Top Banner
5: DataLink Layer 5-1 Data Communication and Networks Lecture 12 Data Link Layer December 2, 2004
65
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: cs.nyu.edu

5 DataLink Layer 5-1

Data Communication and NetworksLecture 12

Data Link Layer

December 2 2004

5 DataLink Layer 5-2

Our goals

understand principles behind data link layer services error detection correction sharing a broadcast channel multiple access link layer addressing reliable data transfer flow control done

instantiation and implementation of various link layer technologies

5 DataLink Layer 5-3

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-4

Link Layer Services Framing link access

encapsulate datagram into frame adding header trailer

channel access if shared medium ldquoMACrdquo addresses used in frame headers to identify

source dest bull different from IP address

Reliable delivery between adjacent nodes we learned how to do this already (chapter 3) seldom used on low bit error link (fiber some twisted

pair) wireless links high error rates

bull Q why both link-level and end-end reliability

5 DataLink Layer 5-5

Link Layer Services (more)

Flow Control pacing between adjacent sending and receiving nodes

Error Detection errors caused by signal attenuation noise receiver detects presence of errors

bull signals sender for retransmission or drops frame

Error Correction receiver identifies and corrects bit error(s) without

resorting to retransmission

Half-duplex and full-duplex with half duplex nodes at both ends of link can

transmit but not at same time

5 DataLink Layer 5-6

Adaptors Communicating

link layer implemented in ldquoadaptorrdquo (aka NIC) Ethernet card PCMCI card

80211 card

sending side encapsulates datagram in

a frame adds error checking bits

rdt flow control etc

receiving side looks for errors rdt flow

control etc extracts datagram

passes to rcving node

adapter is semi-autonomous

link amp physical layers

sendingnode

frame

rcvingnode

datagram

frame

adapter adapter

link layer protocol

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 2: cs.nyu.edu

5 DataLink Layer 5-2

Our goals

understand principles behind data link layer services error detection correction sharing a broadcast channel multiple access link layer addressing reliable data transfer flow control done

instantiation and implementation of various link layer technologies

5 DataLink Layer 5-3

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-4

Link Layer Services Framing link access

encapsulate datagram into frame adding header trailer

channel access if shared medium ldquoMACrdquo addresses used in frame headers to identify

source dest bull different from IP address

Reliable delivery between adjacent nodes we learned how to do this already (chapter 3) seldom used on low bit error link (fiber some twisted

pair) wireless links high error rates

bull Q why both link-level and end-end reliability

5 DataLink Layer 5-5

Link Layer Services (more)

Flow Control pacing between adjacent sending and receiving nodes

Error Detection errors caused by signal attenuation noise receiver detects presence of errors

bull signals sender for retransmission or drops frame

Error Correction receiver identifies and corrects bit error(s) without

resorting to retransmission

Half-duplex and full-duplex with half duplex nodes at both ends of link can

transmit but not at same time

5 DataLink Layer 5-6

Adaptors Communicating

link layer implemented in ldquoadaptorrdquo (aka NIC) Ethernet card PCMCI card

80211 card

sending side encapsulates datagram in

a frame adds error checking bits

rdt flow control etc

receiving side looks for errors rdt flow

control etc extracts datagram

passes to rcving node

adapter is semi-autonomous

link amp physical layers

sendingnode

frame

rcvingnode

datagram

frame

adapter adapter

link layer protocol

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 3: cs.nyu.edu

5 DataLink Layer 5-3

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-4

Link Layer Services Framing link access

encapsulate datagram into frame adding header trailer

channel access if shared medium ldquoMACrdquo addresses used in frame headers to identify

source dest bull different from IP address

Reliable delivery between adjacent nodes we learned how to do this already (chapter 3) seldom used on low bit error link (fiber some twisted

pair) wireless links high error rates

bull Q why both link-level and end-end reliability

5 DataLink Layer 5-5

Link Layer Services (more)

Flow Control pacing between adjacent sending and receiving nodes

Error Detection errors caused by signal attenuation noise receiver detects presence of errors

bull signals sender for retransmission or drops frame

Error Correction receiver identifies and corrects bit error(s) without

resorting to retransmission

Half-duplex and full-duplex with half duplex nodes at both ends of link can

transmit but not at same time

5 DataLink Layer 5-6

Adaptors Communicating

link layer implemented in ldquoadaptorrdquo (aka NIC) Ethernet card PCMCI card

80211 card

sending side encapsulates datagram in

a frame adds error checking bits

rdt flow control etc

receiving side looks for errors rdt flow

control etc extracts datagram

passes to rcving node

adapter is semi-autonomous

link amp physical layers

sendingnode

frame

rcvingnode

datagram

frame

adapter adapter

link layer protocol

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 4: cs.nyu.edu

5 DataLink Layer 5-4

Link Layer Services Framing link access

encapsulate datagram into frame adding header trailer

channel access if shared medium ldquoMACrdquo addresses used in frame headers to identify

source dest bull different from IP address

Reliable delivery between adjacent nodes we learned how to do this already (chapter 3) seldom used on low bit error link (fiber some twisted

pair) wireless links high error rates

bull Q why both link-level and end-end reliability

5 DataLink Layer 5-5

Link Layer Services (more)

Flow Control pacing between adjacent sending and receiving nodes

Error Detection errors caused by signal attenuation noise receiver detects presence of errors

bull signals sender for retransmission or drops frame

Error Correction receiver identifies and corrects bit error(s) without

resorting to retransmission

Half-duplex and full-duplex with half duplex nodes at both ends of link can

transmit but not at same time

5 DataLink Layer 5-6

Adaptors Communicating

link layer implemented in ldquoadaptorrdquo (aka NIC) Ethernet card PCMCI card

80211 card

sending side encapsulates datagram in

a frame adds error checking bits

rdt flow control etc

receiving side looks for errors rdt flow

control etc extracts datagram

passes to rcving node

adapter is semi-autonomous

link amp physical layers

sendingnode

frame

rcvingnode

datagram

frame

adapter adapter

link layer protocol

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 5: cs.nyu.edu

5 DataLink Layer 5-5

Link Layer Services (more)

Flow Control pacing between adjacent sending and receiving nodes

Error Detection errors caused by signal attenuation noise receiver detects presence of errors

bull signals sender for retransmission or drops frame

Error Correction receiver identifies and corrects bit error(s) without

resorting to retransmission

Half-duplex and full-duplex with half duplex nodes at both ends of link can

transmit but not at same time

5 DataLink Layer 5-6

Adaptors Communicating

link layer implemented in ldquoadaptorrdquo (aka NIC) Ethernet card PCMCI card

80211 card

sending side encapsulates datagram in

a frame adds error checking bits

rdt flow control etc

receiving side looks for errors rdt flow

control etc extracts datagram

passes to rcving node

adapter is semi-autonomous

link amp physical layers

sendingnode

frame

rcvingnode

datagram

frame

adapter adapter

link layer protocol

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 6: cs.nyu.edu

5 DataLink Layer 5-6

Adaptors Communicating

link layer implemented in ldquoadaptorrdquo (aka NIC) Ethernet card PCMCI card

80211 card

sending side encapsulates datagram in

a frame adds error checking bits

rdt flow control etc

receiving side looks for errors rdt flow

control etc extracts datagram

passes to rcving node

adapter is semi-autonomous

link amp physical layers

sendingnode

frame

rcvingnode

datagram

frame

adapter adapter

link layer protocol

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 7: cs.nyu.edu

5 DataLink Layer 5-7

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 8: cs.nyu.edu

5 DataLink Layer 5-8

Error DetectionEDC= Error Detection and Correction bits (redundancy)D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 9: cs.nyu.edu

5 DataLink Layer 5-9

Parity Checking

Single Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 10: cs.nyu.edu

5 DataLink Layer 5-10

Internet checksum

Sender treat segment contents

as sequence of 16-bit integers

checksum addition (1rsquos complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver compute checksum of

received segment check if computed checksum

equals checksum field value NO - error detected YES - no error detected

But maybe errors nonetheless More later hellip

Goal detect ldquoerrorsrdquo (eg flipped bits) in transmitted segment (note used at transport layer only)

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 11: cs.nyu.edu

5 DataLink Layer 5-11

Cyclic Redundancy Check

For a block of k bits transmitter generates n bit sequence (FCS)

Transmit k+n bits which is exactly divisible by some number

Receiver divides frame by that number If no remainder assume no error may be possible to correct error

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 12: cs.nyu.edu

5 DataLink Layer 5-12

Cyclic Redundancy Check

Example 16-Bit CRC for HDLC Performed on Address Control Data Fields Detects a Variety of Error Conditions Data Message is Represented as a Polynomial

Mi(x) = polynomial of order i =

a0 + a1 x + a2 x2 + a3 x3 + + ai xi where ai = 0 1

Data Message = ai ai-1 hellip a3 a2 a1 a0

StartFrame

Delimiter

SourceAddress

DestinationAddress

FrameControl

Data CRC

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 13: cs.nyu.edu

5 DataLink Layer 5-13

CRC Generation

Given a Specific Polynomial G(x) called the generator and a Data Message M(x) Calculate a Frame Check Sequence (FCS) or Checksum

Append the FCS (Checksum) to the Data Message for Transmission

At the Receiver Recalculate the Checksum and Check with the Transmitted Value

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 14: cs.nyu.edu

5 DataLink Layer 5-14

CRC Algorithm

Multiply xr M(x) where r = degree of G(x) Add r Zeros to M(x) or Shift M(x) Left

Divide xr M(x)G(x) = R(x) R(x) = Reminder of Divide Operation

Transmit xr M(x) + R(x) = T(x) XOR the Shifted Message and R(x)

At the Receiver Recalculate the R(x) and Check Equal to the Transmitted FCS

Errors Occurred in Transmission if Not equal

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 15: cs.nyu.edu

5 DataLink Layer 5-15

CRC Error Detection

All Single Bit Errors All Double Bit Errors Any Odd Number of Errors Any Burst Error for Which the Length of

the Burst Error is Less Than the Length of the Divisor Polynomial G(x)

Most Larger Burst Errors Several G(x) Polynomials Have Been

Used

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 16: cs.nyu.edu

5 DataLink Layer 5-16

Example of G(x) Polynomials

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-CCITT X16 + X15 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10

+ X8 + X7 + X5 + X4 + X2 + X + 1 CRCrsquos Are Implemented in Shift

registers

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 17: cs.nyu.edu

5 DataLink Layer 5-17

Example

The generator polynomial P = X2 + 1 Receiver receives a frame F = 111001 1101 -------101 111001 101 --- 100 101 --- 101 101 --- 0 remainder is zero F is without error

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 18: cs.nyu.edu

5 DataLink Layer 5-18

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 19: cs.nyu.edu

5 DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of ldquolinksrdquo point-to-point

PPP for dial-up access point-to-point link between Ethernet switch and host

broadcast (shared wire or medium) traditional Ethernet upstream HFC 80211 wireless LAN

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 20: cs.nyu.edu

5 DataLink Layer 5-20

Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes

interference collision if node receives two or more signals at the same

time

multiple access protocol distributed algorithm that determines how nodes

share channel ie determine when node can transmit

communication about channel sharing must use channel itself no out-of-band channel for coordination

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 21: cs.nyu.edu

5 DataLink Layer 5-21

Ideal Mulitple Access Protocol

Broadcast channel of rate R bps1 When one node wants to transmit it can send

at rate R2 When M nodes want to transmit each can

send at average rate RM3 Fully decentralized

no special node to coordinate transmissions no synchronization of clocks slots

4 Simple

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 22: cs.nyu.edu

5 DataLink Layer 5-22

MAC Protocols a taxonomy

Three broad classes Channel Partitioning

divide channel into smaller ldquopiecesrdquo (time slots frequency code)

allocate piece to node for exclusive use

Random Access channel not divided allow collisions ldquorecoverrdquo from collisions

ldquoTaking turnsrdquo Nodes take turns but nodes with more to send can

take longer turns

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 23: cs.nyu.edu

5 DataLink Layer 5-23

Channel Partitioning MAC protocols TDMA

TDMA time division multiple access access to channel in rounds each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example 6-station LAN 134 have pkt slots 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 24: cs.nyu.edu

5 DataLink Layer 5-24

Channel Partitioning MAC protocols FDMA

FDMA frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example 6-station LAN 134 have pkt frequency bands 256 idle

TDM (Time Division Multiplexing) channel divided into N time slots one per user inefficient with low duty cycle users and at light load

FDM (Frequency Division Multiplexing) frequency subdivided

frequ

ency

bands time

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 25: cs.nyu.edu

5 DataLink Layer 5-25

Random Access Protocols

When node has packet to send transmit at full channel data rate R no a priori coordination among nodes

two or more transmitting nodes ldquocollisionrdquo random access MAC protocol specifies

how to detect collisions how to recover from collisions (eg via delayed

retransmissions)

Examples of random access MAC protocols slotted ALOHA ALOHA CSMA CSMACD CSMACA

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 26: cs.nyu.edu

5 DataLink Layer 5-26

Slotted ALOHA

Assumptions all frames same size time is divided into

equal size slots time to transmit 1 frame

nodes start to transmit frames only at beginning of slots

nodes are synchronized if 2 or more nodes

transmit in slot all nodes detect collision

Operation when node obtains fresh

frame it transmits in next slot

no collision node can send new frame in next slot

if collision node retransmits frame in each subsequent slot with prob p until success

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 27: cs.nyu.edu

5 DataLink Layer 5-27

Slotted ALOHA

Pros single active node can

continuously transmit at full rate of channel

highly decentralized only slots in nodes need to be in sync

simple

Cons collisions wasting

slots idle slots nodes may be able to

detect collision in less than time to transmit packet

clock synchronization

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 28: cs.nyu.edu

5 DataLink Layer 5-28

Pure (unslotted) ALOHA unslotted Aloha simpler no synchronization when frame first arrives

transmit immediately

collision probability increases frame sent at t0 collides with other frames sent in [t0-

1t0+1]

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 29: cs.nyu.edu

5 DataLink Layer 5-29

CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire frame If channel sensed busy defer transmission

Human analogy donrsquot interrupt others

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 30: cs.nyu.edu

5 DataLink Layer 5-30

CSMA collisions

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmissioncollisionentire packet transmission time wasted

spatial layout of nodes

noterole of distance amp propagation delay in determining collision probability

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 31: cs.nyu.edu

5 DataLink Layer 5-31

CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMA

collisions detected within short time colliding transmissions aborted reducing channel

wastage collision detection

easy in wired LANs measure signal strengths compare transmitted received signals

difficult in wireless LANs receiver shut off while transmitting

human analogy the polite conversationalist

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 32: cs.nyu.edu

5 DataLink Layer 5-32

CSMACD collision detection

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 33: cs.nyu.edu

5 DataLink Layer 5-33

ldquoTaking Turnsrdquo MAC protocolschannel partitioning MAC protocols

share channel efficiently and fairly at high load

inefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node

Random access MAC protocols efficient at low load single node can fully

utilize channel high load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 34: cs.nyu.edu

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsPolling master node

ldquoinvitesrdquo slave nodes to transmit in turn

concerns polling overhead latency single point of

failure (master)

Token passing control token passed

from one node to next sequentially

token message concerns

token overhead latency single point of failure

(token)

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 35: cs.nyu.edu

5 DataLink Layer 5-35

Summary of MAC protocols

What do you do with a shared media Channel Partitioning by time frequency or

codebull Time Division Frequency Division

Random partitioning (dynamic) bull ALOHA S-ALOHA CSMA CSMACDbull carrier sensing easy in some technologies (wire)

hard in others (wireless)bull CSMACD used in Ethernetbull CSMACA used in 80211

Taking Turnsbull polling from a central site token passing

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 36: cs.nyu.edu

5 DataLink Layer 5-36

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 37: cs.nyu.edu

5 DataLink Layer 5-37

MAC Addresses and ARP

32-bit IP address network-layer address used to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) address used to get datagram from one interface to

another physically-connected interface (same network)

48 bit MAC address (for most LANs) burned in the adapter ROM

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 38: cs.nyu.edu

5 DataLink Layer 5-38

LAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN(wired orwireless)

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 39: cs.nyu.edu

5 DataLink Layer 5-39

LAN Address (more)

MAC address allocation administered by IEEE manufacturer buys portion of MAC address

space (to assure uniqueness) Analogy (a) MAC address like Social Security

Number (b) IP address like postal address MAC flat address portability

can move LAN card from one LAN to another

IP hierarchical address NOT portable depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 40: cs.nyu.edu

5 DataLink Layer 5-40

ARP Address Resolution Protocol

Each IP node (Host Router) on LAN has ARP table

ARP Table IPMAC address mappings for some LAN nodes

lt IP address MAC address TTLgt

TTL (Time To Live) time after which address mapping will be forgotten (typically 20 min)

Question how to determineMAC address of Bknowing Brsquos IP address

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

237196723

237196778

237196714

237196788

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 41: cs.nyu.edu

5 DataLink Layer 5-41

ARP protocol Same LAN (network) A wants to send datagram

to B and Brsquos MAC address not in Arsquos ARP table

A broadcasts ARP query packet containing Bs IP address Dest MAC address = FF-

FF-FF-FF-FF-FF all machines on LAN

receive ARP query B receives ARP packet

replies to A with its (Bs) MAC address frame sent to Arsquos MAC

address (unicast)

A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) soft state information

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquo nodes create their ARP

tables without intervention from net administrator

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 42: cs.nyu.edu

5 DataLink Layer 5-42

Routing to another LANwalkthrough send datagram from A to B via R assume A knowrsquos B IP address

Two ARP tables in router R one for each IP network (LAN)

In routing table at source Host find router 111111111110 In ARP table at source find MAC address E6-E9-00-17-BB-4B etc

A

RB

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 43: cs.nyu.edu

5 DataLink Layer 5-43

A creates datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111111111110 A creates link-layer frame with Rs MAC address as dest

frame contains A-to-B IP datagram Arsquos adapter sends frame Rrsquos adapter receives frame R removes IP datagram from Ethernet frame sees its

destined to B R uses ARP to get Brsquos MAC address R creates frame containing A-to-B IP datagram sends to B

A

RB

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 44: cs.nyu.edu

5 DataLink Layer 5-44

Link Layer

Services Error detection and correction Multiple access protocols Link-Layer Addressing Ethernet

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 45: cs.nyu.edu

5 DataLink Layer 5-45

Ethernet

ldquodominantrdquo wired LAN technology cheap $20 for 100Mbs first widely used LAN technology Simpler cheaper than token LANs and ATM Kept up with speed race 10 Mbps ndash 10 Gbps

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 46: cs.nyu.edu

5 DataLink Layer 5-46

Star topology

Bus topology popular through mid 90s Now star topology prevails Connection choices hub or switch (more later)

hub orswitch

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 47: cs.nyu.edu

5 DataLink Layer 5-47

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 bytes with pattern 10101010 followed by one

byte with pattern 10101011 used to synchronize receiver sender clock

rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 48: cs.nyu.edu

5 DataLink Layer 5-48

Ethernet Frame Structure (more) Addresses 6 bytes

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to net-layer protocol

otherwise adapter discards frame

Type indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

CRC checked at receiver if error is detected the frame is simply dropped

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 49: cs.nyu.edu

5 DataLink Layer 5-49

Unreliable connectionless service Connectionless No handshaking between

sending and receiving adapter Unreliable receiving adapter doesnrsquot send

acks or nacks to sending adapter stream of datagrams passed to network layer can

have gaps gaps will be filled if app is using TCP otherwise app will see the gaps

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 50: cs.nyu.edu

5 DataLink Layer 5-50

Ethernet uses CSMACD

No slots adapter doesnrsquot

transmit if it senses that some other adapter is transmitting that is carrier sense

transmitting adapter aborts when it senses that another adapter is transmitting that is collision detection

Before attempting a retransmission adapter waits a random time that is random access

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 51: cs.nyu.edu

5 DataLink Layer 5-51

Ethernet CSMACD algorithm

1 Adaptor receives datagram from net layer amp creates frame

2 If adapter senses channel idle it starts to transmit frame If it senses channel busy waits until channel idle and then transmits

3 If adapter transmits entire frame without detecting another transmission the adapter is done with frame

4 If adapter detects another transmission while transmitting aborts and sends jam signal

5 After aborting adapter enters exponential backoff after the mth collision adapter chooses a K at random from 012hellip2m-1 Adapter waits K512 bit times and returns to Step 2

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 52: cs.nyu.edu

5 DataLink Layer 5-52

Ethernetrsquos CSMACD (more)

Jam Signal make sure all other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10 Mbps Ethernet for K=1023 wait time is about 50 msec

Exponential Backoff Goal adapt retransmission

attempts to estimated current load heavy load random wait

will be longer first collision choose K

from 01 delay is K 512 bit transmission times

after second collision choose K from 0123hellip

after ten collisions choose K from 01234hellip1023

Seeinteract with Javaapplet on AWL Web sitehighly recommended

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 53: cs.nyu.edu

5 DataLink Layer 5-53

10BaseT and 100BaseT 10100 Mbps rate latter called ldquofast ethernetrdquo T stands for Twisted Pair Nodes connect to a hub ldquostar topologyrdquo 100

m max distance between nodes and hub

twisted pair

hub

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 54: cs.nyu.edu

5 DataLink Layer 5-54

Manchester encoding

Used in 10BaseT Each bit has a transition Allows clocks in sending and receiving nodes to

synchronize to each other no need for a centralized global clock among nodes

Hey this is physical-layer stuff

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 55: cs.nyu.edu

5 DataLink Layer 5-55

Gbit Ethernet

uses standard Ethernet frame format allows for point-to-point links and shared

broadcast channels in shared mode CSMACD is used short

distances between nodes required for efficiency

uses hubs called here ldquoBuffered Distributorsrdquo Full-Duplex at 1 Gbps for point-to-point links 10 Gbps now

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 56: cs.nyu.edu

5 DataLink Layer 5-56

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Interconnections Hubs and switches

57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 57: cs.nyu.edu

5 DataLink Layer 5-57

Link Layer

51 Introduction and services

52 Error detection and correction

53Multiple access protocols

54 Link-Layer Addressing

55 Ethernet

56 Hubs and switches 57 PPP 58 Link Virtualization

ATM

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 58: cs.nyu.edu

5 DataLink Layer 5-58

Point to Point Data Link Control one sender one receiver one link easier than

broadcast link no Media Access Control no need for explicit MAC addressing eg dialup link ISDN line

popular point-to-point DLC protocols PPP (point-to-point protocol) HDLC High level data link control (Data link

used to be considered ldquohigh layerrdquo in protocol stack

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 59: cs.nyu.edu

5 DataLink Layer 5-59

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer datagram in data link frame carry network layer data of any network layer

protocol (not just IP) at same time ability to demultiplex upwards

bit transparency must carry any bit pattern in the data field

error detection (no correction) connection liveness detect signal link failure to

network layer network layer address negotiation endpoint can

learnconfigure each otherrsquos network address

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 60: cs.nyu.edu

5 DataLink Layer 5-60

PPP non-requirements

no error correctionrecovery no flow control out of order delivery OK no need to support multipoint links (eg

polling)

Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 61: cs.nyu.edu

5 DataLink Layer 5-61

PPP Data Frame

Flag delimiter (framing) Address does nothing (only one option) Control does nothing in the future possible

multiple control fields Protocol upper layer protocol to which frame

delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 62: cs.nyu.edu

5 DataLink Layer 5-62

PPP Data Frame

info upper layer data being carried check cyclic redundancy check for error

detection

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 63: cs.nyu.edu

5 DataLink Layer 5-63

Byte Stuffing ldquodata transparencyrdquo requirement data field

must be allowed to include flag pattern lt01111110gt Q is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byte

Receiver two 01111110 bytes in a row discard first

byte continue data reception single 01111110 flag byte

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 64: cs.nyu.edu

5 DataLink Layer 5-64

Byte Stuffing

flag bytepatternin datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol
Page 65: cs.nyu.edu

5 DataLink Layer 5-65

PPP Data Control ProtocolBefore exchanging network-

layer data data link peers must

configure PPP link (max frame length authentication)

learnconfigure network layer information

for IP carry IP Control Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP address

  • Data Communication and Networks
  • Our goals
  • Link Layer
  • Link Layer Services
  • Link Layer Services (more)
  • Adaptors Communicating
  • Slide 7
  • Error Detection
  • Parity Checking
  • Internet checksum
  • Cyclic Redundancy Check
  • Slide 12
  • CRC Generation
  • CRC Algorithm
  • CRC Error Detection
  • Example of G(x) Polynomials
  • Example
  • Slide 18
  • Multiple Access Links and Protocols
  • Multiple Access protocols
  • Ideal Mulitple Access Protocol
  • MAC Protocols a taxonomy
  • Channel Partitioning MAC protocols TDMA
  • Channel Partitioning MAC protocols FDMA
  • Random Access Protocols
  • Slotted ALOHA
  • Slide 27
  • Pure (unslotted) ALOHA
  • CSMA (Carrier Sense Multiple Access)
  • CSMA collisions
  • CSMACD (Collision Detection)
  • CSMACD collision detection
  • ldquoTaking Turnsrdquo MAC protocols
  • Slide 34
  • Summary of MAC protocols
  • Slide 36
  • MAC Addresses and ARP
  • LAN Addresses and ARP
  • LAN Address (more)
  • ARP Address Resolution Protocol
  • ARP protocol Same LAN (network)
  • Routing to another LAN
  • PowerPoint Presentation
  • Slide 44
  • Ethernet
  • Star topology
  • Ethernet Frame Structure
  • Ethernet Frame Structure (more)
  • Unreliable connectionless service
  • Ethernet uses CSMACD
  • Ethernet CSMACD algorithm
  • Ethernetrsquos CSMACD (more)
  • 10BaseT and 100BaseT
  • Manchester encoding
  • Gbit Ethernet
  • Slide 56
  • Slide 57
  • Point to Point Data Link Control
  • PPP Design Requirements [RFC 1557]
  • PPP non-requirements
  • PPP Data Frame
  • Slide 62
  • Byte Stuffing
  • Slide 64
  • PPP Data Control Protocol