Top Banner
CS-LNF 31 May 2006 Agenda: Second generation at DAFNE. Precision physics Nuclear physics Particle physics “High energy” physics Is it worth doing it?...How and when…?
32

CS-LNF 31 May 2006

Dec 31, 2015

Download

Documents

yoko-moran

Agenda: Second generation at DAFNE. Precision physics Nuclear physics Particle physics “High energy” physics Is it worth doing it?...How and when…?. CS-LNF 31 May 2006. Synchrotron light at DAFNE. DAFNE RUNNING AND MAINTENANCE. TESLA. ILC LHC RF-X. DAFNE UPGRADES. LINAC BTF. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CS-LNF  31 May 2006

CS-LNF 31 May 2006• Agenda:

• Second generation at DAFNE. Precision physics

• Nuclear physics• Particle physics• “High energy” physics

• Is it worth doing it?...How and when…?

Page 2: CS-LNF  31 May 2006

2006 2007 2008 2009 2010

FINUDA FINUDA ?-KLOE2?SIDDHARTA

FEL – SPARC

HILL – FLAME Accelerazione Laser

CNAO

SPARCX- TORVERGATA

LNF-INFN horizon

Synchrotron light at DAFNE

LINAC BTF

KLOE

CTF3- Comb.Ring AND RUNNING AT CERN

DAFNE UPGRADES

ILC LHC RF-X

TESLA

DAFNE RUNNING AND MAINTENANCE

SPARX-ino?

Page 3: CS-LNF  31 May 2006

To have a second generation experiment at LNF ……………..we have to say it now……………

Page 4: CS-LNF  31 May 2006

COLLIDERS

FACTORIES

SUPERFACTORIES

Linear colliders

Page 5: CS-LNF  31 May 2006

DAfne New Adjustable Energy : letter of intents

49 Authors

FrascatiNovosibirskBrookhaven

SLACJapan?

50ft-1 in 5 years

1-2.4 GeV total energy

8-10 *1032 cm-2 s-1(11 ft-1/ anno)

Page 6: CS-LNF  31 May 2006

DANAEDANAEEnergy and Luminosity RangeEnergy and Luminosity Range

Energy @center of mass (GeV) 1.02 2.4

Integrated Luminosity per year (ftbarn-1) > 10 1

Total integrated luminosity > 50 3

Peak luminosity > (cm-2sec-1) 1033 1032

Page 7: CS-LNF  31 May 2006

LETTER OF INTENTS AUTHORS INSTITUTES IST-ESTERI1) AMADEUS 111 30 242) DANAE-L 7 LNF3) DANTE 72 22 114) KLOE-2 70 12 7

Page 8: CS-LNF  31 May 2006

Use of DANE buildingsUse of DANE infrastructuresUse of DANE injection system + upgrade of transfer linesUse of large part of magnets, diagnostics

New • Dipoles• Wigglers• Rf system• Vacuum chamber• Interaction region

Application of new technologies Use of all expertise and experience of DANEUse of DANE runs for R&D while increasing L for next experiments

Page 9: CS-LNF  31 May 2006

DANAE layout

SC wigglers

Sc rf

INJECTION

IROnly one IR

Continuous injection……..

Page 10: CS-LNF  31 May 2006

Table II – DANAE design parameters as a -factory, and at the maximum energy, compared with DANE parameters at the present peak luminosity.

Units DANEDANAE

@ DANAE1.2 GeV

Energy (center of mass) Ecm GeV 1.02 1.02 2.4

Energy per ring E GeV 0.51 0.51 1.2

Circumference C m 97.69 96.34 96.34

Revolution frequency Frev MHz 3.07 3.11 3.11

Time between collisions Tc nsec 2.7 2 6

Bunch spacing sb m 0.81 0.60 1.80

Half crossing angle /2 mrad 15 15 15

# of Colliding Bunches Nb 110 150 30

More bunches…….

Page 11: CS-LNF  31 May 2006

Particles per bunch Npart (1010) 2-3 3 3.4

Beam current (e-/e+) I A 1.4/1.3 2.25 0.5

Bunch current (e-/e+) Ib mA 13/12 15 16.6

Peak Luminosity (1032) Lpeak cm-2sec-1 1.5 10 > 2

Specific Luminosity/bunch (1028)

Lsp cm-2sec-1mA-2 0.9 3 3

H function @ IP H m 2 1 1

V function @ IP V cm 1.8 0.8 1

Horizontal emittance m rad 0.4 0.45 0.45

Coupling factor 1.1 0.5 0.5

H in collision x mm 1.26 0.95 0.95

V in collision y m 12.6 6 6.7

Beam-beam tune shift x 0.026 0.030 0.014

y 0.025 0.038 0.020

Bunch length (e-/e+) L cm 3/2 1 1.5

Piwinski angle rad 0.42 0.22 .33

Momentum compaction c 0.027 0.02 0.03

More specific luminosity……….more current…

Units DANEDANAE

@ DANAE1.2 GeV

Page 12: CS-LNF  31 May 2006

* *4coll

x y

f N NL

N+N-

Increasing of cross section with current due - Beam-beam- Single beam effects (Single bunch effects + Total current effects)Stronger for lower energy

Increasing the luminosity by:Increasing the slope (smaller cross section)Increasing the current Fighting the blowup effects

Higher luminosities

DANE highest L

Page 13: CS-LNF  31 May 2006

DANAE LATTICE

Page 14: CS-LNF  31 May 2006

Energy spread – bunch length – rf system

2 22 3

2 42qE

q

CIC

E I I

2c cE EL

s o

c Ec

E heV E

More radiation :larger energy spread – longer bunch

Bunch length can be shortenedby increasing h, V

Natural bunch length and energy spread at low current are definedby the magnetic lattice, the momentum compaction and the rf system

Page 15: CS-LNF  31 May 2006

Short bunch length at high current:• Low impedance• High voltage

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50

Measurements 2000Simulation 1998Measurements 2004

I [mA]

FWHM/2.3548 [cm]

2/

2/

c E lth

E e EI

Z n R

Above the microwave instability current thresholdL increases with the current, not depending on c

SIMULATIONS and MEASUREMENTS ON DANE

6

7

8

9

10

11

12

0 5 10 15 20 25 30

I [mA]

SigmaZ [mm]

alfa = +0.02

alfa = -0.02

alfa = -0.03

SIMULATIONS for DANAE

Page 16: CS-LNF  31 May 2006

DANAE lattice and dynamic aperture

Page 17: CS-LNF  31 May 2006

IT IS EASIER

Increasing the luminosity by:Increasing the slope (smaller cross section)Fighting the blowup effects

BUTPower = Current x Energy loss

Higher energies Higher Magnetic fields

P (a.u.)

N+N- or L (a.u.)

E = 0.51 GeV

E = 1.2 GeV

Limit in power =Limit in current

4 22 2,o dip wigU I E I E

Page 18: CS-LNF  31 May 2006

12 DIPOLES per ring normal conducting

Maximum field: 1.72 T

Gap = 4.3 cm

I2 = 2.7 m-1

1.72 T Dipole Magnet, POISSON simulation

Page 19: CS-LNF  31 May 2006

SC Wigglers to further increase radiation

Lw = 6 m @ B = 4 Tx (@510 MeV) = 13 msec I2 = 22 m-1 x (@1.2 GeV) = 5 msec I2 = 6 m-1

2

2

1

2 w

Bi L

B

Energy 0.51 1.2

Maximum magnetic field Bmax T 4 4

Total number of poles 19 19

Total length m 2.96 2.96

Central pole length cm 16 16

End poles length cm 8 8

2nd and penultimate poles length cm 12 12

End poles field ratio with Bmax 0.5 0.5

2nd and penultimate field ratio with Bmax 1 1

Max trajectory oscillation mm 6 2.5

Path – wiggler length difference mm 11.8 2.1

Total vertical beam stay clear cm 2 2

Total horizontal beam stay clear cm 8.5 8.5

E = 0.51 GeV E = 1.2 GeV

DANAE wiggler parameters

Page 20: CS-LNF  31 May 2006

By (s)

By (x)

By/By = 5 10-4 @ 2 cm

SC Wiggler built at BINPBmax = 7 Tfor SIBERIAII

Collaboration with BINP group:

Page 21: CS-LNF  31 May 2006

RF system Harmonic number : 160Maximum # bunches: 150

-Energy High Energy

fRF 500 MHz

VRF 0.5 MV 1.5 MV

type SC, KEKB-like

R/Q 46 Ω

Q0 2 ∙ 109 @ 4.2 K

Rs 92 GΩ

PRF 1.5 W 12.5 W

PStatic 40 W

Ib 2.25 A 0.5 A

U rad 21.4 keV 165 keV

PBeam 48 kW 82.5 kW

100 kW CW, IOT or Klystron

Qext 32 ∙ 103 6.6 ∙ 103

Page 22: CS-LNF  31 May 2006

DANAE Interaction Region – tunable with energy and Bsol

Compatible with KLOE detectorSC low beta quads + skews + antisolenoids

Page 23: CS-LNF  31 May 2006

SC coils winding procedure – Brookhaven (Brett Parker)

Page 24: CS-LNF  31 May 2006

Transverse view

DANAE QD DANAE Antisolenoid

2D Longitudinal view

B. Parker design

Page 25: CS-LNF  31 May 2006

VACUUM CHAMBERS

Keep more regular vacuum chamber shape (experience from DANE and CTF3)Use of small ICE wih negligible impedanceTi coating for e+ surfacesOptimisation of slots and bellows for 1 cm bunch lengths

Negligible contribution to impedance of short ICEs

CTF3 vacuum chambers

Page 26: CS-LNF  31 May 2006

Longitudinal Feedback kicker

Parameters of PEPII kicker, designed by LNF, almost equal to DANAE ones.

Page 27: CS-LNF  31 May 2006

Injection system

•Linac + Accumulatore OK •Doubling transfer lines for optimizing <L>•New kickers (R&D on DANE in progress)•Ramping for high energy option

The High Luminosity option needs

continuous injection

Page 28: CS-LNF  31 May 2006

Tentative schedule

• To CDR and Project approval (2006)• To + 1 year call for tender• To + 2 years construction and delivery• To + 3 years DANE decommissioning and

DANAE installation • To + 4 years 1st beam for commissioning and for 1st experiment (2010)

Page 29: CS-LNF  31 May 2006

Boosting DANAE basic performances

• Crab cavity

• Twisted crab

• Strong rf focusing

• ………

• ……… Very intense R&D on DAFNE is possible

….make a choise….the right one………….. and do it quickly….....

Page 30: CS-LNF  31 May 2006

Questions to answer:

1) Is it the physics (particle and nuclear) worth doing?2) Should we include the high energy option?3) Which machine R&D’s have priority?4) How to proceed?

1) Which detector upgrades are necessary?2) Does it exists a collaboration willing to do it?

Page 31: CS-LNF  31 May 2006

Running cost for electric energy only

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 tot costo ENEL

Lum.Int DAFNE 5 5 5 5 5 5 5 35 Me

Lum.Int DANAE 5 0 2 2 2 2 2 15 Me Save 20 Me

In 5 years it will be too expensive to run DAFNE!

Page 32: CS-LNF  31 May 2006

Basic DANAE Parameters N-N

Energy per beam E GeV 0.51 1.2

Circumference C m 100 100

Luminosity L cm-2 sec-1 1033 1032

Current per beam I A 2.5 0.5

N of bunches Nb 150 30

Particles per bunch N 1010 3.1 3.4

Emittance mm mrad 0.45 0.45

Horizontal beta* x m 1 1

Vertical beta* y cm 0.8 1

Bunch length L cm 1 1.5

Coupling % 0.5 0.5

Energy lost per turn Uo (keV) 21 165

L damping time x (msec) 7.6 2.2

Beam Power Pw (kW) 48 (42w + 6d) 83 (43w + 40d)

Power per meter Pw/m (kW/m) 7w + 0.4d 7.2w + 2.7d