Top Banner

of 39

cse291talk

Apr 08, 2018

Download

Documents

Guru Prasanna
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/7/2019 cse291talk

    1/39

    10/11/2001 Random walks and spectral segmentation 1

    CSE 291 Fall 2001

    Marina Meila and Jianbo Shi:

    Learning Segmentation by RandomWalks/A Random Walks View of SpectralSegmentation

    Markus HerrgardUCSD Bioengineering and Bioinformatics

  • 8/7/2019 cse291talk

    2/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    2

    Overview

    Introduction: Why random walks?

    Review of the Ncut algorithm

    Finite Markov chains

    Spectral properties of Markov chains

    Conductance of a Markov chain

    Block-stochastic matrices

    Application: Supervised segmentation

  • 8/7/2019 cse291talk

    3/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    3

    Introduction

    Why bother with mapping a segmentationproblem to a random walk problem?

    Utilize strong connections between:

    Graph theory

    Theory of stochastic processes

    Matrix algebra

  • 8/7/2019 cse291talk

    4/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    4

    Applications of random walks

    Markov chain monte carlo: Approximate high dimensional integration

    e.g. in Bayesian inference

    How to sample efficiently from a complexdistribution?

    Randomized algorithms: Approximate counting in high dimensional

    spaces How to sample points efficiently inside a

    convex polytope?

  • 8/7/2019 cse291talk

    5/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    5

    Segmentation as graph partitioning

    Consider an image Iwith a similarityfunction Sij between all pairs of pixels i,jI

    RepresentSas graph G =(I,S):

    Pixels are the nodes of the graph

    Sij is the weight of the edge between nodes iand j

    Degree of node i: di = jSij Volume of setAI: volA= iAdi

  • 8/7/2019 cse291talk

    6/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    6

    Simple example

    Data with both distanceand color cues

    Similarity matrix

  • 8/7/2019 cse291talk

    7/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    7

    The normalized cut criterion

    Partitioning ofG into A and itscomplement is found by minimizing thenormalized cut criterion:

    ! AjAi ijS

    AvolvolAAANcut

    ,

    11),(

    Produces more balanced partitions thanregular graph cut

    Approximate solution can be foundthrough spectral methods

  • 8/7/2019 cse291talk

    8/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    8

    The normalized cut algorithm

    Define: Diagonal matrix D with Dii = di Laplacian of the graph G: L = D S

    Solve the generalized eigenvalueproblem: Lx = PDx

    LetxL be the eigenvector correspondingto 2nd smallest eigenvalue PL

    Partition xL to two sets containing roughlyequal values graph partition

  • 8/7/2019 cse291talk

    9/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    9

    What does this actually mean?

    Spectral methods are easy to apply, butnotoriously hard to understand intuitively

    Some questions:

    Why does it work? (see Shi & Malik)

    Why this particular eigenvector?

    Why would xL be piecewise constant?

    What if there are more than two segments? What ifxL is not piecewise constant? (see

    Kannan, Vempala & Vetta)

  • 8/7/2019 cse291talk

    10/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    10

    Interlude: Finite Markov chains

    Discrete time, finite state random process

    State of the system at time tn: x

    n

    Probability of being in state i at time tn

    given by:

    Probability distribution for all statesrepresented by the column vector T(n)

    Markov property:

    )()( ixp nni !!

    )|()|( 110 ! nnnn xxpxxxp -

  • 8/7/2019 cse291talk

    11/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    11

    Transition matrix

    Transition matrix:

    Pis a (row) stochastic matrix:

    Pij u 0

    jPij = 1

    If attn

    the distribution is T(n) attn+1

    the

    distribution is given by:

    )( 1 ixjxpP nnij !!!

    )()1( nTn P !

  • 8/7/2019 cse291talk

    12/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    12

    Example of a Markov chain

    !

    3/2

    6/1

    6/1

    0

    0

    1

    9.001.0

    2.07.01.0

    2.03.05.024

    T

    Play

    Work

    Sleep

    !

    2.0

    3.0

    5.0

    0

    0

    1

    9.001.0

    2.07.01.0

    2.03.05.0

    SW P

    T

  • 8/7/2019 cse291talk

    13/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    13

    Some terminology

    Stationary distribution Tg is given by:

    Markov chain is reversible if the detailedbalance condition holds:

    A reversible finite Markov chain is called a

    random walk

    gg! P T

    jijiji PPgg

    !

  • 8/7/2019 cse291talk

    14/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    14

    Spectra of stochastic matrices

    For reversible Markov chains theeigenvalues ofPare real andeigenvectors orthogonal

    Spectral radius V(P) = 1 (i.e. |P|e1) Right (left) hand eigenvector

    corresponding to P1=1 is x1=1 (x1=Tg)

  • 8/7/2019 cse291talk

    15/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    15

    Back to Ncut

    How is Ncut related to random walks ongraphs?

    Transform the similarity matrix Sto a

    stochastic matrix:

    Pij is the probability of moving from pixel i

    to pixel j in the graph representation ofthe image in one step of a random walk

    SDP 1!

  • 8/7/2019 cse291talk

    16/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    16

    Relationship to random walks

    Spectrum of P: The generalized eigenvalue problem in

    Ncut can be written as:

    How are the spectra related? Same eigenvectors: x =xP

    Eigenvalues: P = 1-PP

    xxPI

    xxSDIxDxSD

    !

    !!

    )(

    )()(1

    PPP xPx !

  • 8/7/2019 cse291talk

    17/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    17

    Simple example

    Similarity matrix S

    Transition matrix P=D-1S

  • 8/7/2019 cse291talk

    18/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    18

    Eigenvalues and eigenvectors ofP

  • 8/7/2019 cse291talk

    19/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    19

    Why the second eigenvector?

    The smallest eigenvalue in NCutcorresponds to the largest eigenvalue ofP

    The corresponding eigenvector x1=1 has

    no information about partitioning

  • 8/7/2019 cse291talk

    20/39

  • 8/7/2019 cse291talk

    21/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    21

    Conductance and the Ncut criterion

    Assume that the random walk started fromits stationary distribution

    Using this and Pij = Sij/di we can write:

    I

    d

    i

    i vol!

    g

    A

    S

    I

    dd

    S

    I

    d

    P

    AAjAi

    ij

    Ai

    i

    AjAi i

    iji

    Ai

    i

    AjAi

    iji

    vol

    vol

    vol)(,,,

    g

    g

    !!!

  • 8/7/2019 cse291talk

    22/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    22

    Interpretation of the Ncut criterion

    Alternative representation of the Ncutcriterion:

    Minimum NCut is equivalent to minimizing the conductance between setA

    and its complement minimizing the probability of moving between

    setA and its complement

    )()(),(

    ,,AA

    Avol

    S

    volA

    S

    AANcutAjAi

    ij

    AjAi

    ij

    !!

  • 8/7/2019 cse291talk

    23/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    23

    Block-stochastic matrices

    Let( = (A1,A2,,Ak) be a partition ofI

    Pis a block-stochastic matrix orequivalently the Markov chain is

    aggregatable iff

    ks,s',AiRPPsss

    Aj

    ijis

    s

    -1'''

    !!!

  • 8/7/2019 cse291talk

    24/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    24

    Aggregation

    Markov chain defined by Pwith statespace iIcan be aggregated to a Markovchain with a smaller state space A

    s( and

    a transition matrix R The keigenvalues ofR are the same as

    the klargest eigenvalues ofP

    Aggregation can be performed as a lineartransformation R = UPV

  • 8/7/2019 cse291talk

    25/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    25

    Aggregation example

    Aggregated transitionmatrix R

    Transition matrix P

  • 8/7/2019 cse291talk

    26/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    26

    Why piecewise constant eigenvectors?

    IfPis block-stochastic with kblocks thenits kfirst eigenvectors are piecewiseconstant

    Ncut is exact for block-stochastic matricesin addition to block diagonal matrices

    Ncut groups pixels by the similarity of

    their transition probabilities to subsets ofI

  • 8/7/2019 cse291talk

    27/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    27

    Block-stochastic matrix example

    Transition matrix P

    Piecewise constant

    eigenvector x

  • 8/7/2019 cse291talk

    28/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    28

    The modified Ncut algorithm

    Finds ksegments in one pass

    Requires that the keigenvalues ofR arelarger than the other n-kspurious

    eigenvalues ofP1. Compute eigenvalues ofP

    2. Selectklargest eigenvectors

    3. Use k-means to obtain segmentationbased on the keigenvectors

  • 8/7/2019 cse291talk

    29/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    29

    Supervised image segmentation

    Training data: Based on a human-segmented image

    define target probabilities

    Features: Different criteria fqij q=1,,Q that measure

    similarity between pixels i and j

    AiAjA

    AjPij

    ! for,,

    ,01

    *

  • 8/7/2019 cse291talk

    30/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    30

    Supervised segmentation criterion

    Model: Parametrized similarity function:

    Optimization criterion: Minimize Kullback-Leibler divergence between

    target transition matrix P* and P(E)=D-1S(E)

    Corresponds to maximizing cross-entropy:

    !q

    q

    ijqQij fS )exp(),,( 1 -

    )(log1

    )( *

    !Ii Ij

    ijij PPI

    J

  • 8/7/2019 cse291talk

    31/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    31

    Supervised segmentation algorithm

    This can be done by using gradient ascentin E:

    where

    )(

    )()1(

    nq

    n

    q

    n

    q

    J

    !

    x

    x!

    ? A !xx

    !ij

    qij

    n

    ijij

    q

    fPPI

    J

    n

    )(1

    )(*

    )(

  • 8/7/2019 cse291talk

    32/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    32

    Toy example

    Distance2

    2

    1

    jiijf xx !

    Color (or intensity)2

    2

    2

    jiij ccf !

    Training segmentation 1 (by distance): E1=-1.19,E2=1.04

    Training segmentation 2 (by color):E1=-0.19,E2=-4.55

  • 8/7/2019 cse291talk

    33/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    33

    Toy example results

    Test data Training segmentation 1 (by distance):

    Training segmentation 2 (by color):

  • 8/7/2019 cse291talk

    34/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    34

    Application real image segmentation

    Cues: Intervening contour:

    Edge flow:

    )(Edgemax ),( kf jilkIC

    ij !

    )cos(1

    )2cos(2

    )cos(1

    )2cos()2cos(2

    o

    ji

    l

    jiC

    ij

    f

    !

  • 8/7/2019 cse291talk

    35/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    35

    Training

  • 8/7/2019 cse291talk

    36/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    36

    Testing

  • 8/7/2019 cse291talk

    37/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    37

    Conclusions I

    Random walks perspective provides newinsights to the Ncut algorithm:

    Relating the Ncut algorithm to spectral

    properties of random walks Interpreting of the Ncut criterion in terms of

    conductance of a random walk

    Proving that Ncut is exact for block stochastic

    matrices

  • 8/7/2019 cse291talk

    38/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    38

    Conclusions II

    Is any of this useful in practice? Supervised segmentation method

    Comparing different spectral clustering

    methods in terms of the underlying randomwalks

    Choosing the kernel to allow for effectiveclustering (approximately block-stochastic)

    New clustering criteria, e.g. bipartiteclustering

  • 8/7/2019 cse291talk

    39/39

    CSE 291 Fall 2001 10/11/2001Random walks and spectral segmentation

    39

    References

    Kemeny JG, Snell JL: Finite Markov Chains.Springer 1976.

    Stewart WJ: Introduction to the NumericalSolution of Markov Chains. Princeton UniversityPress 1994.

    Lovasz L: Random Walks of Graphs: A Survey.

    Jerrum M, Sinclair A: The Markov Chain Monte

    Carlo Method: An Approach to ApproximateCounting and Integration.