Top Banner
BÀI TOÁN TNG QUÁT kho sát hàm ssau 3 2 y f(x) ax bx cx d,(a 0) Ta lần lượt có Tập xác định: D Gii hn 3 2 x x ,a 0 lim f(x) lim (ax bx cx d) ,a 0 Đạo hàm 2 y' 3ax 2bx c 2 y' 0 g(x) 3ax 2bx c 0 Ta có 2 ' g(x) b 3ac Nếu ' g(x) 0 hàm skhông có cc trNếu ' g(x) 0 hàm scó 2 cc trLưu ý: hàm số bậc 3 không có trường hp có 1 cc trĐạo hàm cp 2 y'' 6ax 2b b y'' 0 6ax 2b 0 x 3a Lp bng biến thiên Kết lun Tùy theo du ca hsa và du ca 2 b 3ac mà ta có kết lun khác nhau vcc trvà các khoảng đồng biến nghch biến ca hàm số. Đồ th
12

Cub

Oct 03, 2015

Download

Documents

Popeye Nguyễn

agfg
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • BI TON TNG QUT

    kho st hm s sau

    3 2y f(x) ax bx cx d,(a 0)

    Ta ln lt c

    Tp xc nh: D

    Gii hn 3 2x x

    ,a 0lim f(x) lim (ax bx cx d)

    ,a 0

    o hm 2y ' 3ax 2bx c

    2y ' 0 g(x) 3ax 2bx c 0

    Ta c 2' g(x) b 3ac

    Nu ' g(x) 0 hm s khng c cc tr

    Nu ' g(x) 0 hm s c 2 cc tr

    Lu : hm s bc 3 khng c trng hp c 1 cc tr

    o hm cp 2 y'' 6ax 2b

    by '' 0 6ax 2b 0 x

    3a

    Lp bng bin thin

    Kt lun

    Ty theo du ca h s a v du ca 2b 3ac m ta c kt lun khc nhau v cc tr v cc khong ng bin nghch bin ca hm s. th

  • hm s nhn 2 3

    2

    b 27a d 9abc 2bU ,

    3a 27a lm im un v cng l

    tm i xng ca th

    th:

    Ty thuc vo bng bin thin m ta c 6 dng th khc nhau ca

    hm s bc 3.

    Mt s tnh cht ca hm bc 3 cn nh l

    Tnh cht 1: hm s ng bin (nghch bin) trn khi v ch khi

    2

    a ( )0

    b 3ac 0

    Chng minh: da vo vic bin lun du ca y ' v nh l o du tam

    thc bc 2. Ta c ngay iu phi chng minh.

    Tnh cht 2: hm s c cc i v cc tiu khi v ch khi 2b 3ac 0

    v nu gi 0x l cc tr ca hm s th gi tr cc tr ca hm s l

    2

    0 0

    6ac 2b 9ad bcy(x ) x

    9a 9a

    Chng minh: hm s c 2 cc tr th phng trnh y ' 0 c 2

    nghim phn bit. Lp bit thc delta ta c ngay iu kin l y ' 0.

    Gi 0x l cc tr ca hm s ta c

    0y '(x ) 0 do ta c

    23 2 2

    0 0 0 0 0 0 0

    2

    0 0

    3ax b 6ac 2by(x ) ax bx cx d (3ax 2bx c) x

    9a 9a9ad bc 3ax b 6ac 2b 9ad bc

    y '(x ) x9a 9a 9a 9a

  • 20

    6ac 2b 9ad bcx

    9a 9a

    Do ta c 2

    0 0

    6ac 2b 9ad bcy(x ) x

    9a 9a

    Tnh cht 3: th hm s bc 3 nhn im un U lm tm i xng

    Tht vy, tnh tin h trc ta v im un U ta c ngay cng thc di trc l

    2 3

    2

    bx X

    3a27a d 9abc 2b

    y Y27a

    Thay vo hm s ta s c

    3 22 3

    2

    23

    27a d 9abc 2b b b bY a X b X c X d

    3a 3a 3a27a3ac b

    Y aX X3a

    Nhn xt hm s 2

    3 3ac bY aX X3a

    l mt hm s l nn th

    hm s s nhn im U lm tm i xng.

    Tnh cht 4: tip tuyn vi th hm s ti im un c h s gc nh

    nht khi a 0 v c h s gc ln nht khi a 0.

    Ta c h s gc ca tip tuyn bt k vi th hm s ti im 0

    x x

    l

  • 2 22 2

    0 0 0 0 0

    22 2

    20

    2

    min 0

    2

    max 0

    b b 3ac bk y '(x ) 3ax 2bx c 3a x 2 x

    3a 9a 3a

    3ac bk , a 0b 3ac b 3a3a x3ac b3a 3a

    k , a 03a

    3ac b ba 0,k x

    3a 3a3ac b b

    a 0,k x3a 3a

    Do ta c iu cn phi chng minh

    Tnh cht 5: th hm s ct trc honh ti 3 im cch u nhau hay

    honh cc giao im lp thnh cp s cng khi v ch khi 2 327a d 9abc 2b 0 .

    Tht vy ta c phng trnh honh giao im gia th hm s v

    Ox l

    3 2ax bx cx d 0

    Gi s th hm s ct Ox ti 3 im phn bit th phng trnh trn

    s c 3 nghim tha mn 1 2 3

    1 3 2

    x x x

    x x 2x. Mc khc theo nh l Viete

    ta c 1 2 3 2 2

    b b bx x x 3x x

    a a 3a

    Mc khc 2x l nghim ca phng trnh 3 2ax bx cx d 0 do

    ta c

  • 3 2

    3 2

    2 2 2

    2 3

    U

    b b bax bx cx d 0 a b c d 0

    3a 3a 3a

    27a d 9abc 2b 0 y 0

    Do ta c iu phi chng minh.

    Lu : iu kin trn ch l iu kin cn khng phi l iu kin nn

    nu bi ton yu cu tm iu kin tham s th hm s tha mn

    tnh cht trn th sau khi tm c tham s cn phi kim tra li

    Tnh cht 6: nu th hm s ct Ox ti 3 im c honh lp thnh

    cp s nhn th 3 3ac b d 0

    Tht vy ta c phng trnh honh giao im ca th hm s

    cho vi Ox l

    3 2ax bx cx d 0

    V th ct Ox ti 3 im c honh lp thnh cp s nhn nn ta c

    phng trnh 3 2ax bx cx d 0 s c 3 nghim tha mn 2

    1 3 2x x x . Mc khc theo nh l Viete ta c

    2

    1 2 2 3 3 1 1 2 2 3 2

    2 1 2 3 2 2

    c cx x x x x x x x x x x

    a ac b c c

    x (x x x ) x xa a a b

    V 2x l nghim ca phng trnh 3 2ax bx cx d 0 nn ta c

    3 2

    3 2

    2 2 2

    c c cax bx cx d 0 a b b d 0

    b b b

  • 3 33 3

    3

    ac b d0 ac b d 0

    b

    Do ta c iu phi chng minh. Lu cng nh tnh cht 5, tnh cht

    6 cng ch cho ta iu kin cn.

    Tnh cht 7: gi th hm s ct Ox ti 3 im phn bit, gi 1 2S ,S l

    din tch hnh phng gii hn gia th v Ox (phn nm pha trn v

    pha di trc Ox ) Nu 1 2S S th im un U thuc trc honh

    Ta c nu im un thuc trc honh th 1 2S S , bng phng php

    dch chuyn th ta s c iu cn chng minh

    Tnh cht 8: gi s hm s 3 2y ax bx cx d c th l (C).

    Trn (C) ta ly 3 im M,N,P sao cho M,N,P thng hng. Tip tuyn

    vi (C) ti M,N,P ln lt l M N P(t ),(t ),(t ). Cc tip tuyn

    M N P(t ),(t ),(t ) ct th (C) ti 3 im khc l I,J,K th ta s c 3 im

    I,J,K cng thng hng

    Ta c ta cc im M,N,P ln lt l 3 2(m,am bm cm d), 3 2(n,an bn cn d) v 3 2(p,ap bp cp d) khi ta c 3 im

    M,N,P s ng vi 3 s phc sau 3 2Mz m i(am bm cm d) ,

    3 2

    Nz n i(an bn cn d) v 3 2

    Pz p i(ap bp cp d).

    V cc im M,N,P thng hng nn ta c

    M N M N

    P N P N3 3 3 3 3 3

    2 3 3 2 2 2

    z z z zIm 0

    z z z z

    (am an bm bn cm cn )(p n)

    (p n) ( an ap bn bp cn cp)

  • 3 3 2 2

    2 3 3 2 2 2

    3 3 3 3 3 3

    3 3 2 2

    (m n)( an ap bn bp cn cp)

    (p n) ( an ap bn bp cn cp)(am an bm bn cm cn )(p n)

    (m n)( an ap bn bp cn cp) 0

    (n p)(m p)(m n)(am an ap b) 0

    V cc im M,N,P phn bit nn m n p do ta c

    (m n)(n p)(m p) 0 am an ap b 0

    Phng trnh tip tuyn vi (C) ti M l 2 3 2

    M(t ) : y (3am 2bm c)(x m) am bm cm d

    Phng trnh honh giao im ca M(t ) v (C) l

    3 2 2 3 2

    2

    I

    2 3 2 2

    I

    2 3 2 2

    ax bx cx d (3am 2bm c)(x m) am bm cm d

    (x m) (2am ax b) 0

    x m2am b

    x2am bax

    a8a m 8abm 2acm 2b m ad bc

    ya

    2am b 8a m 8abm 2acm 2b m ad bcI ,

    a a

    Tng t ta cng s c

    2 3 2 22an b 8a n 8abn 2an 2b n ad bcJ ,

    a a

  • 2 3 2 22ap b 8a p 8abp 2ap 2b p ad bcK ,

    a a

    Do ta s c 3 s phc tng ng vi 3 im I,J,K l

    2 3 2 2

    I

    2 3 2 2

    J

    2 3 2 2

    K

    2am b 8a m 8abm 2am 2b m ad bcz i

    a a2an b 8a n 8abn 2an 2b n ad bc

    z ia a

    2ap b 8a p 8abp 2ap 2b p ad bcz i

    a a

    Ta c

    2I J

    K J

    z z 4(m p)(m n)(am an ap b)aIm 0z z (m,n,p)

    Do ta c I,J,K thng hng.

    Tnh cht 9: bin lun s nghim ca phng trnh bc 3

    Xt phng trnh bc 3 sau 3 2ax bx cx d 0

    Ta c 2 cch lm thun i s-gii tch nh sau

    Cch 1: cch lm thun i s

    Gi s ta bit c 0

    x x l mt nghim ca phng trnh trn khi

    ta c

    2 2

    0 0 0 0

    02 2

    0 0 0

    (x x )[ax (ax b)x ax bx c] 0

    x x

    g(x) ax (ax b)x ax bx c 0

  • Do ta c

    3 2ax bx cx d 0 c 1 nghim duy nht th iu kin l

    phng trnh g(x) 0 v nghim hoc c nghim kp l 0x . Do ta

    c iu kin s l

    2 2 2

    0 0

    2 2 2

    0 02

    0 0 0

    3a x 2(bx 2c)a b 0g(x) 0

    g(x) 0 3a x 2(bx 2c)a b 0

    g(x ) 0 3ax 2bx c 0

    Vy iu kin l

    2 2 2

    0 0

    2 2 2

    0 02

    0 0

    3a x 2(bx 2c)a b 0

    3a x 2(bx 2c)a b 0

    3ax 2bx c 0

    phng trnh 3 2ax bx cx d 0 c 2 nghim th phng trnh

    g(x) 0 phi c 2 nghim phn bit v mt nghim trng vi 0x . Do

    ta c ta c iu kin l

    2 2 2

    0 02

    0 0 0

    g(x) 0 3a x 2(bx 2c)a b 0

    g(x ) 0 3ax 2bx c 0

    Vy iu kin l

    2 2 2

    0 02

    0 0

    3a x 2(bx 2c)a b 0

    3ax 2bx c 0

    phng trnh 3 2ax bx cx d 0 c 3 nghim th phng trnh g(x) 0 phi c 2 nghim phn bit v khng c nghim no trng vi

    0x . Do ta c iu kin l

  • vy iu kin cn tm l

    2 2 2

    0 02

    0 0

    3a x 2(bx 2c)a b 0

    3ax 2bx c 0

    Cch 2:cch lm thun gii tch

    Xt hm s 3 2y ax bx cx d

    Tp xc nh D

    o hm 2y ' 3ax 2bx c

    2y ' 0 g(x) 3ax 2bx c 0

    phng trnh 3 2ax bx cx d 0 c 1 nghim th hm s 3 2y ax bx cx d khng c cc tr hoc c 2 cc tr cng nm

    v mt pha ca Ox do ta c iu kin l

    2

    2

    2 2 3 3 2 2cd ct

    b 3ac 0' g(x) 0

    ' g(x) 0 b 3ac 0

    y y 0 27a d 18abcd 4ac 4b d b c 0

    Vy iu kin l

    2

    2

    2 2 3 3 2 2

    b 3ac 0

    b 3ac 0

    27a d 18abcd 4ac 4b d b c 0

    phng trnh 3 2ax bx cx d 0 c 2 nghim th hm s 3 2y ax bx cx d c 2 cc tr v mt trong 2 gi tr cc tr phi

    bng 0 do ta c iu kin l

    2 2 2

    0 02

    0 0 0

    g(x) 0 3a x 2(bx 2c)a b 0

    g(x ) 0 3ax 2bx c 0

  • 22 2 3 3 2 2cd ct

    ' g(x) 0 b 3ac 0

    y y 0 27a d 18abcd 4ac 4b d b c 0

    Vy iu kin l

    2

    2 2 3 3 2 2

    b 3ac 0

    27a d 18abcd 4ac 4b d b c 0

    phng trnh 3 2ax bx cx d 0 c 3 nghim phn bit th

    hm s 3 2y ax bx cx d phi c 2 cc tr v 2 gi tr cc tr

    tng ng tri du vi nhau do ta c iu kin l

    2

    2 2 3 3 2 2cd ct

    ' g(x) 0 b 3ac 0

    y y 0 27a d 18abcd 4ac 4b d b c 0

    Vy iu kin cn tm l

    2

    2 2 3 3 2 2

    b 3ac 0

    27a d 18abcd 4ac 4b d b c 0

    Da vo tnh cht ny ta c th m rng ra

    iu kin phng trnh bc 3 c 3 nghim dng l

    2

    2 2 3 3 2 2

    b 3ac 0

    27a d 18abcd 4ac 4b d b c 0

    ad 0,ac 0,ab 0

    iu kin phng trnh bc 3 c 3 nghim m l

    2

    2 2 3 3 2 2

    b 3ac 0

    27a d 18abcd 4ac 4b d b c 0

    ad 0,ac 0,ab 0

  • iu kin phng trnh bc 3 c 3 nghim trong c ng 2 nghim

    dng v nghim cn li m l

    2

    2 2 3 3 2 2

    b 3ac 0

    27a d 18abcd 4ac 4b d b c 0

    ad>0,ab0,ab>0

    Trn Quang Minh K2008-2011 Thpt L T Trng Nha Trang Khnh Ha