Top Banner
21

CS 269Q: Elements of Quantum Computer Programming

Dec 06, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CS 269Q: Elements of Quantum Computer Programming
Page 2: CS 269Q: Elements of Quantum Computer Programming
Page 3: CS 269Q: Elements of Quantum Computer Programming
Page 4: CS 269Q: Elements of Quantum Computer Programming

VQE H2 Example

Page 5: CS 269Q: Elements of Quantum Computer Programming

How to find the ground state of H2

O’Malley, P. J., et al (2016). Scalable quantum simulation of molecular energies. Physical Review X, 6(3), 031007.

H HBond distance

Page 6: CS 269Q: Elements of Quantum Computer Programming

Steps for VQE

Page 7: CS 269Q: Elements of Quantum Computer Programming

Step 1: Map into a Pauli representation of H

How many qubits are needed to simulate this?

Page 8: CS 269Q: Elements of Quantum Computer Programming

Step 1: Map into a Pauli representation of H

Page 9: CS 269Q: Elements of Quantum Computer Programming

Step 1: Map into a Pauli representation of H

Page 10: CS 269Q: Elements of Quantum Computer Programming

Step 2: Pick ansatz

Remind Will to draw the circuit on the board

Page 11: CS 269Q: Elements of Quantum Computer Programming

Step 3: Optimize Over Expectations

Page 12: CS 269Q: Elements of Quantum Computer Programming

Step 3: Optimize Brute Force Over Expectations

Page 13: CS 269Q: Elements of Quantum Computer Programming

Step 3: Plot Optimum

Page 14: CS 269Q: Elements of Quantum Computer Programming

Peruzzo et al. 1304.3061 O’Malley et al. 1512.06860

VQE Simulations on Quantum Hardware

Page 15: CS 269Q: Elements of Quantum Computer Programming

Peruzzo et al. 1304.3061 O’Malley et al. 1512.06860

Kandala et al. 1704.05018

VQE Simulations on Quantum Hardware

Page 16: CS 269Q: Elements of Quantum Computer Programming

1. MOLECULAR DESCRIPTION 2. MAP TO QUBIT REPRESENTATION

e.g. Bravyi-Kitaev or Jordan-Wigner Transform

3. PARAMETERIZED ANSATZ

e.g. Unitary Coupled Cluster Variational Adiabatic Ansatz

Wecker, D., et al. (2015). Progress towards practical quantum variational algorithms. Physical Review A, 92(4), 042303.O'Malley, P. J. J., et al. (2015). Scalable Quantum Simulation of Molecular Energies. arXiv:1512.06860. McClean, J. R. et al. (2015). The theory of variational hybrid quantum-classical algorithms. arXiv:1509.04279.

Peruzzo, A., et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5.

e.g. DI-HYDROGEN

e.g. Electronic Structure Hamiltonian

PREPARE QUANTUM STATE (𝞗)

MEASURE TERM 2

MEASURE TERM N

MEASURE TERM 1

QUANTUM PROCESSOR CLASSICAL PROCESSOR

SUMTERMS

CLASSICALOPTIMIZATION OF

ANSATZ PARAMETER:

𝞗

4. RUN Q.V.E. QUANTUM-CLASSICAL HYBRID ALGORITHM

The Variational Quantum EigensolverUsed for the electronic structure problem in quantum chemistry

Page 17: CS 269Q: Elements of Quantum Computer Programming

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta, J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671), 242.

Example: Hardware Ansatz

Page 18: CS 269Q: Elements of Quantum Computer Programming
Page 19: CS 269Q: Elements of Quantum Computer Programming
Page 20: CS 269Q: Elements of Quantum Computer Programming
Page 21: CS 269Q: Elements of Quantum Computer Programming