Top Banner
SOLAR THERMAL POWER GEEN 4830 – ECEN 5007 Manuel A. Silva Pérez [email protected] 4. Fundamentals of solar thermal concentrating systems
15
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cu stp 04_fundamentals

SOLAR THERMAL POWER!GEEN 4830 – ECEN 5007!

Manuel A. Silva Pé[email protected]!

4. Fundamentals of solar thermal concentrating systems!

Page 2: Cu stp 04_fundamentals

Solar Thermal Concentrating Systems

Systems that make use of solar energy by first concentrating solar radiation and then converting it to thermal energy

}  Uses: }  Electricity (Solar Thermal Power) }  Industrial Process Heat }  Absorption cooling }  Chemical processes }  …

07/07/11 1 GEEN 4830 – ECEN 5007

Page 3: Cu stp 04_fundamentals

Solar energy

}  Abundant }  High-quality energy }  Variable (on time) }  Unevenly distributed (on space) }  Low density

07/07/11 2 GEEN 4830 – ECEN 5007

Page 4: Cu stp 04_fundamentals

Why high temperature?

07/07/11 3 GEEN 4830 – ECEN 5007

Page 5: Cu stp 04_fundamentals

The sun as a heat source

07/07/11 4 GEEN 4830 – ECEN 5007

Page 6: Cu stp 04_fundamentals

Why concentrate solar radiation?

07/07/11 5 GEEN 4830 – ECEN 5007

Page 7: Cu stp 04_fundamentals

Ideal concentrating system

}  The receiver (or absorber) converts concentrated solar radiation to thermal energy (heat)

}  An ideal receiver may be characterized as a blackbody, which has only radiative losses

07/07/11 6 GEEN 4830 – ECEN 5007

Page 8: Cu stp 04_fundamentals

Geometrical concentration ratio

abs

C

AACg =

}  The geometrical concentration ratio, Cg, is defined as

Where Aabs is the receiver (or absorber) area and Ac is the collection area.

Absorp'on  area  

Concentrator  

Collec'on  area  

07/07/11 7 GEEN 4830 – ECEN 5007

Page 9: Cu stp 04_fundamentals

Optical efficiency of the receiver

07/07/11 8 GEEN 4830 – ECEN 5007

Page 10: Cu stp 04_fundamentals

Ideal concentrator

}  The maximum theoretical optical efficiency (when Tabs≥TSky) is the effective absorptivity of the receiver.

}  The higher the concentrated solar flux (C*I), the better the optical efficiency.

}  The higher the absorber temperature, the higher the radiative loss and, therefore, optical efficiency is lower.

}  The higher the effective emissivity, ε, the lower the optical efficiency.

07/07/11 9 GEEN 4830 – ECEN 5007

Page 11: Cu stp 04_fundamentals

Global efficiency of the ideal concentrating system

07/07/11 10 GEEN 4830 – ECEN 5007

Page 12: Cu stp 04_fundamentals

Ideal concentrating system

}  For each value of the geometrical concentration ratio, there is an optimum temperature.

}  The higher the geometrical concentration ratio, the higher the optimum temperature and the global efficiency.

07/07/11 11 GEEN 4830 – ECEN 5007

Page 13: Cu stp 04_fundamentals

Concentration limits

SsennnDC

θ22

2

3max,′

=

}  The Sun is not a point light source. Seen From the Earth, is a disk of apparent diameter θS ≈ 32’.

}  The maximum concentration ratio is given by

Where n and n’ are the refractive indices of

the media that the light crosses before and after the reflection on the concentrator surface

32’

32’

Focus  

07/07/11 12 GEEN 4830 – ECEN 5007

Page 14: Cu stp 04_fundamentals

Types of concentrating systems

}  Line focus (2D) }  Parabolic troughs; CLFR

}  Point focus (3D) }  Central receiver systems,

parabolic concentrators (dishes)

SDmáxC θ23, sin/1=

SDmáxC θsin/12, =

07/07/11 13 GEEN 4830 – ECEN 5007

Page 15: Cu stp 04_fundamentals

Real concentrating systems

Theoretical 3D: < 46200

2D: < 215

07/07/11 14 GEEN 4830 – ECEN 5007