Top Banner
ELCT 503: Semiconductors German University in Cairo (GUC) ELCT503 Semiconductors Fall 2014 Lecture 09: BJT Circuit Analysis Dr. Hassan Mostafa د. حسن مصطفى[email protected]
28

CSE 477. VLSI Systems Design - GUC

Jan 01, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

ELCT503

Semiconductors Fall 2014

Lecture 09: BJT Circuit Analysis

Dr. Hassan Mostafa

حسن مصطفى. د

[email protected]

Page 2: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Introduction

npn transistor

pnp transistor

Page 3: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Introduction

Symbol

Page 4: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

DC Models

npn

BEJ BCJ

Page 5: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

DC Models

iC – vCB characteristics for common-base configuration

Page 6: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

DC Models

iC – vCE characteristics for common-emitter configuration

(VA = Early voltage)

Page 7: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

DC Models (npn)

Transistor OFF

(VBE < 0.7V) and (VBC < 0.4V)

IB = 0 IC = 0 IE = 0

Transistor in Active region

(VBE >= 0.7V) and (VBC < 0.4V)

VCE >=0.3V

IC = IS exp (VBE/VT)

IC = β IB

IE = IC + IB = (β+1) IB

IC = IE

β = / (1- ) and β >> 1

= β / (β+1) and <= 1

Page 8: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

DC Models (npn)

Transistor in Saturation region

(VBE >= 0.7V) and (VBC >= 0.4V)

VCE =0.2V

ICsat = βforced IB

IE = IC + IB = (βforced+1) IB

Page 9: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

DC Models (pnp)

Same equations as before but after changing letters order: VBE VEB

VBC VCB

VCE VEC

Page 10: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example1

β = 100

VBE = 0.7V at IC = 1 mA

Design the circuit such that:

IC = 2 mA

VC = +5V

Page 11: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example1

Solution

Transistor works in the active region

kmA

RC 52

515

VVVVV

V

CBBC

BE

4.05

7.0

Page 12: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example1

Solution

kI

VR

mAmAII

V

VVVV

VmA

mAVV

E

EE

CE

E

EEBBE

TBE

07.7)15(

02.22*100

1100/

717.0

0717.0

717.0)1

2ln(*7.0

Page 13: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example2

β = 100

Find IC, IB, IE, VB, VC, and VE

Assume Active region VBE = 0.7V

Page 14: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example2

Check:

(VBE >= 0.7V)

(VBC = -1.3V < 0.4V)

Correct

Page 15: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example3

β = 100

Find IC, IB, IE,

VB, VC, and VE

Assume Active

region

Check:

(VBE >= 0.7V)

(VBC = 3.52V > 0.4V)

Incorrect

Page 16: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Example3

Assume

Saturation

region

Check:

(VBE >= 0.7V)

(VBC = 0.5V > 0.4V)

Correct

Page 17: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

BJT in Logic Gates RTL (Resistor Transistor Logic)

Increasing vBE decrease vo

C

T

BESCCCEo

T

BESC

BE

CCoC

BE

CCCCCEo

RV

vIVvv

V

vIi

ActiveAssume

ONVvWhen

Vvi

OFFVvWhen

RiVvv

*)exp(*

)exp(*

5.0

0

5.0

*

Page 18: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

When vBE increases such that vBC becomes larger than 0.4V

Transistor enters Saturation Region

BJT in Logic Gates

Vvv CEo 2.0

Which Logic gate this Circuit implements?

Page 19: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Think…

Which Logic gate this Circuit implements?

BJT in Logic Gates

Page 20: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Small Signal Models

Derivation : BJT must be in active region to use the small signal model

TV

CI

bev

ci

mg

V

vIi

iIi

VvV

vIi

V

vI

V

v

V

VIi

V

vVIi

V

vIiIi

T

beCc

cCC

Tbe

T

beCC

T

beC

T

be

T

BESC

T

beBESC

T

BEScCC

)1(*

)exp()exp()exp(

)exp(

)exp(

B

T

m

C

T

b

be

T

beCcb

cCCbBB

I

V

gr

I

V

i

vr

V

vIii

iIiiIi

Page 21: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Small Signal Models

-model

C

Ao

mC

T

B

T

T

Cm

I

Vr

gI

V

I

Vr

V

Ig

||

Page 22: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Small Signal Models

T-model

C

Ao

mC

T

E

Te

T

Cm

I

Vr

gI

V

I

Vr

V

Ig

||

Page 23: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Common Emitter Amplifier

Why it is called common emitter?

Bypass capacitors

Open circuit at DC

Short circuit at small signal

How to draw the small signal equivalent circuit?

Page 24: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Common Emitter Amplifier

Page 25: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Common Emitter Amplifier

Amplifier parameters:

Voltage gain (AV) = vo/vi <Units V/V>

Input resistance (Rin) = vi/ii <Units >

Output resistance (Rout) = vo/io|vs=0 <Units >

Page 26: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Common Emitter Amplifier

Voltage gain (AV) = vo/vi = - gm*(ro//RC // RL) V/V

= - gm*(RC // RL) when ro >> RC and RL

= - gm*(RC ) when ro >> RC and RL =

Page 27: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Common Base Amplifier

VA = ro =

Voltage gain (AV) = vo/vi = (RC //RL)/ re = +gm (RC //RL)

= (RC )/ re = +gm (RC) when RL =

Page 28: CSE 477. VLSI Systems Design - GUC

ELCT 503: Semiconductors German University in Cairo (GUC)

Common Collector Amplifier (Emitter follower)

VA = ro =

Voltage gain (AV) = vo/vi = RL / (RL + re)

= 1 when RL =

Why it is called Emitter follower?