl

    :generator sincron (GS), legat la un sistem de putere infinit printr-o reearadial (transformator bloc i linie dublu circuit de nalt tensiune).

    Cunoscnd parametrii elementelor de sistem i datele referitoare la un anumitregim de funcionare, se cere s se elaboreze un program de calcul pentruanaliza stabilitii la mari perturbaii a GS prin rezolvarea numeric a

    ecuaiilor difereniale care descriu funcionarea n regim tranzitoriu a SEE.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    15/124

    Modelul matematicAnaliza stabilitii la mari perturbaii se face prin integrarea ecuaiei

    difereniale de micare a ansamblului rotoarelor generatorului iturbinei:d

    d tM

    P P Hm e

    2

    2

    1= ( )

    rezultnd curba de variaie n timp a unghiului intern al generatorului(curba de oscilaie) i cea a vitezei unghiulare (reprezentnd, de fapt,abaterea vitezei unghiulare fa de turaia sincron

    s

    = 314 rad/s)

    Analiza formei acestor curbe ofer informaii n privina stabilitii saua instabilitii generatorului la perturbaia considerat.

    M - constanta mecanic a ansamblului turbin-generator, Pm - putereamecanic a GS, Pe - puterea electric a GS, H - constanta de amortizare(nglobnd efectele tuturor surselor de amortizare a oscilaiilor).

  • 7/30/2019 Curs 12 13 Cmaie Micu

    16/124

    d

    d td

    d t MP P Hm e

    =

    =

    1( )

    t

    t

    t

    0

    0 0

    0 0

    0=

    =

    =

    ( )

    ( )

    Ecuaia diferenial de ordin II se poate scrie sub forma unui sistem de dou ecuaiidifereniale de ordinul nti:

    unde variabila independent este timpul t, iar puterea electric are expresia:

    P P Pe e e= + 1 2 sin( )

    unde Pe1, Pe2 i sunt constante, avnd valorile dependente de parametrii elementelor de sistemi de regimul de funcionare a sistemului!!!

    Condiiile iniiale cunoscute sunt definite de relaia

    n concluzie, analiza stabilitii tranzitorii se face prin rezolvareanumeric a sistemului de ecuaii difereniale cu condiiile iniialepentru t [ 0;tfinal ] i interpretarea rezultatelor obinute.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    17/124

    0.30

    0.34

    0.38

    0 0.5 1 1.5 2 2.5t [s]

    [rad]

    -0.20

    -0.10

    0.00

    0.10

    0.20

    0.30

    0 0.5 1 1.5 2 2.5

    t [s]

    [rad/s]

    Curba de variaie n timp a unghiului intern

    Curba de variaie n timp a vitezei unghiulare

  • 7/30/2019 Curs 12 13 Cmaie Micu

    18/124

    Studiul performanelor dinamice ale motoarelor liniare de inducie, atunci cnd serealizeaz compensarea serie este o problem studiat n domeniul proiectriimainilor electrice, acolo unde este necesar s s obin cupluri de pornire iacceleraii ridicate. Aplicaii: utilaje industriale, traciune electric. Figura de mai josindic modelul unei maini liniare de inducie si transpunerea acestui model fizic ntr-

    un circuit electric:

    Studiul performanelor dinamice ale unui motor de inductie

  • 7/30/2019 Curs 12 13 Cmaie Micu

    19/124

    Modelul matematic al acestui circuit este constituit dintr-o ecuaiediferenial, de unde rezult variaia curentului n condiii dinamice.

    Pe baza expresiei numerice a curentului, se deduce variaia cuplului, nraport cu reglajul vitezei mainii liniare:

    Fig. 13.3. Variaia cuplului n raport cu reglajul vitezei

    S-a prezentat astfel un model de problem a crei soluionare estecondiionat de integrarea numeric a unor ecuaii difereniale.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    20/124

    How to obtain uncoupled 2. orderPDEs from physical laws?

    Example: From Maxwell equations to

    wave equations. Maxwell equations are a coupled system of

    first order vector PDEs. Can we reformulate this equations

    to a more simple form?

    Here we use the electromagnetic potentials,vector potential and scalar potential.

    Analiza ecuatiilor de camp electromagnetic

  • 7/30/2019 Curs 12 13 Cmaie Micu

    21/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    22/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    23/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    24/124

    What do we win with wave equations?

    Inhomogenous coupled system of

    Maxwell reduces to wave equations. We get 2. order scalar PDEs

    for components of electric andmagnetic potentials.

    Equation are not coupled and have

    same form. Well known methods exist to solvethese wave equations.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    25/124

    Wave equation Electric charges and currents on right side of

    wave-equation can be computed from othersources

    Moments of electron and ion-distribution inspace-plasma.

    The particle-distributions can be derived from

    numerical simulations Here we study the wave equation in vacuum for

    simplicity.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    26/124

    Wave equation in vacuum

  • 7/30/2019 Curs 12 13 Cmaie Micu

    27/124

    Ecuaia liniilor de camp create de o sarcin n micare n planul 21oxx sub aciuneaunui cmp de fore, este o ecuaie diferenial total exact;

    Pentru rezolvarea numeric a ecuaiilor difereniale ca model matematic rezultat prinstudiul (analiza) numeric a circuitelor electrice n regim tranzitoriu avem de construit mai

    muli pai. Finalitatea este determinarea variaiei n timp a curenilor prin laturile unui

    circuit RLC alimentate de la surse de tensiune sau curent variabile n timp. Intervalul de

    timp n care se face analiza [ ]maxt,t0 este mprit ntr-o reea de discretizare uniform cupasul h si n noduri kt ;

    Micarea unui electron supus unui cmp electric Er

    i a unui cmp magnetic Hr

    satisface ecuaia diferenial vectorial: )HvE(m

    |e|

    dt

    vd rrrr

    0+= ;

    Rezolvarea unei ecuaii difereniale asociate unui circuit electric de ordin I sau IIexcitat cu un impuls regim tranzitoriuCondensator de capacitate C care se ncarc de la o surs de tensiune continu E,

    printr-un rezistor de rezisten R.

    Descrcare unui condensator de capacitate C, ncrcat iniial la tensiunea E, pe unrezistor de rezisten R.

    Alte aplicatii

    T t i t l id d i l d i d t t

  • 7/30/2019 Curs 12 13 Cmaie Micu

    28/124

    Testarea varistoarelor cu oxid de zinc, la descrcri de trsnet;Calculul regimului tranzitoriu al unui motor electric asincron; sistem de ecuaiidifereniale;

    Studiul efectului de stimulare magnetic a esuturilor nervoase;Determinarea caracteristicilor magnetice neliniare ale unor dispozitiveelectromagnetice, prin testarea experimental cu semnale alternative sinusoidale, sau ntrepte;

    Caracterizarea comportrii n regim dinamic a motoarelor cu reluctan variabil(SRM), n vederea mbuntirii parametrilor constructivi pentru reducerea variaiilorrapide de cuplu;Proiectarea cuplajelor motor main de lucru, care utilizeaz fluide magneto-rheologice, cu proprieti de orientare sub aciunea unui cmp magnetic;Proiectarea estimatoarelor de vitez la motoarele electrice cu flux transversal ireluctan variabil (Transverse Flux Reluctance Machines, TFRM); se realizeazstudiul comportrii n condiiile reglajului de vitez;Reprezentarea ca i circuit i simularea funcional a unei celule nervoase;

    Studiul comportrii unui galvanometru cu cadru mobilSimularea comportrii n regim tranzitoriu a miezurilor magnetice din diferitemateriale, utilizate pentru fabricarea transformatoarelor de putere;Studiul declanrii accidentale a proteciilor difereniale, datorit componentei

    continue i a armonicilor care apar n curentul de magnetizare la cuplareatransformatoarelor de putere.

    1. S se arate care este soluia problemei Neumann (dac exist) pentru sfera de raza cuAlt li tii

  • 7/30/2019 Curs 12 13 Cmaie Micu

    29/124

    . S se e c e es e so u p ob e e eu (d c e s ) pe u s e de a cu

    condiia 3cos4cos2 =

    n

    upe suprafaa sferei.

    2. S se afle soluia ecuaiei 22

    2

    2

    2

    =

    +

    =

    y

    u

    x

    uu , n dreptunghiul ax

  • 7/30/2019 Curs 12 13 Cmaie Micu

    30/124

    ; y

    limit 0),0( =yu ; 0),( =yau ;

    =a

    xAxu 1)0,( ; 0),( =xu .

    2. S se afle repartiia potenialului n interiorul unui cilindru drept nchis la baze tiindc:

    a) pe ambele baze potenialul are valoarea zerob) pe suprafaa lateral potenialul este o funcie dat de z.

    3. S se afle repartiia potenialului n interiorul unui cilindru circular drept nchis la bazainferioar, prezentat n figura, tiind c:

    a. Pe suprafaa laterali pe baza inferioar potenialul este nul.

    b. La baza superioar aplicm un capac circular plan pe care potenialul este constant i

    egal cu0

    u .

    4. Se considera o linie de transmisie fr distorsiuni CGLR = de lungime finit l, estencrcat la un potenial E. Captul x=l este izolat, iar la momentul t=0 captul x=0

    este pus la pmnt. S se demonstreze c potenialul n punctul x este:

    =

    +

    +

    +=

    0 2)12(sin

    2)12(cos

    1214

    n

    t

    lxn

    ltan

    neEv

    ; unde LR= ; LCa 12 = .

    h

    z

    y

    xO

    A(a,0,0) u=0

    u=0

    u=u0

    I Rezolvarea numerica a ecuatiilor

  • 7/30/2019 Curs 12 13 Cmaie Micu

    31/124

    Ecuaiile difereniale cu derivate pariale de tip eliptic sunt asociate problemelor de stristaionare sau de echilibru. Exemplele cele mai cunoscute de ecuaii eliptice sunt cele de tipPoisson, i cele de tip Laplace

    Typically used to characterize steady-state boundary value problems

    Au

    xB

    u

    x yC

    u

    yD

    2

    2

    2 2

    20+ + + =

    I. Rezolvarea numerica a ecuatiilor

    eliptice

    )y,x(fy

    u

    x

    uu

    2

    2

    2

    22 =

    +

    = 0

    y

    u

    x

    uu

    2

    2

    2

    22 =

    +

    =

    Poisson i Laplace:

    Observaie: Ne vom mrgini la cazul bidimensional. Extinderea procedeelor de

    rezolvare pentru cazul tridimensional nu prezint dificulti teoretice. Domeniul deintegrare a ecuaiilor eliptice n dou dimensiuni este o suprafa S mrginit de conturulnchis C. Condiiile pe frontier specific de obicei fie valoarea soluiei fie valoareaderivatei acesteia pe normala n orice punct al lui C. Aceste dou tipuri de condiiidefinesc problemele Dirichlet respectiv Neumann. Alteori condiiile pe frontier sunt datesub forma unei combinaii liniare a celor dou tipuri.

    P i E i

  • 7/30/2019 Curs 12 13 Cmaie Micu

    32/124

    2

    2

    2

    2

    u

    x

    u

    y

    f x y+ = ( , )

    Now lets consider solution techniques.

    Poisson Equation

    Ecuaia care definete potenialul electric ntr-un punct de coordonate (x,y,z) dininteriorul unei suprafee nchise pe care este distribuit o sarcin electric de densitatesuperficial este de tip Poisson, fiind permitivitatea dielectric a mediului

    2 V =2

    2

    x

    V

    +

    2

    2

    y

    V

    +

    2

    2

    z

    V

    = -

    unde variabilele x [0,a]; y [0,b].

    Condiiile pe frontier reprezentnd valorile lui u(x,y) pentru x = 0 i x = a ,respectiv pentru y = 0 i y = b , unde s(y) , d(y) , f(x) i g(x) sunt funcii cunoscute.

    u y s y( , ) ( )0 = u a y d y( , ) ( )=

    u x f x( , ) ( )0 = u x b g x( , ) ( )=

    We will consider cases involving electromagnetic field computation

    Domeniul de definiie limitat i n partea superioar, se discretizeaz cu pasul hx dup

  • 7/30/2019 Curs 12 13 Cmaie Micu

    33/124

    o e u de de e a pa ea supe oa , se d sc e ea cu pasu x dupvariabila x , respectiv cu pasul hy dup variabila y . Se consider c exist n intervale hxpe axa x , respectiv m intervale hy pe axa y . Valorile funciei u n nodurile reelei de

    discretizare se noteaz cu ui,j, semnificnd u(xi,yj), pentru xi = ihx i yj = jhy .Rezolvarea ecuaiei difereniale cu derivate pariale de tip eliptic nseamn, de fapt, calcululvalorilor u(xi,y ) pentru i = 1, 2, ..., n-1 ,j = 1, 2, ..., m-1

    Metode de soluionare cu diferene finite

  • 7/30/2019 Curs 12 13 Cmaie Micu

    34/124

    Metode de soluionare cu diferene finiteElementul specific al metodei - valorile necunoscute ale funciei u(x,y) se calculeaz n modindirect n funcie de cele cunoscute, aproximnd operatorii difereniali prin operatori de diferene

    finite i soluionnd sistemele de ecuaii liniare care rezult n aceste condiii.Metoda foloseste pentru operatorii difereniali de ordinul al doilea - relaiile (deduse in cursulprecedent) care conin numai valori ale funciei u(x,y) corespunztoare lui xi , respectiv lui yj :

    2

    2

    1 1

    2

    2u

    x

    u u u

    hi j

    i j i j i j

    x,

    , , ,

    =

    ++

    2

    21 1

    2

    2u

    y

    u u u

    hi j

    i j i j i j

    y,

    , , ,= ++

    nlocuind expresiile n relaia care definete ecuaia diferenial de tip eliptic, rezult:

    j,i

    y

    j,ij,ij,i

    x

    j,ij,ij,i

    fh

    uuu

    h

    uuu

    =

    +

    +

    + ++2

    11

    2

    11 22

    2

    2

    2

    2

    u

    x

    u

    yf x y+ = ( , )

    Pentru cazul particular cnd se adopt acelai pas de discretizare h dup cele dou axe ( hx = hy= h ), relaia ajunge la forma relativ mai simpla:

    j,ij,ij,ij,ij,ij,i fhuuuuu =+++ ++ 21111 4

    Relaiile de forma scrise pentru i = 1, 2, ..., n-1 , j = 1, 2, ..., m-1 , conduc la un sistem

  • 7/30/2019 Curs 12 13 Cmaie Micu

    35/124

    Dirichlet boundary conditions: u is specified at theboundary

    Neumann boundary condition: the derivative of u isspecified

    Combination of both u and its derivative (mixedboundary condition) Algoritmul este formula n 5 puncte i trebuie scris acest

    algoritm sub form matricial.

    Condiiile pe frontier ne dau valorile urmtoare: j,0u , (j = 0, 1, 2, , p); 0,iu , (i = 0, 1, 2, , p);

    j,pu , (j = 0, 1, 2, , p); p,iu , (i = 0, 1, 2, , p).

    Prin urmare avem de determinat (p-1) x (p-1) valori j,iu , (i,j= 0, 1, 2,,p-1)

    p , , , , j , , , ,liniar de ecuaii de ordinul (n-1) (m-1) = n m - n - m + 1 , necunoscutele fiind ui , j = u(x i , y j) , i = 1, 2, ..., n-1 , j = 1, 2, ..., m-1 , care se rezolv cu metodele prezentate n

    cursul 3, aplicate ntr-o manier ct mai eficient.Equation holds on inner points onlyon the boundary we specify

    Boundary Conditions :

    Avem trei cazuri:

  • 7/30/2019 Curs 12 13 Cmaie Micu

    36/124

    1. Dou din cele 5 valori ale lui u sunt cunoscute din condiiile pe frontier.Acest caz se ntmpl n cele 4 coluri:

    1ji == ; 1pji == ; 1pi = ; 1j = ; 1i = ; 1pj = .n acest caz algoritmul are trei necunoscute n membrul stng.De exemplu pentru 1ji == avem:

    1,11,22,11,1 buuu4 =++ 1,00,112

    1,1 uufhb =

    2. Una din cele 5 valori ale lui u este cunoscut din condiiile iniiale. Pentrutoate punctele orizontale i verticale adiacente frontierei, cu excepiacolurilor

    1i = sau 1pi = i (j = 2, 3 , p-2);1j = sau 1pj = i (i = 2, 3 , p-2);

    n acest caz algoritmul conine patru necunoscute.De exemplu pentru 1i = , 3j = avem:

    3,13,24,13,12,1 buuu4u =++

    3. Cazul punctelor interioare cnd nici una din valorile lui u care intervin n(2) nu este furnizat de condiiile pe frontier. Acesta este cazul cel mai

    frecvent i are loc pentru orice pereche (i, j) i = 2, 3 , p-2 i j = 2, 3 , p-

    iar algoritmul se scrie:

    j,ij,1i1j,ij,i1j,ij,1i buuu4uu =+++ ++

    3,03,12

    3,1 ufhb =

    j,i2

    j,i fhb =

    Avem toate elementele necesare pentru a scrie algoritmul n forma matricial:

  • 7/30/2019 Curs 12 13 Cmaie Micu

    37/124

    buA =

    A matrice ptratic (p-1) x (p-1)u, b matrici coloan cu (p-1) x (p-1) elemente.

    Matricea A are structura:

    =

    M

    I

    I

    MI

    ......

    IMIIM

    A

    =

    41

    14

    141

    141

    14

    .......M

    =

    1p,1p

    2,1p

    1,1p

    1p,2

    2,2

    1,2

    1p,1

    2,1

    1,1

    u

    uu

    u

    u

    u

    u

    u

    u

    u

    M

    K

    M

    K

    M

    =

    11

    2111

    12

    22

    12

    11

    21

    11

    p,p

    ,p

    ,p

    p,

    ,

    ,

    p,

    ,

    ,

    b

    bb

    b

    b

    b

    b

    b

    b

    b

    M

    K

    M

    K

    M

    Deci rezolvarea numeric a ecuaiei Poisson conduce la rezolvarea unui sistem deecuaii liniare.

    Aplicatia 1.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    38/124

    Aplicatia 1.

    Se consider ecuaia diferenial cu derivate pariale de tip eliptic definit de relaia cu

    condiiile pe frontier, domeniul de variaie pentru cele dou variabile fiind precizat2

    2

    2

    24

    u

    x

    u

    y+ =

    u y s y( , ) ( ) = y20 = u a y d y( , ) ( ) = 1+ y2=

    u x f x( , ) ( ) = x20 = u x b g x( , ) ( ) =1+ x2=

    xy

    0;10 ;1[ ]

    [ ]

    Soluionarea se efectueaz cu algoritmul prezentat (Metoda cu diferene finite), pentru paiide discretizare adoptndu-se valorile h x = 0,25 ( n = 4 ), respectiv h t = 0,25 ( m = 4 ),

    ceea ce conduce la x0 = y 0 = 0 , x 1 = y 1 = 0,25 , x 2 = y 2 = 0,50 , x 3 = y 3 = 0,75 , x 4 =y 4 = 1 . Rezult un sistem liniar de ordinul 9 , avnd ecuaiile de forma

    4 1 0 1 0 0 0 0 0

    1 4 1 0 1 0 0 0 0

    0 1 4 0 0 1 0 0 01 0 0 4 1 0 1 0 0

    0 1 0 1 4 1 0 1 0

    0 0 1 0 1 4 0 0 1

    0 0 0 1 0 0 4 1 0

    0 0 0 0 1 0 1 4 10 0 0 0 0 1 0 1 4

    1 1

    2 1

    3 1

    1 2

    2 2

    3 2

    1 3

    2 33 3

    u

    u

    uu

    u

    u

    u

    uu

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,,

    =

    0 0625 0 0625 0 0625

    0 0625 0 2500

    0 0625 0 5625 106250 0625 0 2500

    0 0625

    0 0625 12500

    0 25 0 5625 10625

    0 25 125000 25 15625 15625

    44

    44

    4

    44

    44

    , , ,

    , ,

    , , ,, ,

    ,

    , ,

    , , ,

    , ,, , ,

  • 7/30/2019 Curs 12 13 Cmaie Micu

    39/124

    Rezultatele obinute, mpreun cu valorile corespunztoare condiiilor pe frontier, adictoate valorile funciei u(x,y) , sunt prezentate n tabel. Aa cum era de ateptat, pe baza

    formei expresiilor care definesc condiiile pe frontiere, se remarc o simetrie a valorilorcalculate fat de diagonala principal.

    j \ i 0 1 2 3 4 i / j0 0,0000 0,0625 0,2500 0,5625 1,0000 01 0,0625 0,1250 0,3125 0,6250 1,0625 12 0,0625 0,3125 0,5000 0,8125 1,2500 23 0,5625 0,6250 0,8125 1,1250 1,5625 3

    4 1,0000 1,0625 1,2500 1,5625 2,0000 4j / i 0 1 2 3 4 i \ j

    Aplicatia 2.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    40/124

    Se prezint structura sistemului liniar de ecuaii pentru situaia particular n = 5 i m =4 , care rezult de ordinul 12 , remarcndu-se forma matricei coeficienilor. Reeaua dediscretizare corespunztoare este prezentat n figura.

    4 1 0 0 1 0 0 0 0 0 0 0

    1 4 1 0 0 1 0 0 0 0 0 0

    0 1 4 1 0 0 1 0 0 0 0 0

    0 0 1 4 0 0 0 1 0 0 0 0

    1 0 0 0 4 1 0 0 1 0 0 0

    0 1 0 0 1 4 1 0 0 1 0 0

    0 0 1 0 0 1 4 1 0 0 1 0

    0 0 0 1 0 0 1 4 0 0 0 1

    0 0 0 0 1 0 0 0 4 1 0 0

    0 0 0 0 0 1 0 0 1 4 1 0

    0 0 0 0 0 0 1 0 0 1 4 1

    0 0 0 0 0 0 0 1 0 0 1 4

    =

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    h s f

    h f

    h f

    h d f

    h s

    h

    h

    1 1

    2 1

    3 1

    4 1

    1 2

    2 2

    3 2

    4 2

    1 3

    2 3

    3 3

    4 3

    21 1 1 1

    21 2 2

    21 3 3

    21 4 1 4

    22 1 2

    22 2

    22

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    3

    22 4 2

    23 1 3 1

    23 2 2

    23 3 3

    2 3 4 3 4

    h d

    h s g

    h g

    h g

    h d g

    p

    II Rezolvarea numerica a ecuaiilor

  • 7/30/2019 Curs 12 13 Cmaie Micu

    41/124

    II. Rezolvarea numerica a ecuaiilor

    hiperboliceUn exemplu clasic n electrotehnic de ecuaie cu derivate de tip hiperbolic este ceacare descrie funcionarea liniilor electrice lungi n regim armonic, numit ecuaiatelegrafitilor:

    Dac se dorete rezolvarea ecuaiei telegrafitilor n cazul general al regimuluitranzitoriu trebuiesc avute n vedere unde multiple care se propag pe linie, unde carese reflect, se refract i se atenueaz n funcie de conductoarele liniei, de mediul(dielectricul) nconjurtori de condiiile iniiale i la limit impuse de regimul tranzitoriu.n cazul regimului staionar rezolvarea ecuaiei pune n eviden propagarea pe linie a

    unor unde asociate avnd frecvena sursei de alimentare.

    ( )2 2

    0 0 0 0 0 0 0 02 2

    u u uR G u R C G L L C

    x t t

    = + + +

    unde u(x,t) reprezint valoarea instantanee a tensiunii de faz la momentul t > 0 ntr-un

    anumit punct al liniei, de lungime total , definit prin distana x [ 0 ; ] fa de sfrit,iar R0,L0,G0 i C0 sunt parametrii unitari ai liniei (rezistena, inductana, conductana icapacitatea pe unitate de lungime).

  • 7/30/2019 Curs 12 13 Cmaie Micu

    42/124

    Consider one segment at position x along the line:

    S d d t l h ' ti

  • 7/30/2019 Curs 12 13 Cmaie Micu

    43/124

    Second order telegrapher's equation

    ( )2 2

    0 0 0 0 0 0 0 02 2

    u u uR G u R C G L L C

    x t t

    = + + +

    ( )

    2 2

    0 0 0 0 0 0 0 02 2i i iR G i R C G L L Cx t t = + + + If the line is lossless, then R0 = G0 = 0, therefore:

    2

    2

    22

    2

    002

    2 1

    t

    i

    vt

    iCL

    x

    i

    =

    =

    22

    222 1

    tu

    vxu

    =

    00

    1CL

    v

    =

    The velocity of the propagating wave for a 2parallel wire TL with diameters muchsmaller than the distance between the axesand the length of the TL

    The voltage and current traveling along the TL are governed by waveequations

  • 7/30/2019 Curs 12 13 Cmaie Micu

    44/124

    BMTL-Software Applications

  • 7/30/2019 Curs 12 13 Cmaie Micu

    45/124

    Branched Multi-conductor TL

    A1. Signal propagation along

    a 3 TL network

    A3 Propagation of the signal along

    A2. Propagation of a signal along a

    coaxial cable

  • 7/30/2019 Curs 12 13 Cmaie Micu

    46/124

    A3. Propagation of the signal along

    a TL with 2 parallel conductors

    A4. Signal propagation along a TL

    excited by a incident plane wave

    coaxial cable

    Dac se consider linii electrice lungi ideale, cu alte cuvinte se neglijeaz pierderilelongitudinale i transversale de putere activ (R=G=0 )

  • 7/30/2019 Curs 12 13 Cmaie Micu

    47/124

    longitudinale i transversale de putere activ (R G 0 )

    2

    2

    x

    u

    = LC 2

    2

    t

    u

    ; u(x,t) = u

    Prezentarea metodelor de soluionare numeric a ecuaiilor hiperbolice va fi fcutpentru ecuaia diferenial de forma

    22

    22

    u

    x

    u

    t=

    domeniul de variaie pentru cele dou variabile fiindxt

    0,0,t

    f

    [ ]

    [ ]

    Condiiile iniiale reprezentnd valorile funciei u(x,t) i ale derivatei sale pariale nraport cu variabila t pentru t = 0 sunt

    u x f x( , ) ( )0 = u x tt

    g x

    t

    ( , )( )

    =

    =

    0

    f(x) i g(x) - funcii cunoscute

    Condiiile pe frontier reprezentnd valorile funciei u(x,t) pentru x = 0 si pentru x = 1

    u t s t( , ) ( )0 = u t d t( , ) ( )1 = s(t) i d(t) - funcii cunoscute.

    Domeniul de definiie se discretizeaz cu pasul hxdup variabila x , respectiv cu pasul ht dup

  • 7/30/2019 Curs 12 13 Cmaie Micu

    48/124

    dup variabila x , respectiv cu pasul ht dupvariabila t . Se consider c exist n intervale hx

    pe axa x , respectiv m intervale ht pe axa t .Valorile funciei u n nodurile reelei de discretizarese noteaz cu ui,j , semnificnd u(xi,tj) ,pentru xi = ihx i tj = jht .

    Rezolvarea ecuaiei cu derivate partiale se va face progresiv: pornind de la condiiileiniiale definite se determin succesiv valorile funciei u pentru

    t1 = h t , t2 = 2ht , ... , tm = mht , adic ui,1, i = 1, 2, ..., n-1,ui,2, i = 1, 2, ..., n-1 , ... , ui,m , i = 0, 1, 2, ..., n-1 .

    Algoritm explicit pentru soluionarea ecuatiilor hiperbolice

  • 7/30/2019 Curs 12 13 Cmaie Micu

    49/124

    Elementul specific al metodelor cu algoritm explicit const n aceea c valorilenecunoscute se calculeaz n mod direct n funcie de cele cunoscute, prin aproximarea

    corespunztoare a operatorilor difereniali cu operatori de diferene finite.

    Versiunea clasic a metodei cu algoritm explicit utilizeaz cea mai simpl modalitate deaproximare numeric a operatorilor difereniali, astfel nct s rezulte relaii directe decalcul al valorilor funciei u(x,t) n punctele definite de nodurile reelei de discretizare.

    Dac se consider ecuaia hiperbolic, atunci trebuie s se efectueze discretizareapentru operatorul diferenial de ordinul al doilea 2/ x2 , 2/ t2 . n acest scop, seutilizeaz elementele prezentate n legtur cu diferenele finite, precum i cu metodele

    i formulele de derivare numeric, n cursul 10:2

    21 1

    2

    2u

    x

    u u u

    hi j

    i j i j i j

    x,

    , , ,= ++ 2

    21 1

    2

    2u

    t

    u u u

    hi j

    i j i j i j

    t,

    , , ,= ++

    2

    2

    2

    2

    u

    x

    u

    t=

    Inlocuind in ecuatia hiperbolica rezulta relaia caracteristic a metodei explicite

    u u r u r u ui j i j i j i j i j, , , , ,( ) ( )+ + = + + +1 1 1 12 1

    unde coeficientul r se determin cu relaiar

    h

    h

    t

    x=

    2

    2

    Rezolvarea efectiv a ecuaiei hiperbolice cu condiiile iniiale i cu condiiile pefrontier date implic aplicarea relaiei explicite pentru determinarea succesiv a

  • 7/30/2019 Curs 12 13 Cmaie Micu

    50/124

    p p p pvalorilor

    ui,2, i = 1, 2, 3, ..., n-1 , ui,3 , i = 1, 2, 3, ..., n-1 , ... , ui,m , i = 1, 2, ..., n-1 , adic pentru j = 1,2, ..., m-1 , i = 1, 2 , ..., n-1

    Se observ c relaia dedusa nu se poate utiliza la calculul valorilor func iei u(x,t) pentrut1 = ht , deoarece apare i indicele j -1 (pentru j+1= 1 sunt disponibile numai valorile

    corespunztoare lui j = 0, date chiar de condiiile iniiale). n consecin, pentru demarareaalgoritmului trebuie gsit o alt relaie de calcul, care s utilizeze numai condiiile iniiale. nacest scop, pentru operatorul diferenial / t se folosete cea mai simpl relaie de derivarenumeric care definesc diferen ele finite de ordinul 1 , rezultnd

    ut

    u u

    hii i

    t,, ,

    001=

    ceea ce conduce la expresia pentru valorile cutate u i,1 , i = 1, 2, ..., n-1

    u h g f i t i i,1 = +

    Algoritmul prezentat este stabil numeric pentru valori subunitare ale parametrului, exist i

    posibilitatea adoptrii unor alte relaii de discretizare pentru operatorii difereniali, rezultnd metodedirecte mai sofisticate de rezolvare a ecuaiilor difereniale de tip hiperbolic

    Aplicatie 1.Soluionarea numeric cu metoda explicita a unei ecuaii difereniale hiperbolice pentru tf= 1

  • 7/30/2019 Curs 12 13 Cmaie Micu

    51/124

    2

    2

    2

    2uxu

    t= u x f x( , ) ( ) = (x )0 = sin u x tt g xt

    ( , ) ( ) = 0=

    =0

    u t s t( , ) ( ) = 00 = u t d t( , ) ( ) = 01 =xt

    0;10;t

    f

    [ ]

    [ ]

    Soluionarea se efectueaz cu algoritmul prezentat, pentru paii de discretizare adoptndu-se

    valorile hx = 0,1 ( n = 10 ), respectiv ht = 0,1 ( m = 10 ), ceea ce pentru coeficientul rnseamn r = 0,12/0,1

    2 = 1 .Forma condiiei iniiale i a condiiilor pe frontier indic simetria funciei u(x,t)

    fa de x = 0,5 , ceea ce nseamn ui,j = u10-i,j , i = 1, 2,3,4. Rezultatele complete suntdate n tabelul 12.5.8. Pentru primele dou linii (corespunztoare lui j = 1, 2 ) se prezint

    n detaliu calculul valorilor u1,j, u2,j , u3,j , u4,j i u5,j (valorile aferente ale variabilei xfiind x1= 0,1,x2 = 0,2,x3 = 0,3,x4 = 0,4, x5 = 0,5, iar x0 = 0 i x10 = 1 reprezentndfrontierele domeniului :

    a) valorile pentru t1 = 0,1, innd cont de faptul c 1- r = 0 , respectiv g i = 0

    u h g r f r f f t1 1 1 1 2 01 0 5 0 5 1 0 5878 0 0 2939, ( ) , ( ) , ( , ) ,= + + + = + =

    u h g r f r f f t2 1 2 2 3 11 0 5 0 5 1 0 8090 0 3090 0 5590, ( ) , ( ) , ( , , ) ,= + + + = + =

    u h g r f r f f t3 1 3 3 4 21 0 5 0 5 1 0 9511 0 5878 07694, ( ) , ( ) , ( , , ) ,= + + + = + =

    u h g r f r f f t4 1 4 4 5 31 0 5 0 5 1 10000 0 8090 0 9045, ( ) , ( ) , ( , , ) ,= + + + = + =

    u h g r f r f f t5 1 5 5 6 41 0 5 0 5 1 0 9511 0 9511 0 9511, ( ) , ( ) , ( , , ) ,= + + + = + =

    b) valorile pentru t2 = 0,2 (innd cont c 1- r = 0 )

    u u r u r u u2 1( ) ( )= + + + =

  • 7/30/2019 Curs 12 13 Cmaie Micu

    52/124

    u u r u r u u1 2 1 0 11 2 1 0 12 1

    0 3090 1 0 5590 0 0000 0 2500, , , , ,( ) ( )

    , ( , , ) ,

    = + + + =

    = + + =

    u u r u r u u2 2 2 0 2 1 3 1 112 10 5878 1 0 7694 0 2939 0 4755

    , , , , ,( ) ( ), ( , , ) ,

    = + + + == + + =

    u u r u r u u3 2 3 0 3 1 4 1 2 12 1

    0 8090 1 0 9045 0 5590 0 6545, , , , ,( ) ( )

    , ( , , ) ,

    = + + + =

    = + + =

    u u r u r u u

    4 2 4 0 4 1 5 1 3 1

    2 1

    0 9511 1 0 9511 07694 0 7694, , , , ,( ) ( )

    , ( , , ) ,

    = + + + =

    = + + =

    u u r u r u u5 2 5 0 5 1 6 1 4 12 1

    10000 1 0 9045 0 9045 08090, , , , ,( ) ( )

    , ( , , ) ,

    = + + + == + + =

    j tj u0, j u1, j u2, j u3, j u4, j u5, j0 0,0 0,0000 0,3090 0,5878 0,8090 0,9511 1,0000

    1 0,1 0,0000 0,2939 0,5590 0,7694 0,9045 0,9511

    2 0,2 0,0000 0,2500 0,4755 0,6545 0,7694 0,8090

    3 0,3 0,0000 0,1816 0,3455 0,4755 0,5590 0,5878

    4 0,4 0,0000 0,0955 0,1816 0,2500 0,2939 0,3090

    5 0,5 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

    6 0,6 0,0000 -0,0955 -0,1816 -0,2500 -0,2939 -0,3090

    7 0,7 0,0000 -0,1816 -0,3455 -0,4755 -0,5590 -0,5878

    8 0,8 0,0000 -0,2500 -0,4755 -0,6545 -0,7694 -0,8090

    9 0,9 0,0000 -0,2939 -0,5590 -0,7694 -0,9045 -0,9511

    10 1,0 0,0000 -0,3090 -0,5878 -0,8090 -0,9511 -1,0000

    Observat ion 1.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    53/124

    This simplest case is where the boundaries are specif ied as f ixedvalues. This case is known as the Dirichlet boundary condit ions.

    u1

    u2

    u3

    u4

    Obse at oLet s consider how to model the Dir ichlet boundary condit ion

    Consider how we can deal with the lower node shown, u1,1

  • 7/30/2019 Curs 12 13 Cmaie Micu

    54/124

    u1

    u2

    u3

    u4

    -4u1,1 +u1,2+u2,1+u1 +u4 = 0

    1,2

    1,1 2,1

    Note:

    This grid would resultin nine simult aneous

    equat ions.

    Observat ion 2

  • 7/30/2019 Curs 12 13 Cmaie Micu

    55/124

    Observat ion 2Let s consider how to model the Neumann boundary condit ion

    u

    x

    u u

    x

    i j i j+ 1 1

    2, ,

    centered finite divided differenceapproximation

    suppose we wanted to consider this endgrid point

    (0,100)

    (0,0) (200,0)

    (200,100)u = 0.05x + 100

    0=xu

    0

    22

    22 =+

    y

    u

    x

    u

    0=y

    u

    y

    x

    0=xu

  • 7/30/2019 Curs 12 13 Cmaie Micu

    56/124

    1,2

    1,1 2,1

    0=x

    u

    0=yu

    The two boundaries areconsider to be symmetrylines due to the fact thatthe BC translates in the

    f inite dif ference form to:

    ui+1,j = ui-1,j

    and

    ui,j+1

    = ui , j-1

  • 7/30/2019 Curs 12 13 Cmaie Micu

    57/124

    1,2

    1,1 2,1

    0=yu

    u1,1 = (2u1,2 + 2 u2,1)/ 4

    u1,2 = (u1,1 + u1,3+2u22)/ 42,2

    0=x

    u

    III. Semi-analytic methods to solve

    PDE

  • 7/30/2019 Curs 12 13 Cmaie Micu

    58/124

    PDEs.

    From systems of coupled first order PDEs(which are difficult to solve) to uncoupledPDEs of second order.

    Example: From Maxwell equations

    to wave equation. (Semi) analytic methods to solve the

    wave equation by separation of variables.

    Exercise: Solve Diffusion equationby separation of variables.

    Semi-analytic methods to solve PDEs.

    Variable separation

  • 7/30/2019 Curs 12 13 Cmaie Micu

    59/124

    Example: Homogenous wave equation

    Can be solved by any analytic function f(x-ct) andg(x+ct).

    As the homogenous wave equation is a linearequation any linear combination of f and g is also asolution of the PDE.

    This property can be used to specify boundary andinitial conditions.

    The appropriate coefficients have to be found often

    numerically.

    Variable separation

  • 7/30/2019 Curs 12 13 Cmaie Micu

    60/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    61/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    62/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    63/124

    IV. Remember metode numerice de

    rezolvare a sistemelor de ecuatii

  • 7/30/2019 Curs 12 13 Cmaie Micu

    64/124

    We can interpret u as a vector and write the equationformally as an algebraic matrix equation:

    Theoretical one could solve this algebraicequation by well known algebraicequation solvers like Gauss-Jordan elimination.

    This is very unpractical, however, because Ais very large and contains almost only zeros.

    j,ij,ij,ij,ij,ij,i fhuuuuu =+++ ++2

    1111 4

    How large is A ?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    65/124

    g

    For a very moderate 2D-grid of 100x100-u has 100 x 100= 104 gridpoints, but-A has 104 x 104 =108 entries!

    For 3D-grids typically used in scienceapplication of about 300 x 300 x 300

    -u has 3003= 2.7 *107 gridpoints,-A has (2.7 *107 ) 2 =7.29*1014 entries!

    => Memory requirement for 300-cube to store

    u ~100 MB, A~3Million GByte

    Structure ofA ?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    66/124

    0

    0

    0 0

    How to proceed?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    67/124

    We have reduced our original PDEto algebraic equations (systemof linear equations, because we started

    from a linear PDE.) To do: Solve these equations

    As exact Matrix solvers are of no much usewe solve the equations numerically byRelaxation methods.

    Relaxation: Jacobi method

  • 7/30/2019 Curs 12 13 Cmaie Micu

    68/124

    Relaxation: Jacobi method

    we derived the algebraic equations:

    From

    Assume any initial value, say u=0 on all grid points (exceptthe specified boundary values of course) and compute:

    Use the new values ofu as input for the right side and

    repeat the iteration until u converges. (n: iteration step)

    Jacobi method converge for diagonal

  • 7/30/2019 Curs 12 13 Cmaie Micu

    69/124

    g g

    dominant matrices A.(diagonal entries of A larger than the others)

    This condition is usually fulfilled for Matrixequations derived from finite differencing.(Tridiagonal block matrix: Most entries in A arezeros!)

    Jacobi method converges (but slowly) and can beused in principle, but maybe we can improve it?

    For practice: Method should converge fast!

    Gauss Seidel method

  • 7/30/2019 Curs 12 13 Cmaie Micu

    70/124

    Gauss Seidel method

    Similar as Jacobi method.

    Difference: Use on the right-handside already the new (assumed to be better)approximation un+1

    How fast do the methods

  • 7/30/2019 Curs 12 13 Cmaie Micu

    71/124

    converge?To solve:

    We split A as:LowerTriangle

    DiagonalElements

    UpperTriangle

    For the rth iteration step of the Jacobi method we get:

    How fast do the methods

  • 7/30/2019 Curs 12 13 Cmaie Micu

    72/124

    converge?We have to investigate the iteration matrix

    Eigenvalues of iteration matrix define howfast residual are suppressed. Slowest decaying

    Eigenmode (largest factor) defines convergencerate. => Spectral radius of relaxation operator.0 <

  • 7/30/2019 Curs 12 13 Cmaie Micu

    73/124

    the overall error by a factor of10p

    ?In general:

    For a J x J grid and Dirichlet B.C. one gets:

    Jacobi method Gauss Seidel method

    Can we do better?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    74/124

    Gauss Seideliteration:

    Can be rewritten as:

    Successive Overrelaxation

  • 7/30/2019 Curs 12 13 Cmaie Micu

    75/124

    (SOR)

    Now we overcorrect the residual error by

    overrelaxationparameter

    Method is only convergent for 0

  • 7/30/2019 Curs 12 13 Cmaie Micu

    76/124

    For the optimal overrelaxation parameter w the number

    of iteration steps to reduce the error by 10-p are:

    Number of iteration steps increases only linear with

    the number of mesh points J for SOR method.For Jacobi and Gauss Seidel it was ~J2

    SOR method only more effective when

  • 7/30/2019 Curs 12 13 Cmaie Micu

    77/124

    SOR method only more effective whenoverrelaxation parameter w is close its optimum.

    Some analytic methods exist to estimate optimum w,but often one has to find it empirically.

    Unfortunately the optimum value w does not dependonly on the PDE, but also on the grid resolution.

    The optimum asymptotic w is not necessarily a

    good initial choice. Chebyshev acceleration changes w during iteration.

    Generalization of SOR-method.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    78/124

    Finite difference schemes from 2D-elliptic PDEs have the form:

    for our example

    We iterate for the solution by

    and get:

    Generalization to 3D is straight forward

    Computing time for relaxation methods

    For a J x J 2D-PDE the number of iteration

  • 7/30/2019 Curs 12 13 Cmaie Micu

    79/124

    For a J x J 2D PDE the number of iterationsteps is ~J2 (Jacobi GS) or ~J (SOR)

    But: Each iteration step takes ~J2

    Total computing time: ~J4

    (Jacobi, GaussSeidel)

    ~J3 (SOR-method)

    Computing time depends also on other factors:-required accuracy

    -computational implementation-IDL is much slower as C or Fortran-Hardware and parallelization

    How fast are errors smoothed out?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    80/124

    We use Gauss-Seidel 40x40 box and investigatea high frequency (k=10) disturbance.

    Converged (Error

  • 7/30/2019 Curs 12 13 Cmaie Micu

    81/124

    We use Gauss-Seidel 40x40 box and investigatea low frequency (k=1) disturbance.

    Converged (Error

  • 7/30/2019 Curs 12 13 Cmaie Micu

    82/124

    We use Gauss-Seidel on JxJ boxes and investigatenumber of steps to converge for different frequencies

    28722168800160

    142667261580

    11132474740

    4020101k

    J

    Gauss-Seidel method is very good smoother!

  • 7/30/2019 Curs 12 13 Cmaie Micu

    83/124

    Same test with SOR method

    189179173844160

    15214614121380

    1191121098140

    4020101k

    J

    SOR is a faster solver, but NOT good smoother!

  • 7/30/2019 Curs 12 13 Cmaie Micu

    84/124

    High frequency errors are smoothed out fast.

    Low frequency errors take very longto vanish.

    But the long frequency errors are

    reduced faster on low resolution grids. Can we use this property to speed up

    the relaxation? Yes! The answer is Multigrid

    V. Remember - Finite Differences

  • 7/30/2019 Curs 12 13 Cmaie Micu

    85/124

    How to compute the differential quotient witha finite number of grid points?

    First order and higher order approximations.

    Central and one-sided finite differences.

    Accuracy of methods for smooth and notsmooth functions.

    Higher order derivatives.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    86/124

    Most PDEs cannot be solved analytically. Variable separation works only for somesimple cases and in particular usually notfor inhomogenous and/or nonlinear PDEs.

    Numerical methods require that the PDEbecome discretized on a grid.

    Finite difference methods are popular/most commonly used in science. They replacedifferential equation by difference equations)

    Engineers (and a growing number ofscientists too) often use Finite Elements.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    87/124

    How to compute differential quotient

    numerically? Just apply the formula above for a finite h.

    For simplicity we use an equidistant grid in

    x=[0,h,2h,3h,......(n-1) h] and evaluate f(x)on the corresponding grid points xi.

    Grid resolution h must be sufficient high.

    Depends strongly on function f(x)!

    Remember the definition of differential quotient:

    Accuracy of finite differences0

  • 7/30/2019 Curs 12 13 Cmaie Micu

    88/124

    We approximate the derivative of f(x)=sin(n x) on a grid x=0 ...360 with50 (and 500) grid points by f/dx=(f(x+h)-f(x))/h and comparewith the exact solution df/dx= n cos(n x)

    Average error done bydiscretisation:50 grid points: 0.040500 grid points: 0.004

  • 7/30/2019 Curs 12 13 Cmaie Micu

    89/124

    Average error done bydiscretisation:50 grid points: 2.49

    500 grid points: 0.256

    Higher accuracy methods

  • 7/30/2019 Curs 12 13 Cmaie Micu

    90/124

    Can we use more points for higher accuracy?

    Higher accuracy: Central differences

  • 7/30/2019 Curs 12 13 Cmaie Micu

    91/124

    df/dx=(f(x+h)-f(x))/h computes the derivativeat x+h/2 and not exactly at x.

    The alternative formulae df/dx=(f(x)-f(x-h))/hhas the same shortcomings.

    We introduce central differences:

    df/dx=(f(x+h)-f(x-h))/(2 h) which providesthe derivative at x.

    Central differences are of 2. order accuracy

    instead of 1. order for the simpler methodsabove.

    How to find higher order formulas?

    F ffi i t th f ti d ib th f ti f( )

  • 7/30/2019 Curs 12 13 Cmaie Micu

    92/124

    For sufficient smooth functions we describe the function f(x)locally by polynomial of nth order. To do so n+1grid points are required; n defines the order of the scheme.

    Make a Taylor expansion (Definition ):

    And by linear combination we get the central difference:

  • 7/30/2019 Curs 12 13 Cmaie Micu

    93/124

    At boundary points central differences might not bepossible (because the point i-1 does not exist at theboundary i=0), but we can still find schemes of the

    same order by one-sited (here right-sited) derivative:

    Alternatives to one sited derivatives are periodic

    boundary conditions or to introduce ghost-cells.

    Higher derivatives

    H t d i hi h d i ti ?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    94/124

    How to derive higher derivatives?From the Taylor expansion

    we derive by a linear combination:

    Basic formulae used to discretise2 order Partial Differential Equations

    By using more points (higher order polynomials) toapproximate f(x) locally we can get higher orders, e.g. by an

    i t bi ti f

  • 7/30/2019 Curs 12 13 Cmaie Micu

    95/124

    appropriate combination of:

    we get 4th order central differences:

    Accuracy of finite differences

    We approximate the derivative of f(x)=sin(nx) on a grid x=0 3600

    with

  • 7/30/2019 Curs 12 13 Cmaie Micu

    96/124

    We approximate the derivative of f(x)=sin(nx) on a grid x=0..360 with50 (and 500) grid points with 1th, 2th and 4th order schemes:

    0.00170.131.60n=20, 500 pixel8.19.913.5n=20, 50 pixel

    4.5 10-50.00860.26n=8, 500 pixel0.150.822.49n=8, 50 pixel4.9 10-61.7 10-50.004n=1, 500 pixel5.4 10-60.00170.04n=1, 50 pixel4

    th

    order2th

    order1th

    order

    What scheme to use?

    Higher order schemes give significant better

  • 7/30/2019 Curs 12 13 Cmaie Micu

    97/124

    Higher order schemes give significant betterresults only for problems which are smoothwith respect to the used grid resolution.

    Implementation of high order schemes makes moreeffort and take longer computing time,in particular for solving PDEs.

    Popular and a kind of standard aresecond order methods.

    If we want to feed our PDE-solver with(usually unsmooth) observed data higherorder schemes can cause additional problems.

    VI. Remember - Finite Element

    Method (FEM)

  • 7/30/2019 Curs 12 13 Cmaie Micu

    98/124

    Arbitrary shaped boundaries are difficult to implement infinite difference methods.Alternative: Finite Elements, popular in particular to solve

    PDEs in engineering/structural mechanics.

    Finite Elements

  • 7/30/2019 Curs 12 13 Cmaie Micu

    99/124

    FEM covers the space with finite elements (in 2D oftentriangles, in 3D tetrahedra). The elements do not needto have the same size and shape.

    This allows to use a higher resolution where needed.

    Variational formulation: 1D

    example

  • 7/30/2019 Curs 12 13 Cmaie Micu

    100/124

    exampleIf u fulfills P1 and v(x) is an arbitrary function whichvanishes on the boundary:

    Partial integration of right side

    Weak formulation

    of the PDE

    Solution of weak problem and original PDE are identical.

    Variational formulation: 2D example

    Poisson equation

  • 7/30/2019 Curs 12 13 Cmaie Micu

    101/124

    Poisson equation

    For an arbitrary function v the PDE can again

    be formulated in weak form (using Greens theorem):

    If we find a solution for the weak problem, we

    solved our (strong form) original PDE.Order of derivatives is reduced in weak form,which is helpful to treat discontinuities.

    Shape function v

    How to choose the function v ?

  • 7/30/2019 Curs 12 13 Cmaie Micu

    102/124

    How to choose the function v ? v must be at least once differentiable.

    For FEM-approach one takes polynomialsor in lowest order piecewise linearfunctions:

    1D 2D

    Basis of functions for v

    We choose piecewise linear functions which are one

  • 7/30/2019 Curs 12 13 Cmaie Micu

    103/124

    We choose piecewise linear functions which are oneat a particular grid-point and zero at all other grid-points (triangle or tent-function)

    Basic tent-function (blue)and superposition topiecewise linear function (red)

    We get function value andderivative by interpolation.

    For such base-functions almost allintegrals in the form:

  • 7/30/2019 Curs 12 13 Cmaie Micu

    104/124

    For such base functions almost allintegrals in the form:

    1D 2D

    are zero. Only integrals of elements sharinggrid points (edges of triangles in 2D) arenon-zero.

    From FEM to matrix form

    Lets try to describe the unknown function u(x) and thek f( ) ith th b i f ti

  • 7/30/2019 Curs 12 13 Cmaie Micu

    105/124

    Let s try to describe the unknown function u(x) and theknown f(x) with these basis functions:

    Aim: Find the parameters uk!This will be the solution in FEM-approach.

    How to find this solution?Insert this approaches for u and f into the weak formulation ofthe PDE.

  • 7/30/2019 Curs 12 13 Cmaie Micu

    106/124

    which leads to a system of equations which has to be solvedfor uk. We can write in matrix form:

    Lkj Mkj

    This sparse matrix system can be solved with numericalmethods studied in II year Numerical Methods!

    Lets remember all steps:

    Original PDE( f )

  • 7/30/2019 Curs 12 13 Cmaie Micu

    107/124

    g(strong form)

    PDE inweak form

    PDE indiscretizedform

    Solve corresponding sparse Matrix system:=> Solution of PDE in FEM-approach.

    Finite Element Method are an alternative toFinite Difference Method

  • 7/30/2019 Curs 12 13 Cmaie Micu

    108/124

    Finite Difference Method

    Very good alternative for complicated

    boundaries. PDE is solved in weak form.

    More flexible as finite differences, but alsomore complicated to implement in code.

    Setting up the optimal grid can be tricky.

    (Some research groups only work on this.)

    http://www.comsol.com/shared/downloads/comsol_v4_building_model.pdf

  • 7/30/2019 Curs 12 13 Cmaie Micu

    109/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    110/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    111/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    112/124

    Mathematically the relation between the magnetic and electric field at the boundary are

  • 7/30/2019 Curs 12 13 Cmaie Micu

    113/124

    http://www.comsol.com/shared/downloads/comsol_v4_building_model.pdf

  • 7/30/2019 Curs 12 13 Cmaie Micu

    114/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    115/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    116/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    117/124

    http://www.comsol.com/shared/downloads/comsol_v4_building_model.pdf

  • 7/30/2019 Curs 12 13 Cmaie Micu

    118/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    119/124

    http://www.comsol.com/shared/downloads/comsol_v4_building_model.pdf

  • 7/30/2019 Curs 12 13 Cmaie Micu

    120/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    121/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    122/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    123/124

  • 7/30/2019 Curs 12 13 Cmaie Micu

    124/124