Top Banner
PERFORMANCE OF CAMEROON-BASED INTRA- AND INTER- CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.) POPULATION BEYEGUE DJONKO HONORE UNIVERSITI SAINS ISLAM MALAYSIA
59

CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

Dec 31, 2016

Download

Documents

phungcong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

PERFORMANCE OF CAMEROON-BASED INTRA- AND INTER-

CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

POPULATION

BEYEGUE DJONKO HONORE

UNIVERSITI SAINS ISLAM MALAYSIA

Page 2: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

PERFORMANCE OF CAMEROON-BASED INTRA- AND INTER-

CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

POPULATION

Beyegue Djonko Honoré

(Matric. No. 4090131)

Thesis submitted in fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

GENETICS AND PLANT BREEDING

Faculty of Science and Technology

UNIVERSITI SAINS ISLAM MALAYSIA

NILAI

October 2013

Page 3: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

i

APPROVAL

The thesis entitled “Performance of Cameoon-Based Intra- and Inter-Crosses Dura x

Pisifera Oil Palm (Elaeis guineensis Jacq.) Population” submitted by Mr. Beyegue

Djonko Honore (Matric. No. 4090131) for the Degree of Doctor of Philosophy in

Genetics and Plant Breeding was duly approved by the following academic authorities:

_________________________________ Date: __________________

1. Emeritus Prof. Dr. Jalani Bin Sukaimi

Faculty of Science & Technology

Universiti Sains Islam Malaysia

Chair of the Supervisory Committee

________________________________ Date: __________________

2. Prof. Dr. Abdul Jalil Abdul Kader

Faculty of Science & Technology

Universiti Sains Islam Malaysia

Chairman of Jury of Examination

_________________________________ Date: __________________

3. Prof. Dr. Bachok M. Taib

Universiti Sains Islam Malaysia

Dean Faculty of Science & Technology

_____________________________ Date: __________________

4. Prof. Dato’ Dr. Muhamad Muda

Universiti Sains Islam Malaysia

Dean Centre for Graduate Studies

Page 4: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

ii

AUTHOR DECLARATION

I hereby declare that the work in this thesis entitled “Performance of Cameoon-Based

Intra- and Inter-Crosses Dura x Pisifera Oil Palm (Elaeis guineensis Jacq.)

Population” and submitted for the Degree of Doctor of Philosophy in Genetics and Plant

Breeding is my own except for quotations and summaries which have been duly

acknowledged.

Date: 10th

October 2013

Signature:

Name: BEYEGUE DJONKO HONORE

Matric No: 4090131

Address: Faculty of Science & Technology

Universiti Sains Islam Malaysia (USIM)

71 800 Nilai, Negeri Sembilan, Malaysia

Page 5: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

iii

BIODATA OF AUTHOR

Beyegue Djonko Honoré (4090131) was born on the 27th

February 1973 in Yaounde,

Republic of Cameroon. He completed his primary and secondary education in Yaounde

the political capital of Cameroon and Obala, a city located in the outskirts of Yaounde.

He is holder of the degree in Agronomic Engineering completed with major in Plant

Science, after a 5-year programme at the Faculty of Agronomy and Agricultural Sciences

(FASA) of the University of Dschang, Cameroon, from 1996 to 2002.

Prior to embarking into agricultural sciences at the Faculty of Agronomy and Agricultural

of the University of Dshang, the author studied Biochemistry and Animal Biology at the

Faculty of Science of the University of Yaounde I where he completed two years of

studies from 1994 to 1996. Before coming to the Universiti Sains Islam Malaysia (USIM)

to undertake the Master of Science and later on the PhD in Genetics and Plant Breeding

he attended a Master of Science course in Arid Zone Ecology at the Faculty of Biological

Sciences of the University of Maiduguri, Federal Republic of Nigeria.

The author is currently Assistant Lecturer in the Department of Agriculture, Faculty of

Agronomy and Agricultural Sciences of the University of Dschang, Cameroon. He has

previously contributed to research works on land resources suitability assessment for their

sustainable use and biological conservation of wildlife and plant species. Prior to his

enrolment for postgraduate studies in USIM, he was involved in a pluri-annual research

programme on biological farming which resulted in several publications in peer-reviewed

journals. During the course of the PhD programme in Malaysia, the author attended

various workshops, seminars and conferences covering a broad spectrum of disciplines of

life sciences and allied areas of knowledge.

The combined Master and PhD programme taken at USIM was started in July 2009 and

completed in October 2013, following the successful defense of the thesis held on 08

October 2013. Deepening understanding in the realm of management of genetic resources

at large is the immediate target following graduation, in addition to exploration of allied

disciplines which can aid achieving this goal. The resumption with academic duties after

completion of the current PhD study programme is an opportunity to value the new skills

acquired for advancement of science and knowledge.

Page 6: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

iv

ACKNOWLEDGEMENTS

I would like first and foremost to extend my deepest gratitude to Emeritus Prof. Dr. Jalani

Sukaimi who accepted to supervise this thesis work and for the provision of all needed

supports despite his various other duties. Dear Prof. Emeritus Dr. Jalani Sukaimi, I have

learned from you more than I can humanly acknowledge here. I extend my heartfelt

thanks to you for your patience, guidance and inspirational skills.

I express my sincere gratitude to Assoc. Prof. Dr. Ahmed Mahir Mokthar Bakri for his

commendable advices and guidance in his capacity of co-supervisor. Your advices and

teachings have been instrumental in the implementation of my study progamme.

My sincere thanks are due to Dr. A. Kushari Din, Deputy Director General of the

Malaysian Palm Oil Board (MPOB) for his supervision and multifaceted supports

provided for the sound implementation of this research work at MPOB despite his busy

timetable. I really appreciate the warm ambience in his office each time we had an

appointment for discussions.

I would like to give a special acknowledgement and appreciation to Dr. Rajanaidu

Nookiah who accepted to co-supervise this thesis and for having gratefully welcomed me

and kindly accepted to share his invaluable experience in oil palm breeding. Your advices

and teachings have been of great help in the understanding of fundamental processes in

oil palm breeding.

I was very fortunate to benefit from invaluable assistance from Prof. Dr. Mohamad

Osman who kindly welcomed me at the Universiti Kebangsaan Malaysia (UKM) to

attend his course on Advanced Plant Breeding. My sincere thanks to him for providing

me with more insights in the science of plant breeding and opening me doors for more

specific trainings under the Genetics Society of Malaysia.

Assoc. Prof. Dr. Rafii Mohd Yusof has been instrumental at the critical steps of statistical

data analyses of my thesis. I would like to extend my deepest gratitude for the wealth of

knowledge you have unstintingly imparted to me and for your time and kindness.

Page 7: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

v

I wish to extend my heartfelt acknowledgment to the Malaysian Government for the

financial support through the Malaysian International Scholarship (MIS) until completion

of this combined MSc/PhD study programme.

My sincere gratitude is addressed also to my hierarchy at the University of Dschang,

Cameroon, for granting me a study leave and permission to take part to this postgraduate

programme.

I express my sincere thanks to the Malaysian Palm Oil Board (MPOB) to have offered me

an internship for my research work. Dr. Khalid Haron and Mr. Othman Samad

respectively Head of MPOB Research Station in Kluang and Keratong, for their

assistance. I wish to pay a whole tribute to all MPOB workers I was fortunate to interact

with during the course of my research works in Kluang and Keratong Research Stations.

I am indebted to Dr. Claude Bakoume for the help provided to me at the time I was

looking for a placement in a university in Malaysia so far from Cameroon. I extend my

appreciations to his wife Olive for her hospitality and friendship.

My deepest appreciations go to my colleagues Mrs Sharifah Nur Rahimah, Messrs.

Sa’adu Lawal, Omar Dahimi, Amrizal Koto, Belal Jamal Muhiadin, Ibrahim Elshaafi and

Mohamed Aween for their help and friendship during my studies at Universiti Sains

Islam Malaysia. Mr. Tengoua Fabien Fonguimgo and Mrs Nyaka Ngobisa Aurelie from

the Universiti Putra Malaysia are greatly acknowledged for their friendship and

cooperation. I express my gratitude to Mr. Mohd Azwan Mohd Bakri and family for their

friendship and support.

There are special individuals that one meet through the course of life and who really

refine the vision and personality we attain, owing to their particular dedication in sharing

experiences they have gathered through their own pathways. May Dr. Mvondo Awono

Jean Pierre, despite his natural humility, accept my sincere thanks for the profound

human values imparted to me since we first met in a lecture hall at the Faculty of

Agronomy and Agricultural Sciences (FASA), University of Dschang, Cameroon in

1997. May this achievement be considered as a reward to all your commitment to make

me a valuable contributor to the society.

Page 8: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

vi

My heartfelt thanks are extended to Dr. Mvondo Awono and wife Edith, Mr. Alexis

Boukong and wife Leocadie, Dr. Mayaka Bileng and wife Yvonne, Prof. Zoli Andre,

Prof. Mvondo Ze Antoine, Mrs. Nguy Francoise-Caroline, Ms Nguele Zang Joelle, Mr

Gnyonkeu Vincent, Dr. Fotsing Eric and wife Nicole, Dr. Njomaha Charles and Dr. Ziebe

Roland for their friendship and constant support. I pay a due tribute to Dr. Mainam Felix

and Dr. Assoumou Ebo’o Etienne who passed away during my stay in Malaysia for the

precious supervision and support provided to me before leaving for the hereafter.

I wish to give a special regards to my beloved elder brother Edmond Desire Bigueme

Bassanena, my faithful companion in all my battles in life, and my beloved and charming

aunt Bernadette Anyoung, for the special care she alone has the secret whatever the

situation I may be confronted with. Mr. Essiene Christian and wife Clotilde are sincerely

thanked for their brotherhood and care. My sincere thanks and acknowledgement are

extended to my uncle Basile Negogue. A special regard is due to my long-lasting friend

Dr. Essam Nlo’o Alain and wife Rosine for their support. May my esteemed elder

Tchadde Bidias be acknowledged for the invaluable support during the course of this

academic adventure.

I thank my father, Mr. Djonko Fiaga Joachim, and mother, Mrs Djonko née Ebong

Therese, for all the sacrifices consented for my education despite their limited livelihoods,

the solid moral education imparted to me, and for the precious advices and guidance they

continue to provide to me so lovingly. All my sisters and brothers from my extended

family are sincerely thanked for their love and precious moral support. A special regards

is due to Jeanine, Odile, Louis-Prudence, Nadege-Flore, Eric Jean-Bosco and Esso for

their remarkable commitment in running family affairs during my absence from

homeland. May this achievement be a reward to the staunch support I received from all of

you. My sincere gratitude is extended to Brigitte Assena Onana for her full commitment

and dedication to the welfare of Andre-Vianney and Flavien-Joachim-Modeste to whom I

extend a special regard.

May memories of late patriarches who made invaluable contribution to the shaping of my

being be honoured through this academic achievement. Special regards are due to Mr.

Janvier Fiaga my so caring grandfather; Mr. Bassanena Simon my inspiring uncle for

teaching vocation; and Mr. Janvier Eloundou Nka a foster father to me for his special

care. May your souls rest in perfect peace!

Page 9: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

vii

ABSTRACT

A total of 13 progenies of oil palm derived from biparental crosses between five dura

mother palms from Cameroon (CMR) and two pisifera palms, one from CMR and the

other from the Democratic Republic of Congo (DRC/ex-Zaire) were field-tested to assess

their performance for bunch yield, morpho-vegetative, physiological and oil quality traits.

The study is a contribution to the evaluation of oil palm germplasm collected by the

Malaysian Oil Palm Board worldwide. The research objectives fulfilled in this thesis

work were to (i) study the variation of genotypes for phenotypic characters; (ii) assess the

genotype-by-environment (GE) interactions effects on traits; (iii) estimate genetic

parameters for characters; (iv) assess the combining ability of both pisifera parental

palms; (v) assess the stability of genotypes for traits; and (vi) analyse phenotypic

correlations among characters. The 13 genotypes were planted in a randomized complete

block design (RCBD) with 16-palm plots replicated twice at MPOB Research Stations in

Kluang (Johore) and Keratong (Pahang). Genotypes were scored for 49 phenotypic

characters/traits following the standard procedures applied at MPOB.

The analysis of variance (ANOVA) revealed significant differences (P<0.05 and P<0.01)

among genotypes for all characters checked except for (P/B). The GE interactions effect

was significant for all characters except ABWT, TEP, OY, O/B, F/B, S/F, M/F, P/B,

BWT, PCS, f, TDMP, e, and NAR. The two pisifera parents showed a significant

difference for all characters except ABWT, TEP, KOY, OY F/B, O/DM, P/B, BWT, LL,

LW, HT, C18:2 and CC. The pisifera palm from CMR showed a higher combining ability

for FFBY and BNO over that from the DRC but there was no significant difference

among both parental palms for OY, KOY and TEP. Broad-sense heritability estimates for

the characters studied were low to moderate for the majority of characters but morpho-

vegetative scored higher heritabilities as compared to other clusters of characters,

suggesting their greater genetic control of the inheritance. The contribution of the residual

variance components to the total variance was on average greater than 50% and that for

genotypic variance less than 30% for all characters, indicating a high contribution of

environmental factors to the variation observed.

FFBY was positively correlated with BNO (r=0.73) and ABWT (r=0.26), its two main

components. BNO and ABWT were negatively correlated (r=-0.44) indicating an

antagonistic effect of both characters on the performance of oil palm progenies. Despite

the discrepancy in the scoring for bunch yield characters, progenies deriving from crosses

CMR x CMR showed a relatively higher performance compared to those from CMR x

DRC for FFBY. Genotype PK 1875 (CMR x CMR) revealed to be the best performer on

the individual trial basis as well as for pooled data over locations with an average bunch

yield of 159 kg/palm/yr.

Genotypes performed consistently across locations for bunch and fruit characters, with

low heritability estimates accounted for all characters in general. Genotypes’ scores for

OY varied from 27.7 kg/palm/yr (PK 1657) to 30.8 kg/palm/yr (PK 1721), with a grand

Page 10: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

viii

mean of 28.2 kg/palm/yr. Genotypes PK 1874, PK 1721, PK 1664, PK 1875 scored above

30 kg oil/palm/yr in average, which correspond to 4.3 - 4.5 t/ha/yr. Positive correlations

were found between OY and O/B (r=0.63), O/WM (r=0.43), M/F (r=0.40). KOY showed

a significant correlation with K/B (r=0.84), S/F (r=0.26) and K/F (r=0.78). OY showed a

significant and negative associations with the endocarp-related characters K/F (r=-0.34),

S/F (r=-0.31) and K/B (r=-0.23). The opposite trend was observed between KOY and

mesocarp-related characters M/F (r=-0.61), O/DM (r=-0.15), O/WM (r=-0.23) and O/B

(r=-0.22). This suggests an opposite dynamic of OY and KOY with respect to their

specific component characters.

The best scorers for TDMP, BDMP and e were PK 1875, PK 1874 and PK 1944 (CMR x

CMR). Genotype PK 1875 recorded the highest scores for BDMP (12.53 t/ha/year) BI

(0.48), and NAR (10.39 t/ha/yr) respectively. PK 1657 and PK 1676 (CMR x DRC) were

the poorest performers in terms of BDMP, TDMP and e. Genotype PK 1957 (CMR x

CMR) was the most vigorous with the highest scores for VDMP (15.9 t/ha/yr), TDMP

(27.2 t/ha/yr) and e (0.98 g/MJ). All physiological characters were significantly correlated

(P<0.01) one another, with the exception of the pair BI and e. TDMP was strongly

correlated to BDMP (r=0.77) and VDMP (r=0.83). BI was strongly correlated with

BDMP (r=0.70) but negatively correlated with VDMP and TDMP (r=-0.45). The

selection for high vegetative vigour would have a detrimental effect on BI. HT showed a

significant positive correlation with FP (r=0.38), PCS (r=0.14), LA (r=0.15), LAI

(r=0.15), LL (r=0.13) and f (r=0.15). Genotype PK 1792 could be selected for its lowest

HT and relatively low FP, but it is a poor yielder with 126.0 kg/palm/yr of FFB compared

to PK 1875 the best yield performer (FFBY=159.34 kg/palm/yr).

The correlation analysis for oil quality traits revealed strong significant associations

between C16:0 and respectively, C18:0 (r=-0.59), C18:1 (r=-0.81), and IV (r=-0.70). The

correlation between C16:0 and CC was not significant. On the other hand, C18:1 was

negatively correlated to C16:0 (r=-0.81), C18:2 (r=-0.68), and positively correlated to IV

(r=0.46). The correlation between C18:1 and CC was not significant. Selection for high

C16:0 would indirectly select for low IV whereas, selection for high C18:1 would equate

selection for higher IV. Scoring for C16:0 and C18:1 could not be used as indirect

selection criteria for CC, as both traits showed a nonsignificant correlation with CC

respectively. The significant positive correlation between C18:0 and C18:1 would imply

that selecting for high C18:1 will indirectly select for high C18:0 as well. Selecting for

higher C18:0 would indirectly mean to select for lower C16:0 (r=-0.59) and higher IV.

The study revealed that genotypes tested scored markedly higher CC (964.37 ppm to

1551.3 ppm) as compared to D x P current planting materials (500 - 700 ppm).

Stability of genotypes for characters was studied using the grouping methods of Francis

and Kannenberg, and the regression method of Finlay and Wilkinson. Genotypes PK

1875, PK 1944 and PK 1721 were high stable for FFBY, whereas PK 1671 and PK 1668

were the most sensitive to variations of growing environmental conditions. Genotype PK

1875, PK 1664 and PK 1792 were the most stable for BI, PK 1875 being also highly

stable for TEP.

Page 11: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

ix

ABSTRAK

Prestasi Populasi Kacukan Intra- dan Inter Dura x Pisifera

Sawit (Elaeis guineensis Jacq.) dari Kameroon

Sebanyak 13 progeni sawit hasil kacukan biparental antara lima genotip induk dura dari

Kameroon (CMR) dan dua induk pisifera, satu dari CMR dan satu lagi dari Republik

Demokratik Kongo (DRC/ex-Zaire) telah dinilai untuk prestasi bagi ciri-ciri hasil tandan,

morfo-vegetatif, fisiologi dan kualiti minyak. Kajian ini merupakan sumbangan kepada

penilaian genebank sawit yang dibina oleh Lembaga Minyak Sawit Malaysia (MPOB).

Objektif kajian tesis ini adalah untuk (i) menyelidik kepelbagaian genetik bagi ciri-ciri

fenotip, (ii) menilai kesan interaksi persekitaran (GE), (iii) menganggarkan parameter

genetik ciri-ciri fenotip, (iv) menilai keupayaan gabungan kedua-dua induk pisifera, (v)

menilai kestabilan genotip ciri-ciri fenotip, dan (vi) menganalisis korelasi fenotip antara

ciri-ciri. Kajian ini dilaksanakan dengan menanam 16-pokok per plot mengikut

rekabentuk blok rawak (randomised block design) dengan dua replikasi di Stesen

Penyelidikan MPOB Kluang (Johor) dan Keratong (Pahang). Sebanyak 49 ciri fenotip

telah di analisis mengikut prosedur standard yang digunakan di MPOB.

Analisis varians (ANOVA) menunjukan perbezaan signifakan di antara genotip untuk

semua ciri kecuali P/B. Interaksi GE adalah signifikan untuk semua ciri kecuali ABWT,

TEP, OY, O/B, F/B, S/F, M/F, P/B, BWT, PCS, f, TDMP, e, dan NAR. Kedua-dua induk

pisifera menunjukkan perbezaan signifikan bagi semua ciri kecuali ABWT, TEP, KOY,

OY, F/B, O/DM, P/B, BWT, LL, LW, HT, C18:2 dan CC. Induk pisifera dari CMR

menpunyai keupayaan bergabung am (GCA) lebih tinggi untuk FFBY dan BNO

berbanding dengan pisifera dari DRC tetapi tiada perbezaan signifikan antara kedua-dua

induk pisifera untuk OY, KOY dan TEP. Anggaran heritabiliti luas untuk ciri-ciri yang

dikaji adalah rendah hingga sederhana bagi kebanyakan ciri, tetapi morfo-vegetatif

menunjurkan heritabiliti lebih tinggi berbanding dengan kelompok ciri lain, di mana ianya

menunjukkan kawalan genetik yang lebih besar mereka daripada warisan. Sumbangan

komponen varians baki darpada jumlah varians pada purata lebih daripada 50% dan bagi

varian genotip kurang daripada 30% untuk semua ciri, yang menunjukkan sumbangan

factor persekitaran lebih tinggi kepada perubahan yang dicerap.

FFBY didapati mempunyai korelasi positif dengan BNO (r=0.73) dan ABWT (r=0.26),

dua komponen utamanya. Manakala BNO dan ABWT pula bekorelasi negatif (r=-0.44).

Ini menunjukkan kesan yang bercanggah daripada dua ciri ini terhadap prestasi progeni

sawit. Walaupun ada perbezaan dalam aksara hasil tandan, progeni kacukan CMR x CMR

telah menunjukkan prestasi FFBY yang lebih baik progeni daripada CMR x DRC.

Genotip PK 1875 (CMR x CMR) menjadi penanda aras terbaik berdasarkan prestasi data

terkumpul merentasi lokasi dengan hasil FFBY dengan purata 159 kg/pokok/tahun.

Pada umumnya, progeni menunjukkan prestasi yang konsisten di semua lokasi bagi ciri-

ciri kualiti tandan dan buah, dengan anggaran heritabiliti yang rendah untuk semua ciri-

ciri. Julat OY semua genotip ialah di antara 27.73 kg/pokok/tahun (PK 1657) hingga

Page 12: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

x

30.79 kg/pokok/tahun (PK 1721), dengan min 28.22 kg/pokok/tahun. Manakala genotip-

genotyp PK 1874, PK 1721, PK 1664 dan PK 1875 pula menghasilkan minyak dengan

min lebih daripada 30 kg/pokok/tahun, yang sepadan dengan hasil minyak sebanyak 4.3 -

4.5 t/ha/tahun. Korelasi positif (P<0.01) telah dikesan di antara OY dengan O/B (r=0.63),

O/WM (r=0.43) and M/F (r=0.40). KOY menunjukkan hubungan yang signifikan

(P<0.01) dengan K/B (r=0.84), S/F (r=0.26) dan K/F (r=0.78). Ciri OY menunjukkan

korelasi negatif yang signifikan (P<0.01) dengan ciri-ciri endokarpa, seperti K/F (r=-

0.34), S/F (r=-0.31) dan K/B (r=-0.23). Manakala ciri KOY pula menunjukan trend yang

bertentangan ciri-ciri mesokarpa, seperti M/F (r=-0.56), O/DM (r=-0.15), O/WM (r=-

0.23) dan O/B (r=-0.22). Ini menunjukkan dinamik bertentangan di antara OY dengan

KY, terutamanya yang berkaitan dengan kompleks sub-komponen masing-masing:

semakin lebih komponen tempurung dan isi rong komponen, semakin kurang komponen

mesokarpa.

Kacukan CMR x CMR menghasilkan tiga genotip (PK 1874, PK 1875 dan PK 1944)

mempunyai TDMP, BDMP dan e yang tertinggi. Genotip PK 1875 mencatatkan skor

tertinggi untuk BDMP (12.53 t/ha/tahun), BI (0.48), dan NAR (10.39 tan/ha/tahun). PK

1657 dan PK 1676 (CMR x DRC) mempunyai skor terendah dari segi BDMP, TDMP dan

e. PK 1957 (CMR x CMR) pula mempunyai skor tertinggi VDMP (15.87 tan/ha/tahun),

TDMP (27.22 tan/ha/tahun) dan e ( 0.98 g/MJ). Semua ciri fisiologi yang mempunyai

hubungan yang signifikan (P<0.01) antara satu sama lain, kecuali pasangan BI dan e.

TDMP berkait rapat dengan BDMP (r=0.77) dan VDMP (r=0.83). BI berkait rapat

dengan BDMP (r=0.70) tetapi dikaitkan secara negatif dengan VDMP dan TDMP (r=-

0.45). Ini membuktikan pemilihan kepada vegetatif vigour yang tinggi akan menjejaskan

BI. Korelasi positif dan tinggi serta signinifikan telah dikesan antara HT dengan FP

(r=0.38), PCS (r=0.14), LA (r=0.15), LAI (r=0.15), LL (r=0.13), dan f (r=0.15). Kesan

korelasi positif yang tinggi di antara ciri-ciri utama yang menentukan arkitektur (seni

bina) sawit (HT, FP, LL, PCS) ialah ianya merumitkan pemilihan ciri-ciri yang

bertentangan. PK 1792 boleh dipilih untuk HT yang paling rendah dan FP rendah, tetapi

ianya adalah pelaku hasil FFBY terendah (126.04 kg/pokok/tahun) berbanding dengan

PK 1875 yang merupakan pelaku hasil terbaik (159.34 kg/pokok/tahun).

Analisis korelasi ciri-ciri komposisi minyak dikesan mempunyai korelasi yang amat

signifikan di antara kandungan C16:0 dengan kandungan C18:0 (r=-0.59), kandungan

C18:1 (r=-0.81) dan IV (r=-0.70). Oleh sebab itu, tiada hubungan yang signifikan telah

dikesan di antara C16:0 dengan kandungan CC. Sebaliknya, kandungan C18:1 berkait

secara negatif dengan C16:0 (r=-0.81) dan C18:2 (r=-0.68), tetapi berkait secara positif

dengan IV (r=0.46). Oleh sebab itu, tidak terdapat hubungan yang signifikan antara C18:1

dan CC. Pemilihan untuk kandungan C16:0 secara tidak langsung akan juga memilih IV

yang rendah, manakala pemilihan kandungan asik oleik yang tingi C18:1 akan juga

menjurus kepada IV yang lebih tinggi. Oleh itu, C16:0 dan C18:1 tidak boleh digunakan

sebagai penanda strategi pemilihan tidak langsung untuk kandungan CC, kerana kedua-

dua ciri menunjukkan hubungan yang tidak signifikan dengan CC. Hubungan positif yang

signifikan antara C18:0 dan C18:1 bermakna pemilihan kandungan C18:1 yang tinggi

secara tidak langsung akan juga memilih untuk kandungan C18:0 yang tinggi juga.

Page 13: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xi

Pemilihan kandungan C18:0 yang lebih tinggi secara tidak langsung akan bermakna

untuk memilih kandungan C16:0 yang lebih rendah (r=-0.59) dan tinggi IV. Genotip

dalam kajian ini mempunyai CC lebih tinggi (964.37 ppm - 1551.32 ppm) berbanding D x

P bahan tanaman semasa (500 - 700 ppm).

Kestabilan genotip untuk ciri yang dikaji menggunakan kaedah kumpulan Francis dan

Kannenberg, dan kaedah regresi Finlay dan Wilkinson. Genotip PK 1875, PK 1944 dan

PK 1721 adalah lebih stabil untuk FFBY, manakala PK 1671 dan PK 1668 adalah lebih

sensitif kepada perubahan keadaan sekitar. Genotip PK 1875, PK 1664 dan PK 1792

adalah yang paling stabil untuk BI, manakala PK 1875 pula sangat stabil untuk TEP.

Page 14: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xii

MULAKHAS AL-BAHTH

بيسيفيرا الكاميرونية ×اداء تلقيحات مجموعات نخيل الزيت البينية والداخلية دورا

من الكامرون و اثنين من نخيل " دورة"السالالت الثالثة عشر لنخيل الزيت الناتجة من تلقيح خمس اناث من نخيل

المظهر , البنية التخضيرية, من جمهورية الكونغو الديمقراطية قد جربت حقليا لمعرفة اداءهم االنتاجي" بيسيفيرا"

اضافة لتقييم المادة الوراثية لنخيل الزيت المجمعة من هذه الدراسة هي. الفيزيولوجي ونوعية الزيت وخصائصه

لدراسة : اهداف البحث المرجوة من هذه المذكرة. طرف المجلس الماليزي لنخيل الزيت من مختلف انحاء العالم

تقييم التركيب الوراثي عن طريق التاثير البيئي على , اختالف التراكيب الوراثية واثرها على الخائص المظهرية

تقييم استقرار التركيب المورثي , توقع العوامل الوراثية للخصلئص وتقييم الجمع بين نخيل البيسيفيرا االبوية, فاتالص

التركيبات الوراثية الثالثة عشر تم زرعها في تصميم . و تحليل االرتباطات المظهرية بين الصفات, للصفات

(. بهانغ)و كيراتونغ ( جوهور)محطات البحث في كالنغ قطعة مكررة مرتين في 61القطاعات العشوائية الكاملة مع

. صفة مظهرية وفقا لالجراءات القياسية المتبعة في المجلس الماليزي لنخيل الزيت 94التركيب الوراثي سجل ل

ي تاثيرات الجي ئ(. بي/بي)تحاليل االنوفا ابدت اختالفات هامة بين التركيبات الوراثية لكل الخصاص المدروسة اال

)كانت هامة لجميع الخصائص ما عدا ABWT, TEP, OY, O/B, F/B, S/F, M/F, P/B, BWT, PCS, f,

.TDMP, e, and NAR االبوين االثنين للبيسيفيرا اظهرا اختالفات هامة لجميع الخصائص ما عدا

ABWT, TEP, KOY,OY F/B, O/DM, P/B, BWT, LL, LW, HT, C18:2 and CC نخيل البيسيفارا .

لكن ال توجد ( الدي ار سي)اكبر من التي عند ( ال بي ان او)و ( للففبي واي) الكاميروني اظهر قدرة جمع عالية

توقع التوريث بالمعني الواسع (. تي اي بي)و , (كي او واي), (او واي)اختالفات هامة بين النخيل االبوية ل

ص لكن نتائج البنية التخضيرية سجلت اعلى توريث للخصائص المدروسة كانت ضئيلة الى معتدلة الغلبية الخصائ

اضافة عوامل التباين المتبقية على التباين الكلي . مقترحة تاثيرها الكبير على الميراث, مقارنة مع الخصائص االخرى

مؤشرة الى , لكل الخصائص% 05و تلك التي لتباين للتركيب الوراثي اقل من % 05كانت في المتوسط اكثر من

.ة العالية التي للعوامل البيئية لالختالف المالحظ االضاف

" االي بي دبليو تي"و 0..5=حيث كان معامل االرتباط " بي ان او"كان ارتباطها ايجابيا مع ال" بي واي فا فا"ال

مشيرا الى 5.99= كان ارتباطهما سلبيا وكان معامل االرتباط " االي بي دبليو تي"و " بي ان او"ال. 1..5كان

, وعلى الرغم من التباين في مردود خصائص المجموعة. لتاثير العكسي لكل الصفات على اداء سالالت نخيل الزيتا

الكاميرون اظهرت اداءا عاليا مقارنة مع تلك التي لقحت من نخيل × السالالت الناتجة من تلقيح نخيل الكاميرون

( الكاميرون× نحيل الكميرون ) 67.0بي كي "رثي التركيب المو". ف ف بي واي"نخيل الكونغو لل× الكاميرون

Page 15: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xiii

ظهر على انه احسن اداء على االداء التجريبي الفردي فضال على تجميع البيانات من اكثر من موقع مع معدل المردود

.العام/للنخلة/كغ/640للمجموعة

ر ضعيف للميراث لكل الصفات مع تقدي, التركيب الوراثي كان اداءه مستمرا عبر المواقع لصفات المجموعات والثمار

مع , العام/للنخلة/كغ/4..05العام الى /للنخلة/كغ/0....يتغير من "او واي"مردود التركيب الوراثي لل. على العموم

بي , 6119بي كي , 6..6بي كي , 67.9التركيبات الوراثية بي كي . العام /للنخلة/كغ/...7.متوسط حسابي كبير

و قد لوحظ . العام/طن 9.0-9.0العام على المتوسط والتي تمثل /للنخلة/كغ/05 سجلت مردود اكبر من 67.0كي

كي او (. "5.95=ار" )اف/ام", (5.90=ار" )دبليو ام/او", (5.10=ا ر" )بي/او"و " او واي"ارتباطات ايجابية بين

, (5.06=ا ر), (5.09=ا ر" )اف/كي"المرتبطة -اظهرت ارتباطات سلبية مهمة مع الصفات االندكراب" واي

اف /ام"و صفات الميزوكراب المرتبطة " كي او واي"وقد لوحظ توجها عكسيا بن (. 0..5=ا ر" )بي/كي "و

هذا يدل على وجود (. ...5=ا ر" )بي/ او"و , (0..5=ا ر" )دبليو ام/ او", (5.60=ا ر" )دي ام/او ", (5.01=ا ر)

.ام صفاتهم المميزةمع احتر" كي او واي"و " او واي" ديناميكية عكسية ل

و بي كي , 67.9بي كي , 67.0كان بي كي " ئي"و ال" بي دي ام بي"و , "تي دي ام بي"افضل مردود ل

00..6" )بي دي ام بي"سجل اعلى مردود لل 67.0التركيب الوراثي بي كي (. الكميرون× الكميرون)6499

× الكميرون) 61.1بي كي , .610بي كي . لترتيبعلى ا( 65.04" )ان اي ار"و , (5.97" )بي اي( "العام/ه/طن

التركيب الوراثي بي كي ". ئي"و ال" بي دي ام بي"و , "تي دي ام بي"سجلت ادنى مردودا على اساس ( الكونغو

" تي دي ام بي", (العام/ه/طن .60.7" )في دي ام بي"كان االفضل مردودا لل ( الكميرون× الكميرون) 6499

( 5.56> بي)كل الخصائص الفيزيولوجية كان ارتباطها معتبر (. مول جول/غ 5.47" )ئي" و, (العام/ه/طن .....)

و ( ...5=ار" )بي دي ام بي"كان ارتباطها قويا مع " تي دي ام بي". "ئي"و " بي اي"لبعضهم البعض ما عدا لل

لكنها مرتبة سلبيا مع (5..5=ار" ) بي دي ام بي"كان ارتباطه قويا مع " بي اي(. " 5.70=ار" )في دي ام بي"

بي " اختيار اعلى حيوية نباتية سوف يكون له اثارا ضارة على (. 5.90=ار " )تي دي ام بي"و " في دي ام بي"

" ال اي", (5.69=ار" )بي سي اس", (5.07=ار")اف بي"اظهرت ارتباطا ايجابيا مهما مع " اتش تي". "اي

.6.4التركيب الوراثي بي كي . 5.60=ار" )اف", ( 5.60=ار) "ال ال", (5.60=ار( )ال اي آي", (5.60=ار)

على الرغم من مردوده الضعيف " اف بي"والمردود االدنى نسبيا " اتش تي"يمكن اختياره على مردوده االدني

= اف اف بي واي)الدي سجل اعلى مردود 67.0مقارنة مع بي كي " اف اف بي"من ( العام/للنخلة/كغ/6.1.59)

(. العام/للنخلة/غك/ 604.09

67:5و بالترتيب مع الحمض الدهني 61:5تحاليل الترابط ل نوعية الزيت اظهرت ارتباطات مهمة الحمض الدهني

61:5االرتباط بين الحمض الدهني (. 5..5=ار)والقيمة االيودية , (5.76= ار) 67:6الحمض الدهني , (5.04= ار)

= ار)61:5 الحمض الدهنيمرتبط سلبيا مع 67:6الحمض الدهني , من جانب آخر. لم يكن معتبرا" سي سي"و

االرتباط بين الحمض (. 5.91=ار)ورتبط ايجابيا مع القيمة االيودية , (5.17= ار) .:67الحمض الدهني , (5.76

Page 16: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xiv

سوف يؤدي الى اختيار اقل نسبة 61:5اختيار اعلى قيمة للحمض الدهني . لم يكن معتبرا" سي سي"و 67:6الدهني

يؤدي الى اختيار اعلى نسبة 67:6في حين اختيار اعلى قيمة من الحمض الدهني , بطرقة غير مباشرة للقيمة االيودية

سي "يمكن ان ال يتم استعمالها كمعيار لل 67:6والحمض الدهني 61:5نتائج الحمض الدهني . من القيمة االيودية

67:5جابي المعتبر بين الحمض الدهني االرتبط االي". سي سي"الن كال الصفتين اظهرتا عدم ارتباطهما مع " سي

يؤدي بطريقة غير مباشرة الى 67:5يعني ضمنيا اختيار اعلى قيمة من الحمض الدهني 67:6والحمض الدهني

يعني اختيار اقل نسبة من الحمض الدهني 67:5اختيار اعلى قيمة ل . 67:5اختيار اعلى نسية من الحمض الدهني

بي .419.0" )سي سي"التركيب الوراثي سجل مردود مهم لل . ة من القينة االيوديةو اعلى نسب( 5.04=ار ) 61:5

(. بي بي ام 55. –بي بي ام 055)المواد المغروسة حاليا " بي× دي "مقارنة مع ( بي بي ام .6006.0بي ام الى

و طريقة " و كانينبيرغفرونسيس "استقرار التركيب الوراثي للصفات قد تمت دراسته باستعمال طريقة التجميع ل

كانت اعلى 6..6بي كي , 64.9بي كي , 67.0,التركيب الوراثي بي كي". فينالي و ويلكينسون"االنحدار ل

كانت االكثر حساسية لتغيرات العوامل 6117و بي كي , 61.6في حين بي كي " اف اف بي واي"استقرارا ل

بي كي , "بي آي"كانت االكثر استقرارا ل .6.4بي كي ,6119بي كي, 67.0التركيب المورثي بي كي . البيئية

."تي ئي بي"كان االعلى استقرار ل 67.0

Page 17: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xv

TABLE OF CONTENT

Page

APPROVAL ......................................................................................................................... i

AUTHOR DECLARATION............................................................................................... ii

BIODATA OF AUTHOR .................................................................................................. iii

ACKNOWLEDGEMENTS ............................................................................................... iii

ABSTRACT ...................................................................................................................... vii

ABSTRAK .......................................................................................................................... ix

MULAKHAS AL-BAHTH .............................................................................................. xii

TABLE OF CONTENT ..................................................................................................... xv

LIST OF TABLES ............................................................................................................ xxi

LIST OF FIGURES ........................................................................................................ xxiv

LIST OF APPENDICES ................................................................................................. xxvi

LIST OF ABBREVIATIONS AND SYMBOLS ......................................................... xxvii

CHAPTER 1: INTRODUCTION ........................................................................................ 1

1.1. BACKGROUND ....................................................................................................... 1

1.2. PROBLEM STATEMENT ....................................................................................... 3

1.3. OBJECTIVES ........................................................................................................... 4

CHAPTER 2: LITTERATURE REVIEW ........................................................................... 7

2.1. TAXONOMY OF OIL PALM .................................................................................. 7

2.2. GENETICS AND CYTOGENICS OF OIL PALM .................................................. 7

2.2.1. Genetics of Oil Palm ........................................................................................... 7

2.2.1.1. Qualitative Traits ......................................................................................... 8

2.2.1.2. Quantitative Traits ....................................................................................... 8

2.2.2. Cytogenetics of Oil Palm .................................................................................... 8

2.2.3. Quantitative Trait Loci ....................................................................................... 9

2.2.4. Heritability Estimates in Plant Breeding .......................................................... 11

2.3. BREEDING OF OIL PALM ................................................................................... 13

2.3.1. Breeding Objectives.......................................................................................... 13

2.3.2. Oil Palm Breeding Strategies............................................................................ 14

2.3.2.1. Cross-Breeding .......................................................................................... 14

2.3.2.3. Marker-Assisted Selection ......................................................................... 17

2.3.3. Utilization of Oil palm Germplasm Collections for Breeding.......................... 18

2.3.4. Improvement of Tenera Hybrid ........................................................................ 20

2.3.5. Phenotypic Correlations among Traits in Oil Palm .......................................... 21

2.3.6. Genotype-by-Environment Interactions and Stability of Genotypes................ 22

Page 18: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xvi

CHAPTER 3: ASSESSMENT OF CAMEROON-BASED Dura x Pisifera OIL PALM

POPULATION FOR BUNCH YIELD AND ITS COMPONENTS ................................ 26 _Toc369153342

3.1. INTRODUCTION ................................................................................................... 26

3.2. MATERIALS AND METHODS ............................................................................ 28

3.2.1. Materials ........................................................................................................... 28

3.2.1.1. Breeding Materials ..................................................................................... 28

3.2.1.2. Experimental Locations ............................................................................. 29

3.2.2. Methods ............................................................................................................ 30

3.2.2.1. Experimental Design .................................................................................. 30

3.2.2.2. Data Collection .......................................................................................... 30

3.2.2.3. Statistical Analyses .................................................................................... 31

3.3. RESULTS ................................................................................................................ 34

3.3.1. Analysis of Dispersion of Data Distributions ................................................... 34

3.3.2. Analysis of Variance......................................................................................... 36

3.3.3. Estimation of Genetic Parameters .................................................................... 38

3.3.4. Mean Performance of Genotypes ..................................................................... 39

3.3.5. Genotype-by-Environment Interactions and Stability Analysis of Genotypes. 42

3.3.6. Correlation Analysis for FFBY and its Components across Locations ............ 46

3.4. DISCUSSION ......................................................................................................... 47

3.4.1. Variation of Data Distributions ........................................................................ 47

3.4.2. Variability of Genotypes for FFBY and Its Components ................................. 47

3.4.3. Genetic Parameters Estimates........................................................................... 48

3.4.4. Genotype-by-Environment Interactions and Stability of Genotypes................ 50

3.4.5. Performance of Genotypes for FFBY and Its Components .............................. 51

3.4.6. Correlations among Bunch Yield Characters ................................................... 52

3.5. CONCLUSION ....................................................................................................... 52

CHAPTER 4: ASSESSMENT OF CAMEROON-BASED Dura x Pisifera OIL PALM

POPULATION OF FOR BUNCH AND FRUIT CHARACTERS ................................... 54

4.1. INTRODUCTION ................................................................................................... 54

4.2. MATERIALS AND METHODS ............................................................................ 57

4.2.1. Materials ........................................................................................................... 57

4.2.1.1. Breeding Materials ..................................................................................... 57

4.2.1.2. Experimental Sites ..................................................................................... 58

4.2.2. Methods ............................................................................................................ 58

4.2.2.1. Experimental Design .................................................................................. 58

4.2.2.2. Data Collection .......................................................................................... 59

4.2.2.3. Statistical Analyses .................................................................................... 62

Page 19: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xvii

4.3. RESULTS ................................................................................................................ 65

4.3.1. Analysis of Dispersion of Data Distributions ................................................... 65

4.3.2. Analysis of Variance......................................................................................... 67

4.3.3. Estimation of Genetic Parameters .................................................................... 71

4.3.4. Performance of Genotypes for Bunch and Fruit Characters ............................. 73

4.3.5. Stability Analysis of Genotypes ....................................................................... 83

4.3.6. Correlation Analysis for Fruit and Bunch Characters across Locations........... 90

4.4. DISCUSSION ......................................................................................................... 94

4.4.1. Variability of Genotypes for Bunch and Fruit Characters ................................ 94

4.4.2. Estimates of Genetic Parameters ...................................................................... 94

4.4.3. Performance of Genotypes ............................................................................... 96

4.4.4. Genotype-by-Environment and Stability of Genotypes ................................... 96

4.4.5. Correlations among Bunch and Fruit Characters ............................................. 97

4.5. CONCLUSION ....................................................................................................... 98

CHAPTER 5: ASSESSMENT OF CAMEROON-BASED Dura x Pisifera OIL PALM

POPULATION FOR MORPHO-VEGETATIVE CHARACTERS .................................. 99

5.1. INTRODUCTION ................................................................................................... 99

5.2. MATERIALS AND METHODS .......................................................................... 102

5.2.1. Materials ......................................................................................................... 102

5.2.1.1. Breeding Materials ................................................................................... 102

5.2.1.2. Experimental locations ............................................................................. 103

5.2.2. Methods .......................................................................................................... 103

5.2.2.1. Experimental Design ................................................................................ 103

5.2.2.2. Data Collection ........................................................................................ 104

5.2.2.3. Statistical Analyses .................................................................................. 106

5.3. RESULTS .............................................................................................................. 109

5.3.1. Analysis of Dispersion of Datasets ................................................................. 109

5.3.2. Analysis of Variance....................................................................................... 111

5.3.3. Estimation of Genetic Parameters .................................................................. 114

5.3.4. Performance of Genotypes for Morpho-Vegetative Characters ..................... 116

5.3.5. Genotype-by-Environment Interactions and Stability Analysis ..................... 125

5.3.6. Correlation Analysis among Morpho-Vegetative Characters......................... 129

5.4. DISCUSSION ....................................................................................................... 133

5.4.1. Variability of Genotypes for Morpho-Vegetative Characters ........................ 133

5.4.2. Genetic Parameters’ Estimates ....................................................................... 133

5.4.3. Performance of Genotypes for Morpho-Vegetative Characters ..................... 134

5.4.4. Stability of Genotypes .................................................................................... 135

5.4.5. Correlations among Morpho-Vegetative Characters ...................................... 136

Page 20: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xviii

5.5. CONCLUSION ..................................................................................................... 137

CHAPTER 6: ASSESSMENT OF CAMEROON-BASED Dura x Pisifera OIL PALM

POPULATION FOR PHYSIOLOGICAL CHARACTERS ........................................... 138

6.1. INTRODUCTION ................................................................................................. 138

6.2. MATERIALS AND METHODS .......................................................................... 141

6.2.1. Materials ......................................................................................................... 141

6.2.1.1. Breeding Materials ................................................................................... 141

6.2.1.2. Experimental Locations ........................................................................... 142

6.2.2. Methods .......................................................................................................... 142

6.2.2.1. Experimental Design ................................................................................ 142

6.2.2.2. Data Collection ........................................................................................ 143

6.2.2.3. Statistical Analyses .................................................................................. 144

6.3. RESULTS .............................................................................................................. 147

6.3.1. Analysis of Dispersion of Data Distributions ................................................. 147

6.3.2. Analysis of Variance....................................................................................... 148

6.3.3. Estimates of Genetic Parameters .................................................................... 151

6.3.4. Mean Performance of Genotypes ................................................................... 152

6.3.5. Stability Analysis of Genotypes ..................................................................... 157

6.3.6. Correlation Analysis ....................................................................................... 163

6.4. DISCUSSION ....................................................................................................... 164

6.4.1. Dispersion of Data Distributions .................................................................... 164

6.4.2. Analysis of Variance....................................................................................... 165

6.4.3. Genetic Parameters Estimates......................................................................... 166

6.4.4. Performance of Genotypes ............................................................................. 166

6.4.5. Stability of Genotypes for Physiological Characters ...................................... 169

6.4.5. Correlations among Physiological Characters ................................................ 170

6.5. CONCLUSION ..................................................................................................... 170

CHAPTER 7: ASSESSMENT OF CAMEROON-BASED Dura x Pisifera OIL PALM

POPULATION FOR FATTY ACID COMPOSITION, IODINE VALUE AND

CAROTENE CONTENT ................................................................................................. 171

7.2. MATERIALS AND METHODS .......................................................................... 174

7.2.1. Materials ......................................................................................................... 174

7.2.1.1. Breeding Materials ................................................................................... 174

7.2.1.2. Experimental Locations ........................................................................... 175

7.2.2. Methods .......................................................................................................... 175

7.2.2.1. Experimental Design ................................................................................ 175

7.2.2.2. Data collection ......................................................................................... 176

Page 21: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xix

7.3. RESULTS .............................................................................................................. 180

7.3.1. Analysis of Dispersion of Data Distributions ................................................. 180

7.3.2. Analysis of Variance....................................................................................... 181

7.3.3. Estimation of Genetic Parameters .................................................................. 185

7.3.4. Performance of Genotypes for Oil Quality Traits .......................................... 186

7.3.5. Correlation Analysis among Oil Quality Traits .............................................. 190

7.4. DISCUSSION ....................................................................................................... 192

7.4.1. Variability among Genotypes for Oil Quality Traits ...................................... 192

7.4.2. Genetic Parameters ......................................................................................... 193

7.4.3. Performance of Genotypes for Oil Quality Traits .......................................... 194

7.4.4. Correlations among Oil Quality Traits ........................................................... 196

7.5. CONCLUSION ..................................................................................................... 198

CHAPTER 8: PHENOTYPIC CORRELATIONS AMONG BUNCH YIELD AND ITS

COMPONENTS, BUNCH AND FRUIT, MORPHO-VEGETATIVE AND

PHYSIOLOGICAL CHARACTERS IN THE CAMEROON-BASED .......................... 199

8.1. INTRODUCTION ................................................................................................. 199

8.2. MATERIALS AND METHODS .......................................................................... 202

8.2.1. Materials ......................................................................................................... 202

8.2.1.1. Breeding Materials ................................................................................... 202

8.2.1.2. Experimental Locations ........................................................................... 203

8.2.2. Methods .......................................................................................................... 203

8.2.2.1. Experimental Design ................................................................................ 203

8.2.2.2. Data Collection ........................................................................................ 204

8.2.2.3. Statistical Analyses .................................................................................. 205

8.3. RESULTS .............................................................................................................. 206

8.3.1. FFBY and Its Components versus Bunch and Fruit Characters ..................... 206

8.3.2. FFFBY and Its Components versus Morpho-Vegetative Characters ............. 207

8.3.3. FFBY and Its Components versus Physiological Characters ......................... 208

8.3.4. Bunch and Fruit Characters versus Morpho-Vegetative Characters .............. 209

8.3.5. Bunch and Fruit Characters versus Physiological Characters ........................ 211

8.3.6. Morpho-Vegetative Characters versus Physiological Characters................... 212

8.4. DISCUSSION ....................................................................................................... 226

8.4.1. FFBY and Its Components versus Bunch and Fruit Characters ..................... 226

8.4.2. FFBY and Its Components versus Morpho-Vegetative Characters ............... 227

8.4.3. FFBY and Its Components versus Physiological Characters ......................... 228

8.4.4. Bunch and Fruit Characters versus Morpho-Vegetative Characters .............. 228

8.4.5. Bunch and Fruit Characters versus Physiological Characters ........................ 229

8.4.6. Morpho-Vegetative Characters versus Physiological Characters................... 229

Page 22: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xx

8.5. CONCLUSION ..................................................................................................... 231

CHAPTER 9: GENERAL DISCUSSION ....................................................................... 232

9.1. VARIABILITY OF GENOTYPES FOR PHENOTYPIC CHARACTERS ......... 232

9.2. ESTIMATES OF GENETIC PARAMETERS ..................................................... 234

9.2.1. Phenotypic (PCV) and Genotypic (GCV) Coefficients of Variation ............. 234

9.2.2. Intraclass Correlation Coefficient and Broad-Sense Heritability Estimates... 236

9.3. PERFORMANCE OF GENOTYPES ................................................................... 239

9.3.1. Fresh Fruit Bunch Yield and Its Components ................................................ 239

9.3.2. Bunch and Fruit Characters ............................................................................ 240

9.3.3. Morpho-Vegetative and Physiological Characters ......................................... 241

9.3.4. Oil Quality Traits ............................................................................................ 242

9.5. Combining Ability of Pisifera Parental Palms .................................................. 244

9.4. GE INTERACTIONS AND STABILITY OF GENOTYPES .............................. 245

9.5. CHARACTERS’ ASSOCIATIONS ..................................................................... 249

9.5.1. FFBY and Its Components versus Bunch and Fruit Characters ..................... 249

9.5.2. FFBY and Its Components versus Morpho-Vegetative Characters ............... 250

9.5.3. FFBY and Its Components versus Physiological Characters ......................... 251

9.5.4. Bunch and Fruit Characters versus Morpho-Vegetative Characters .............. 252

9.5.5. Bunch and Fruit Characters versus Physiological Characters ........................ 252

9.5.6. Morpho-Vegetative Characters versus Physiological Characters................... 253

9.6. CONCLUDING REMARKS ................................................................................ 255

CHAPTER 10: CONCLUSION ...................................................................................... 258

REFERENCES ................................................................................................................ 262

APPENDICES ................................................................................................................. 288

Page 23: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxi

LIST OF TABLES

Page

Table 3.1: Pedigrees of the 13 biparental dura x pisifera genotypes………………….. 29

Table 3.2: Mean, variance (Var), standard deviation (SD), standard error (SE),

coefficient of variation (CV) and range for FFBY, BNO and ABWT

in Individual locations nd pooled data across locations …………………… 35

Table 3.3: Mean squares and variance components estimates for fresh fruit bunch

Yield (FFBY) and its components (BNO, ABWT) over locations ………... 37

Table 3.4: Phenotypic coefficient of variation (PCV), genotypic coefficient of variation

(GCV), intra-class coefficient of correlation (t), and broad-sense heritability

estimates (H2) for FFBY, BNO and ABWTacross locations …………….... 39

Table 3.5: Mean performance of genotypes and ranking for FFB, BNO and ABWT

by LSD method in Kluang and Keratong …………………………………. 40

Table 3.6: Performance of CMR x CMR and CMR x DRC crosses for FFBY and its

components across locations ……………………………………………… 40

Table 3.7: Performance of genotypes for FFBY, BNO and ABWT for pooled data

over locations ……………………………………………………………… 41

Table 3.8: Location means for FFBY, BNO and ABWT …………………………….. 42

Table 3.9: Correlation coefficients among fresh fruit bunch characters in

individual locations and pooled data across locations …………………….. 46

Table 4.1: Pedigrees of the 13 biparental dura x pisifera genotypes …………………. 57

Table 4.2: Keys for segmentation of spikelets after chopping the bunch for analyses .. 60

Table 4.3: Mean, variance (Var), standard deviation (SD), standard error (SE),

Coefficient of variation (CV) and range for bunch and fruit characters

in individual locations and pooled data over locations ……………………. 66

Table 4.4: Mean squares and variance components estimates for bunch and fruit

characters over locations …………………………………………………... 69

Table 4.5: Phenotypic coefficient of variation (PCV), genotypic coefficient of variation

(GCV), intra-class coefficient of correlation (t) and broad-sense heritability

(H2) estimates for bunch and fruit characters across locations ……………...72

Page 24: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxii

Table 4.6: Mean performances of genotypes for fruit and bunch characters with their

ranking in individual locations ……………………………………………. 75

Table 4.7: Mean performance of genotypes for fruit and bunch characters over

locations by LSD method …………………………………………………. 80

Table 4.8: Location means for bunch and fruit characters ……………………………. 82

Table 4.9: Mean performances of crosses CMR x CMR and CMR x DRC

for bunch and fruit characters across locations ……………………………. 82

Table 4.10: Correlation coefficients among bunch and fruit characters in individual

locations and pooled data over locations ………………………………….. 91

Table 5.1: Pedigrees of the 13 biparental dura x pisifera genotypes …………………102

Table 5.2: Mean, variance (Var), standard deviation (SD), standard error (SE),

coefficient of variation (CV) and range for morpho-vegetative characters

in individual locations and pooled data across locations ………………..... 110

Table 5.3: Mean square and variance component estimates for morpho-vegetative

characters across locations ……………………………………………….. .112

Table 5.4: Phenotypic coefficient of variation (PCV), genotypic coefficient of variation

(GCV) intra-class correlation coefficient (t) and broad-sense heritability

(H2) estimates for morpho-vegetative characters across locations ……….. 115

Table 5.5: Mean performance and ranking of genotypes for morpho-vegetative in

individual locations ………………………………………………………. 118

Table 5.6: Means performance of genotypes for morpho-vegetative characters in

individual locations ………………………………………………………. 122

Table 5.7: Location means for morpho-vegetative characters ………………………. 124

Table 5.8: Performance of CMR x CMR and CMR x DRC crosses for

morpho-vegetative characters across locations …………………………... 124

Table 5.9: Correlation coefficients among morpho-vegetative characters in individual

locations and pooled data over locations ………………………………… 131

Table 6.1: Pedigrees of the 13 biparental dura x pisifera genotypes ………………... 141

Table 6.2: Mean, variance (Var), standard deviation (SD), standard error (SE),

coefficient of variation (CV) and range for physiological characters in

individual locations and pooled data over locations ……………………... 148

Page 25: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxiii

Table 6.3: Mean squares and variance components estimates for physiological

characters over locations …………………………………………………. 150

Table 6.4: Phenotypic coefficient of variation (PCV), genotypic coefficients of variation

(GCV), intra-class coefficient of correlation (t) and broad-sense heritability

(H2) for physiological characters across locations ……………………….. 152

Table 6.5: Mean performance of genotypes and ranking for physiological characters

By LSD method in Kluang and Keratong ……………………………….. 154

Table 6.6: Mean performance of genotypes for physiological characters over

Locations …………………………………………………………………. 156

Table 6.7: Mean performance of CMR x CMR and CMR x DRC crosses for

physiological characters over locations ………………………………….. 156

Table 6.8: Location means for physiological characters …………………………….. 156

Table 6.9: Correlation coefficients for physiological characters in individual locations

and pooled data over locations …………………………………………… 164

Table 7.1: Pedigrees of the 13 biparental dura x pisifera genotypes ………………... 174

Table 7.2: Mean, variance (Var), standard deviation (SD), standard error (SE),

coefficient of variation (CV) and range for oil quality traits in individual

locations and pooled data over locations ………………………………… 181

Table 7.3: Mean Square and variance components estimates for oil quality traitrs

in Keratong ……………………………………………………………….. 183

Table 7.4: Phenotypic coefficient of variation (PCV), genotypic coefficient of variation

(GCV), intra-class coefficient of correlation (t) and broad-sense heritability

(H2) for oil quality traits in Keratong …………………………………….. 185

Table 7.5: Performance of genotypes for oil quality traits in Keratong ……………... 188

Table 7.6: Performance of CMR x CMR and CMR x DRC crosses for oil quality traits

in Keratong ………………………………………………………………. 189

Table 7.7: Correlation coefficients for oïl quality traits ……………………………... 191

Table 8.1: Pedigrees of the 13 biparental dura x pisifera genotypes ……….……….. 202

Table 8.2: Correlation coefficients among bunch yield, fruit and bunch,

morpho-vegetative and physiological characters ………………………… 215

Page 26: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxiv

LIST OF FIGURES

Page

Figure 3.1: Mean fresh fruit bunch yield against coefficient of variation …………… 43

Figure 3.2: Mean fresh fruit bunch yield against regression coefficient …………….. 43

Figure 3.3: Mean bunch number against coefficient of variation ……………………. 44

Figure 3.4: Mean bunch number against regression coefficient ……………………... 44

Figure 3.5: Mean average bunch weight against coefficient of variation ……………. 45

Figure 3.6: Mean average bunch weight against regression coefficient ……………... 45

Figure 4.1: Mean total economic produce against coefficient of variation …………... 84

Figure 4.2: Mean total economic produce against coefficient of variation …………... 84

Figure 4.3: Mean oil yield against coefficient of variation …………………………... 85

Figure 4.4: Mean oil yield against regression coefficient ……………………………. 85

Figure 4.5: Mean kernel oil yield against coefficient of variation …………………… 86

Figure 4.6: Mean kernel oil yield against regression coefficient ……………………. 86

Figure 4.7: Mean oil-to-bunch ratio against coefficient of variation ………………… 87

Figure 4.8: Mean oil-to-bunch ratio against regression coefficient ………………….. 87

Figure 4.9: Mean kernel-to-bunch ratio against coefficient of variation ……………. 88

Figure 4.10: Mean kernel-to-bunch ratio against regression coefficient ……………… 88

Figure 4.11: Mean mesocarp-to-fruit ratio against coefficient of variation …………… 89

Figure 4.12: Mean mesocarp-to-fruit ratio against regression coefficient …………….. 89

Figure 5.1: Mean frond production against coefficient of variation ………………... 126

Figure 5.2: Mean frond production against regression coefficient …………………. 126

Page 27: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxv

Figure 5.3: Mean height against coefficient of variation …………………………… 127

Figure 5.4: Mean height against regression coefficient ……………………………. 127

Figure 5.5: Mean leaf area index against coefficient of variation …………………... 129

Figure 5.6: Mean leaf area index against regression coefficient ……………………. 129

Figure 6.1: Mean bunch dry matter production against coefficient of variation ……. 159

Figure 6.2: Mean bunch dry matter production against regression coefficient ……... 159

Figure 6.3: Mean vegetative dry matter production against coefficient of variation .. 160

Figure 6.4: Mean vegetative dry matter production against regression coefficient … 160

Figure 6.5: Mean total dry matter production against coefficient of variation ……... 161

Figure 6.6: Mean total dry matter production against regression coefficient ………. 161

Figure 6.7: Mean bunch index against coefficient of variation …………………….. 162

Figure 6.8: Mean bunch index against regression coefficient ……………………… 162

Page 28: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxvi

LIST OF APPENDICES

Page

A1- LIST OF PAPERS PRESENTED IN SEMINARS AND CONFERENCES…… 288

A1- LIST OF PAPERS ACCEPTED FOR UPCOMING CONFERENCES ……….... 288

Page 29: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxvii

LIST OF ABBREVIATIONS AND SYMBOLS

ABWT average bunch weight

ANOVA analysis of variance

ASD Agriculture, Service and Development (Costa Rica)

AVROS Algemeene Vereninging van Rubberplantera ter Oostkust van Sumatra

BDMP bunch dry matter production

BI bunch index

BNO bunch number

bp base pair

BWT bunch weight

CMR Republic of Cameroon

CPO crude palm oil

C12:0 lauric acid

C14:0 myristic acid

C16:0 palmitic acid

C16:1 palmitoleic acid

C18:0 stearic acid

C18:1 oleic acid

C18:2 limoleic acid

C18:3 linolenic acid

C20:0 arachidic acid

CC carotene content

CIRAD Centre de Coopération Internationale en Recherche Agronomique pour

le Développement.

CPO crude palm oil

df degrees of freedom

DIAM trunk diameter

DNA deoxyribonucleic acid

DRC Democratic Republic of Congo (ex-Zaire)

Page 30: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxviii

e photosynthetic conversion coefficient

EMS expected mean square

F/B fruit-to-bunch ratio

f light fractional interception

FAC fatty acid composition

FAME fatty acid methyl ester

FFB Fresh fruit bunch

FFBY Fresh fruit bunch yield

FP frond production

GCA general combining ability

GE genotype-by‐environment interaction

GNI gross national income

ha hectare

HT palm height

IBPGR International Board for Plant Genetic Resources

IRHO Institut de Recherche pour les Huiles et Oléagineux

ISOPB International Society of Oil Palm Breeders

IV iodine value

K/B kernel-to-bunch ratio

kg kilogram

KOY kernel oil yield

KY kernel yield

LA leaf area

LAI leaf area index

LAR leaf area ratio

LD linkage disequilibrium

LL leaflet length

LN leaflet number

LSD least significant difference

LW leaflet width

Page 31: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxix

m metre

M/F mesocarp-to-fruit ratio

MAS marker-assisted selection

Mbp mega base pair

MET multi‐environment trial

METs multi-environment trials

MFWT mean fruit weight

MJ mega Joule

MNWT mean nut weight

MPOC Malaysian Palm Oil Council

MS mean square

MSE mean square error

NAR net assimilation ratio

O/B oil-to-bunch ratio

O/DM oil-to-dry mesocarp ratio

OER oil extraction rate

O/WM oil-to-wet mesocarp ratio

OY oil yield

P/B parthenocarpic fruits-to-bunch ratio

PCS petiole cross-sectional area

PGR plant genetic resources

PORIM Palm Oil Research Institute Malaysia

ppm part per million

QTL quantitative trait loci

RCBD randomised complete block design

REML restricted maximum likelihood

Rk rank

RL rachis length

RM Ringgit Malaysia

RSPO Roundtable on Sustainable Palm Oil

Page 32: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

xxx

S/F shell-to-fruit ratio

SCA specific combining ability

t metric tonne

TDMP total dry matter production

TEP total economic produce

VDMP vegetative dry matter production

yr year

Page 33: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

262

REFERENCES

Acquaah, G. 2007. Principles of Plant Genetics. Malden, USA: Blackwell publishing. p.

584.

Adam, H, M. Collin, F. Richaud, T. Beule, D. Cros, A. Omore, L. Nodichao, B. Nouy &

J. W. Tregear. 2011. “Environmental Regulation of Sex Determination in Oil Palm:

Current Knowledge and Insights from other Species”. Annals of Botany. Vol. 108. (8): pp.

1529-1537.

Adon, B, B. Cochard, A. Flori, F. Poitier, P. Quencez & T. Durand-Gasselin. 2001.

“Introgression of Slow Vertical Growth in Improved Oil Palm (E. guineensis Jacq.)

populations”. Proceedings of the 2001 PIPOC International Palm Oil Congress –

Agriculture. Bangi, Malaysia: MPOB. pp. 210-217.

Ahee, J., P. Arthuis, G. Cas, Y. Duval, G. Guenin, J. Hanower, P. Hanower, D. Lievoux,

C. Lioret, B. Malaurie, C. Pannetier, D. Raillet, C. Varechon & L. Zukerman. 1981. “La

Multiplication Vegetative in vitro du Palmiér á Huile par Embryogénèse Somatique".

Oleagineux. Vol. 36. pp. 113-115.

Allard, R.W. 1960. Principles of Plant Breeding. New York: John Willey & Sons Inc.

p.485.

Alvarado, A, & F. Sterling. 2003. “Desarollo de Vanedades de Palma de Aceite para

Conditiones Climaticas Extremas”. Palmas. Vol. 25. No. Especial, Tomo II. pp.22-31.

Amri, I.N. 2011. “The Lauric (Coconut and Palm Kernel) Oils”. In: Gunstone, F. (ed.).

Vegetable Oils in Food technology: Composition, Properties and Uses. pp. 169-197.

Arasu, N.T. 1985. Genetic Variation for Fatty Acid Composition in the Oil Palm (Elaeis

guineensis Jacq.). (PhD Thesis). University of Birmingham, UK.

Arokiasamy, M. 1968. “Investigation into the Oil Content of Oil Palm Fruit Bunches”.

Proceedings of Malaysian Oil Palm Conference. Kuala Lumpur: Incorporated Society of

Planter. pp. 136-140

Ataga C.D. 1993. “Genotype-Environment Interaction and Stability Analysis for Bunch

Yield in the Oil Palm (Elaeis guineensis Jacq.)”. Oleagineux. Vol. 48. (2): pp. 59-63.

Ataga, C.D. 2010. “Yield Stability Study in Oil Palm (Elaeis guineensis Jacq) Using

Descriptive Method of Grouping Genotypes”. World Journal of Applied Science and

Technology Vol.2. (2): pp. 245 - 252

Page 34: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

263

Azis, A.A. 1990. “A Simple Floatation Technique to Gauge Ripeness of Oil Palm Fruits

and Their Maximum Oil Content”. Proceedings of International Palm Oil Development

Conference. Kuala Lumpur: PORIM. pp. 87-91.

Bachireddy V.R., R. J. Payne, K.L. Chin & M.S. Kang. 1992. “Conventional Selection

versus Methods that Use Genotype x Environment Interaction in Sweet Corn Trials”.

Hort Science. Vol. 27 (5). pp. 436-438.

Baker, R.J. 1988. “Tests for Crossover Genotype x Environment Interactions”. Canadian

Journal of Plant Science. Vol. 68. pp. 405-410.

Baker, R.J. 1990. “Crossover Genotype-Environment Interaction in Spring Wheat”. In:

Kang, M.S. (ed.). Genotype-by-Environment Interaction and Plant Breeding. Baton

Rouge, Louisiana: Louisiana State University. pp. 42-51.

Bakoumé, C. & C. Louise. 2007. “Breeding for Oil Yield and Short Oil Palms in the

Second Cycle of Selection at La Dibamba (Cameroon)”. Euphytica. 156 (1-2): pp. 195-

202

.

Bakoumé, C., R. Wickneswari, N. Raijanaidu, A. Kushairi, P. Amblard, & N. Billotte.

2007. “Allelic Diversity of Natural Oil Palm (Elaeis guineensis Jacq.) Populations

Detected by Microsatellite Markers. Implication in Conservation”. Rev. Palmas. Vol. 28.

(1). pp.149-158.

Basiron, Y. & M.A. Simeh. 2005. “Vision 2020 - The Palm Oil Phenomenon”. Oil Palm

Industry Economy Journal. Vol. 5. (2): p. 10.

Basiron, Y. 2005. “Chapter 8: Palm Oil”. In: Shahidi, F. (ed.). Bailey’s Industrial Oil and

Fat Products, Sixth Edition, Six Volume Set. New Jersey: John Wiley & Sons Inc. pp.

333-429.

Basri, M.W., A. Siti Nor Akmar & I.E. Henson. 2005. “Oil Palm Achievements and

Potential”. Plant Production Science. Vol. 8. (3). pp. 288-297.

Basri, Y. & K.W. Chan. 2003. “Going Back to Basics: Providing High Oil Palm Yield

Sustainability”. Oil Palm Bulletin 46 Issue 2. pp. 1-14.

Becker, H.C. & J. Leon. 1988. “Stability Analysis in Plant Breeding”. Plant Breeding.

Vol. 101. pp. 1-23.

Becker, H.C. 1981. “Biometrical and Empirical Relations between Different Concepts of

Phenotypic Stability”. In: Gallais, A. (ed.). Quantitative Genetics and Breeding Methods.

Versailles: INRA. pp. 307-314.

Page 35: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

264

Beirnaert, A., & R. Vanderweyen. 1941. “Contribution à l'Etude Génétique et

Biométrique des Variétés d'Elaeis guineensis Jacq”. Publication de l'I.N.E.A.C. Série

Scientifique. No. 27. pp. 1-101

Bernardo, R. & J. Yu. 2007. “Prospects for Genome‐Wide Selection for Quantitative

Traits in Maize”. Crop Science. Vol. 47. pp. 1082‐1090

Bernardo, R. 2002. Breeding for Quantitative Traits in Plants. Woodbury, MN: Stemma

Press. p. 369.

Beyegue D. H., A. Kushairi, N. Rajanaidu & B.S. Jalani. 2011. “Assessment of Bunch

Yield and Its Components for Cameroon-Based Oil Palm (Elaeis guineensis Jacq.)

Population”. Proceedings of the International Seminar Breeding for Sustainability in Oil

Palm held on 18 November 2011. Kuala Lumpur: International Society for Oil Palm

Breeders (ISOPB) and Malaysian Palm Oil Board (MPOB). pp. 167-177.

Billotte, N., M.F. Jourgon, N. Marseillac, A. Berger, A. Flori, H. Asmady, B. Adon, R.

Singh, B. Nouy, F. Potier, S.C. Cheah, W. Rohde, E. Ritter, B. Courtois, A. Charrier & B.

Mangin. 2010. “QTL Detection by Multi-Parent Linkage Mapping in Oil Palm (Elaeis

guineensis Jacq.)”. Theor. Appl. Genet. Vol. 120. (8). pp. 1673-1687.

Billotte, N., N. Marseillac, A.M. Risterucci, B. Adon, P. Brottier, F.C. Baurens et al.

2005. “Microsatellite-Based High-Density Linkage Map in Oil Palm (Elaeis guineensis

Jacq.)”. Theor. Appl. Gent. Vol. 110. pp. 754-765.

Binodh, A.K., N. Manivannan & P.V. Varman. 2008. “Character Association and Path

Analysis in Sunflower”. Madras Agricultural Journal. Vol. 95. pp.425-428.

Blaak, G. & F. Sterling. 1996. “The Prospects of Extending Oil Palm Cultivation to

Higher Elevations through Using Cold-tolerant Plant Material”. The Planter. Vol. 72. pp.

645-52

Blaak, G., Sparnaaij, L.D. & Menedez, T. 1963. “Breeding and Inheritance in the Oil

Palm (E. guineensis). Part 2: Methods of Bunch Analysis”. J. W. Afr. Inst. Oil Palm Res.

Vol. 4. pp. 146-155.

Breure, C. J. 1982. “Factors Affecting Yield and Growth of Oil Palm Tenera in West

New Britain”. Oleagineux. Vol. 37. pp. 213-228.

Breure, C. J. 1985. “Relevant Factors Associated with Crown Expansion in Oil Palm

(Elaeis guineensis Jacq.)”. Euphytica. Vol. 34. pp. 161-175.

Breure, C. J. 1986. “Parent Selection for Yield and Bunch Index in the Oil Palm in West

New Britain”. Euphytica. Vol. 34. pp. 161-175.

Page 36: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

265

Breure, C.J. & I. Bos. 1992. “Development of Elite Families in Oil Palm (Elaeis

guineensis Jacq.)”. Euphytica. Vol. 64. (1-2). pp. 99-112.

Breure, C.J. & L.R. Verdooren. 1995. “Guidelines for Testing and Selecting Parent Palms

in Oil Palm: Practical Aspects and Statistical Methods”. ASD Oil Palm Papers No. 9. p.

68.

Breure, C.J. & R.H.V. Corley. 1983. “Selection of Oil Palms for High Density Planting”.

Euphytica. Vol. 32. pp. 177-186.

Breure, C.J. 1987. Factors Associated with the Allocation of Carbohydrates to Bunch Dry

Matter Production in Oil Palm (Elaeis guineensis Jacq.). (PhD Thesis). University of

Wageningen. p. 259.

Breure, C.J. 1988. “The Effect of Palm Age and Planting Density on the Partitioning of

Assimilates in Oil Palm (Elaeis guineensis)”. Experimental Agriculture. Vol. 24. pp.53-

66.

Breure, C.J. 1994. “Development of Leaves in Oil Palm (Elaeis guineensis Jacq.) and the

Determination of Leaf Opening Rates”. Experimental Agriculture. Vol. 30. pp. 467-472.

Breure, C.J. 2003. “The Search for Yield in Oil Palm: Basic Principles”. In: Oil palm –

Management for large and sustainable yields (Fairhurst, T & R. Hardter, eds), PPI/PPIC-

IPI, Singapore. pp. 59-98.

Broun, P., S. Gettner & C. Momerville. “Genetic Engineering of Plant Lipids”. Annual

Review of Nutrition. Vol. 19. pp. 197-216.

Broun, P., S. Gettner & C. Momerville. 1999. “Genetic Engineering of Plant Lipids”.

Annual Review of Nutrition. Vol. 19. pp. 197-216.

Bruce Fife, N.D. 2007. The Palm Oil Miracle. Colorado: Piccadilly Books Ltd. 191 p.

Burton G W. 1952. “Quantitative Inheritance in Grasses”. Proc. 6th int. Grassland

Congress Vol. 1. pp. 227-283.

Cahon, E.B., T.E. Clemente, H.G. Damude and A.J. Kinney. 2009. “Modifying Vegetable

Oils for Food and Non-food Purposes”. In Vollmann, J. & I. Rajcan (ed.). Handbook of

Plant Breeding-Oil Crop. Springer Science + Business Media, LLC, London, New York.

PP. 31-56.

Caligari, P.D.S. 1993. G x E Studies in Perennial Three Crops: Old, Familiar Friend or

Awkward, Unwanted Nuisance? Proceedings of the 1991 International Society of Oil

Page 37: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

266

Palm Breeders Workshop Genotype-Environment Interaction Studies in Perennial Tree

Crops. Bangi, Malaysia: PORIM. pp. 1-11.

Canapi, C.E., Y. T. V. Agustin, E. A. Moro, Jr. Economico Pedrosa & M. L.J. Bendano.

Coconut Oil. 2005. In: Shahidi, F. (ed.). Bailey’s Industrial Oil and fat Products, Sixth

Edition, Volume1. Edible Oil and Fat Products: Chemistry, Properties, and Health

Effects. Wiley-Interscience, Publisher. pp. 123-147.

Ceccarelli, S. 1989. “Wide Adaptation. How Wide?” Euphytica.Vol. 40. pp. 197-205.

Cedillo, D.S.O., W.S. Barros, F.M. Ferreira, L.A.d.S. Dias, R.B. Rocha & C.D. Cruz.

2008. “Correlation and Repeatability in Progenies of African Oil Palm”. Moringa. Vol.

30. (2). pp. 197-201.

Charmantier, A., & D. Garant. 2005. “Environmental Quality and Evolutionary Potential:

Lessons from Wild Populations”. Proceedings of the Royal Society, Biological Sciences

Vol. 272. pp. 1415–1425.

Choo, Y.M., S.C. yap, A.S.H. Ong, C.K. Ooi and S.H. Goh. 1989. “Palm Oil

Carotenoids”. Proceedings of the 1989 PORIM International Palm Oil Congress –

Chemistry and Technology. Bangi, Malaysia: PORIM. pp. 42-47.

Clegg, A.J. 1973. “Composition and Related Nutritional and Organoleptic Aspects of

Palm Oil”. J. Am. Oil Chem. Soc. Vol. 50. (8): pp. 321-324.

Cobb, J.N., G. DeClerck, A. Greenberg,R. Clark & S. McCouch. 2013. “Next-Generation

Phenotyping: Requirements and Strategies for Enhancing our Understanding of

Genotype-Phenotype Relationships and Its Relevance to Crop Improvement”. Theor.

Appl. Genet. Vol. 126. pp. 867-887.

Cochard, B., B. Adon, S. Bekima, N. Billotte, R. Desmier de Chenon, A. Koutou, B.

Nouy, A. Omore, A.R. Purba, J.C. Glazsmann, & J.L. Noyer. 2009. “Geographic and

Genetic Structure of African Oil Palm Diversity Suggests New Approaches to Breeding”.

Tree Genetics and Genomes. Vol. 5. pp. 493-504.

Cochard, B., J.M. Noiret, L. Baudouin, A. Flori & P. Amblard. 1993. “Second Cycle

Recurrent Selection in Oil Palm (Elaeis guineensis Jacq.). Results of Deli x La Me

Hybrid Tests”. Oleagineux. Vol. 48. pp. 441-452.

Cockerham, C.C. 1963. “Estimation of Genetic Variances”. In: Hanson, W.D. & H.F.

Robinson (ed.). Statistical Genetics and Plant Breeding. Washington D.C.: National

Academy of Science-National Research Council. pp. 53-94.

Page 38: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

267

Comstock, R.E & H.F. Robinson. 1952. “Genetic Parameters, their Estimation and

Significance”. Proceedings of the Sixth International. Grasslands Congress. pp. 284-291.

Comstock, R.E. & R.H. Moll. 1963. “Genotype-Environment Interaction”. In: Hanson,

W.D & H.F. Robinson (ed.). Statistical Genetics and Plant Breeding. Washington, D.C:

National Academy of Sciences-National Research Council. pp. 164-196.

Cooper, M. & I.H. DeLacy. 1994. “Relationships among Analytical Methods used to

Study Genotypic and Genotype-by-Environment Interaction in Plant Breeding in Multi-

Environment Experiments”. Theor. Appl. Genet. Vol. 88. pp. 561-572.

Corley R.H.V. & C.H. Lee, 1992. “The Physiological Basis for Genetic Improvement of

Oil Palm in Malaysia”. Euphytica. Vol. 60. pp. 179–184.

Corley, R.H.V, J.J. Hardon & G.Y. Tan. 1971. “Analysis of Growth of the Oil Palm

(Elaeis guineensis Jacq.). I. Estimation of Growth Parameters and application in

Breeding”. Euphytica. Vol. 20. pp. 307-315.

Corley, R.H.V. & B.S. Gray. 1976. “Growth and Morphology”. In: Rao, V., I.E. Henson

& N. Rajanaidu. Oil palm Research. Amsterdam: Elsevier. pp. 7-21.

Corley, R.H.V. & C.R. Donough. “Potential Yield of Oil Palm Clones – The Importance

of Planting Density”. Proceedings of the Workshop on Yield Potential in the Oil Palm.

Kuala Lumpur: International Society of Oil Palm Breeders (ISOPB). pp. 58-70.

Corley, R.H.V. & P.B. Tinker. 2003. The Oil Palm. 4th Edition. World Agricultural

Series. Oxford: Blackwell Publishers Ltd.

Corley, R.H.V. 1973. “Effect of Plant Density on Growth and Yield of Oil Palm”.

Experimental Agriculture. Vol. 9. pp. 169-180.

Corley, R.H.V. 1976. “Planting Density”. In: Corley, R.H.V., J.J. Hardon & B.J. Wood

(ed.). Oil palm research. Amsterdam: Elsevier. pp. 273-283.

Corley, R.H.V. 1983. “Potential productivity of Tropical Perennial Crops”. Experimental

Agriculture. Vol. 19 (3). pp. 217-237.

Corley, R.H.V. 1985. “Yield Potentials of Plantation Crops. Potassium in the Agricultural

Systems of Humid tropics. Bern, Switzerland: International Potash Institute. pp. 61-80.

Corley, R.H.V. 1998. “What is the Upper Limit to Oil Extraction Ratio?” In: Rajanaidu,

N. I.E. Henson & B.S. Jalani (ed.). Proceedings of 1996 International Conference on Oil

and Kernel Production in Oil Palm - A Global Perspective. Bangi, Malaysia: PORIM. pp.

256-269.

Page 39: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

268

Corley, R.H.V. 2009. “How Much Palm Oil Do We Need”? Environmental Science &

Policy, Vol. 12. pp. 134-139.

Corley, R.H.V. “Oil Palm Yield Components and Yield Cycles. 1977. In: Earp, D.A. &

W. Newall (ed.). International Developments in Oil Palm. Kuala Lumpur: Incorporated

Society of Planters. pp. 116–129.

Corley, R.H.V., C.Y. Wong, K.C. Wooi & L.H. Jones. 1982. “Early Results from the

First Oil Palm Clone Trials”. The oil palm in agriculture in the eighties, Volume 1. Kuala

Lumpur: Incorporated Society of Planters. pp. 173-196.

Dabholkar, A.R. 1992. Elements of Biometrical Genetics. New Deli: Concept Publishing

Company.

Davidson, L. 1993. “Management for Efficient, Cost-Effective and Productive Oil Palm

Plantations”. Proceedings of 1991 PORIM Int. Palm Oil Conf. – Agriculture. Kuala

Lumpur: PORIM. pp. 153-170.

de Franqueville, H. & J.L. Renard. 1990. “The Breeding of Crop Ideotypes”Bilan de

l’Amélioration du Niveau de Tolérance du Palmier à Huile à la Fusariose. Evolution de la

Maladie sur la Plantation R. Michaux”. Oléagineux. Vol. 45. (10). pp. 399-405.

DeLacy, I.H., K.E. Basford, M. Cooper, J.K. Bull & C.G. McLaren. 1996. “Analysis of

Multi-Enviroments Trials – An Historical Perspective”. In: Cooper, M. & G.L. Hammer

(ed.). Plant Adaptation and Crop Improvement. Wallingford, UK: CAB International. pp.

39-124.

Deshmukh, S.N., M.N. Basu, & P.S. Reddy. 1986. “Genetic Variability, Character

Association and Path Coefficient of Quantitative Traits in Virginia Bunch Varieties of

Groundnut”. Indian J. Agric. Sci.Vol. 56. pp. 816-821.

Dickerson, G.E. 1962. “Implications of Genetic-Environmental Interaction in Animal

Breeding”. Animal Production. Vol. 1. pp. 211-218.

Donald, C.M. 1962. In Search of Yield. Journal of the Australian Institute of Agricultural

Science, Vol. 28. pp. 171-178.

Donald, C.M. 1968. “The Breeding of Crop Ideotypes”. Euphytica. Vol. 17. pp. 385-403.

Donough, C.R., R.H.V. Corley, I.H. Law & M. Ng. 1996. “First Results from an Oil Palm

Clone x Fertilizer Trial”. The Planter. Vol. 72. pp. 69-87.

Page 40: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

269

Dransfield, J, N.W. Uhl, C.B. Asmussen, W.J. Baker, M.M. Harley & C.E. Lewis. 2005.

“An Outline of a New Phylogenetic Classification of the Palm Family, Arecaceae”. Kew

Bulletin. Vol. 60. pp. 559-569.

Dudley, J. W. & R. H. Moll. 1969. “Interpretation and Use of Estimates of Heritability

and Genetic Variances in Plant Breeding”. Crop Science. Vol. 9. pp. 257-262.

Dufour, O., J.L. Frère, J.P. Caliman & P. Hornus. 1988. “Présentation d'une Méthode

Simplifiée de Prévision de la Production d'une Plantation de Palmiers à Huile à Partir de

la Climatologie”. Oléagineux. Vol. 43. pp. 271-282.

Dufrene, E. & B. Saugier. 1993. “Gas Exchange of Oil Palm in Relation to Light, Vapour

Pressure Deficit, Temperature and Leaf Age”. Functional Ecology. Vol. 1. pp. 97-104.

Dumortier, F. 2000. “Utilisation of oil Palm Genetic Resources at Dami Oil Palm

Research Station”. Paper presented at the International Symposium on Oil Palm Genetic

Resources and Utilization, 8-10 June 2000 in Kuala Lumpur. Malaysian Palm Oil Board.

Dyer, J.M. & R.T. Mullen. 2005. “Development and Potential of Genetically Engineered

Oilseed Crops”. Seed Science Research. Vol. 15. pp. 255-267.

Eberhart, S.A. & W.A. Russel. 1966. “Stability Parameters for Comparing Varieties”.

Crop Science. 6:36-40.

Ekpa, O.D., E.P. Fubara & F.N.I. Morah. 2006. “Variation in Fatty Acid Composition of

Palm Oils from Two Varieties of the Oil Palm (Elaeis guineensis)”. Journal of the

Science of Food and Agriculture. Vol. 64 (2): pp. 483-486.

Engqvist G.M. & H.C. Becker. 1993. “Correlation Studies for Agronomic Characters in

Segregating Families of Spring Oilseed Rape (Brassica napus)”. Hereditas. Vol. 118.

(21). pp. 1-216.

Escobar, R, & A. Alvarado. 2004. “Strategies in Production of Oil Palm Compact Seeds

and Clones”. ASD Oil Palm Papers. No. 27. pp. 1-12.

Fadila, A.M., A. Norziha & A. Mohd Din. 2012. “Selection of Oil Palm Clones with High

Bunch Index for Recloning at Malaysian Palm Oil Board (MPOB)”. In Proceedings of

UMT 11th International Annual Symposium on Sustainability Science and Management,

09-11 July 2012, Terengganu, Malaysia. pp. 273-277.

Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. 4th

Edition. Harlow, England: Longman Group Ltd. p. 464.

Page 41: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

270

Finlay, K.W. & G.N. Wilkinson. 1963. “The Analysis of Adaptation in a Plant Breeding

Programme”. Australian Journal of Agricultural Research. Vol. 14. pp. 742-754.

Flint-Garcia, S. A., A. Thuillet, J. Yu, G. Pressoir, S. M. Romero et al. 2005. “Maize

Association Population: a High Resolution Platform for QTL Dissection”. Plant Journal.

Vol. 44. pp. 1054-1064.

Flores, F., M. T. Moreno & J. I. Cubero. 1998. “A Comparison of Univariate and

Multivariate Methods to Analyze Environments”. Field Crops Research. Vol. 56. pp.

271-286.

Francis, T.R. & L.W. Kannenberg. 1978. “Yield Stability Studied in Short-season Maize.

I. A. Descriptive Method for Grouping Genotypes”. Canadian Journal of Plant Science.

Vol. 58. 1029-1034.

Frankel, O.H. & M.E. Soule. 1981. Conservation and Evolution. Cambridge: Cambridge

University Press. p. 237.

Freeman, G.H. 1973. “Statistical Methods for the Analysis of Genotype-Environment

Interactions”. Heredity. Vol. 31. pp. 339-354.

Gauch, H.G. & R.W. Zobel. 1988. “Predictive and Postdictive Success of Statistical

Analyses of Yield Trials”. Theor. Appl. Gent. Vol. 76. pp. 1-10.

Gauch, H.G. 1992. Statistical Analysis of Regional Yield Trials: AMMI Analysis of

Factorial Designs. Amsterdam: Elsevier.

Gauch, H.G.2006. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Science.

Vol. 46. pp. 1488-1500.

Gerritsma, W. & F.X. Soebagyo. 1999. “An Analysis of the Growth of Leaf Area of Oil

Palms in Indonesia”. Experimental Agriculture. Vol. 35. (3): pp. 293-308.

Gerritsma, W. & M. Wessel. 1997. “Oil Palm: Domestication Achieved?” Neth. J. agric.

Sci. Vol. 45. pp. 463-475.

Gerritsma, W. 1988. Light Interception, Leaf Photosynthesis and Sink-Source Relations in

Oil Palm. Technical Report. Department of Theoretical Production Ecology &

Department of Tropical Crop Science. Wageningen Agricultural University, The

Netherlands. p. 55.

Griffiths, A.J.F., J.H. Miller, D.T. Suzuki et al. 2012. An Introduction to Genetic

Analysis, 10th

Edition. New York: W. H. Freeman. New York: W. H. Freeman. p. 802.

Page 42: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

271

Haldane, J.B.S. 1946. “The Interaction of Nature and Nurture”. Annals of Eugenics. Vol.

13. pp. 197-205.

Hallauer, A.R.& J.B. Miranda Filho. 1988. Quantitative Genetics in Maize Breeding, 2nd

Edition. Ames, IA: Iowa State University Press.

Hanson, W.D. 1963. “Heritability”. In: Hanson, W.D. & H.F. Robinson (ed.). Statistical

Genetics and Plant Breeding. Washington D.C: National Academy of Science - National

Research Council. Publ. 982. pp. 125-139.

Hardon, J.J. & G.Y. Tan. 1969. “Interspecific Hybrids in the Genus Elaeis. I.

Crossability, Cytogenetics and Fertlity of F1 Hybrids of E. guineensis x E. oleifera”.

Euphytica. Vol. 18. (3): pp. 372-379.

Hardon, J.J., C.N. Williams & I. Watson. 1969. “Leaf Area and Yield in the Oil Palm in

Malaya”. Experimental Agriculture. Vol. 5. pp. 25-32.

Hardon, J.J., C.N. Williams & I. Watson. 1969. “Leaf Area and Yield in the Oil Palm in

Malaya”. Experimental Agriculture. Vol. 5. pp. 25-32.

Hardon, J.J., R.H.V. Corley & S.C. Ooi. 1972 “Analysis of Growth in the Oil Palm II.

Estimation of Genetic Variances of Growth Parameters and Yield of Fruit Bunches”.

Euphytica. Vol. 21. pp. 257-264.

Hardon, J.J., V. Rao & N. Rajanaidu. 1985. “A review of oil palm breeding”. In Russell,

G.E. (ed.). Progress in Plant Breeding. New York: Butterworth & Co. pp. 139-163.

Harland, S.C. 1939. The Genetics of Cotton. London: Jonathan Cape.

Hartley, C.W.S. 1988. The Oil Palm. 3rd edition. London: Longman. p. 761.

Harun, M.H. 2000. “Yield and yield components and their physiology”. In: Yusof

Basiron, Y., B.S. Jalani & K.W. Chan (ed.). Advances in Oil Palm Research. Volume 1.

Bangi, Malaysia: Malaysian Palm Oil Board. pp. 146-170.

Hay, R.K.M. 1995. “Harvest Index: a Review of Its Use in Plant Breeding and Crop

Physiology”. Annals of Applied Biology. Vol. 126. (1): pp. 197-216.

Hayati, A., R. Wickneswari, I. Maizura & N. Rajanaidu. 2004. “Genetic Diversity of Oil

Palm (Elaeis guineennsis Jacq.) Germplam Collections from Africa: Implications for

Improvement and Conservation of Genetic Resources”. Theor. Appl. Genet. Vol. 108. pp.

1274-1284.

Page 43: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

272

Helms, T.C. 1993. Selection for Yield and Stability among Oat Lines. Crop Science. Vol.

33. pp. 423-426.

Henry, P. 1955. “Sur le Développement des Feuilles Chez le Palmier à Huile”. Revue

Générale de Botanique. Vol. LXII. pp. 231-237

Henson, I.E. 1990. “Photosynthesis and Source-Sink Relationships in Oil Palm (Elaeis

guineensis)”. Transactions of the Malaysian Society of Plant Physiology. Vol. 1. pp. 165-

171.

Henson, I.E. 1991. “Age-Related Changes in Stomatal and Photosynthetic Characteristics

of Leaves of Oil Palm (Elaeis guineensis Jacq.)”. Elaeis. Vol. 3. pp. 336-348.

Henson, I.E. Modelling the Effects of Physiological and Morphological Characters on Oil

Palm Growth and Productivity. 2007. Oil Palm Bulletin. No. 54. pp. 1-26.

Holland, J.B., W.E. Nyquist & C.T. Cervantes-martinez. 2003. “Estimating and

Interpreting Heritability for Plant Breeding: An Update”. In: Janick, J. (ed.), Plant

Breeding Review. Vol. 22. pp. 9-112.

Huehn, M. 1990. “Non-parametric Measures of Phenotypic Stability. Part 1. Theory”.

Euphytica. Vol. 47. pp. 189-194.

IBPGR, 1989. Descriptors for Oil palm. Rome: International Board for Plant Genetic

Resources. p. 15.

Idris, A.S., M.H.A.S. Mior, S.M. Maizatul, & A. Kushairi, 2011. “Survey on Status of

Ganoderma Disease on Oil Palm in Malaysia”. Proceedings of the PIPOC 2011

International Palm Oil Congress. Bangi, Malaysia: MPOB. pp. 235-238.

Idris,A.S., A. Kushairi, S. Ismail & D. Ariffin. 2004. “Selection for Partial Resistance in

Oil Palm Progenies to Ganoderma Basal Stem Rot”. Journal of Oil Palm Research. Vol.

16. (2): pp. 12-18.

Jacquemard, J.C. 1979. “Contribution a l’Etude de la Croissance en Hauteur du Stipe

d’Elaeis guineensis Jacq. Etude du Croisement L2T x D10D”. Oleagineux. Vol. 34. pp.

492-497.

Jacquemard, J.C. 1998. Oil palm. London: Macmillan Education. p. 144.

Jacquemard, J.C., J. Meunier & F. Bonnet. 1982. “Genetic Study of the Reproduction of

an Elaeis guineensis Oil Palm crosses”. Proceedings of International Conference on Oil

Palm in Agriculture in the Eighties. Kuala Lumpur: Incorporated Society of Planters. pp.

19-46.

Page 44: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

273

Jagoe, M.E. 1952. “Deli Oil Palms and Early Introductions of Elaeis guineensis to

Malaya”. Malaya Agricultural Journal. Vol. 35. pp 4-11.

Jalani, B. S., Y. Basiron, A. Darus, K. W. Chan, & N. Rajnaidu. 2002. “Prospects of

Elevating National Oil Palm Productivity: A Malaysian Perspective”. Oil Palm Industry

Economic Journal. Vol. 2. (2): P. 9.

Jalani, B.S. & N. Rajanaidu. 1992. “Oil Palm Improvement and Productivity”.

Proceedings of the SABRAO International Symposium. pp. 419-431.

Jalani, B.S., S.C. Cheah, N. Rajanaidu & A. Darus. 1997. “Improvement of Palm Oil

through Breeding and Biotechnology”. 88th

American Oil Chemists Society (AOCS)

Annual Meeting and Exco. May 11-14. Seattle: AOCS.

Jawahar, R. & R. Sharma. 2006. Statistical and Biometrical Techniques in Plant

Breeding. New Delhi: New Age International (P) Ltd. Publishers. 432 p.

Johnson, H.W., H.F. Robinson & R.E. Comstock. 1955. “Estimation of Genetic and

Environmental Variability in Soybean”. Agronomy Journal Vol.47. pp. 314-318.

Jones, L.H. 1974. “Propagation of Clonal Oil Palm by Tissue Culture”. Oil Palm News.

Vol. 17. pp. 1-8.

Jones, L.H. 1989. “Prospects for Biotechnology in Oil Palm (Elaeis guineensis) and

Coconut (Cocos nucifera) Improvement”. Biotechnology and Genetic Engineering

Reviews. Vol. 7. pp. 281-296.

Jones, L.H., D. Berfield, J. Barrett, A. Flook, K. Pollock & P. Robinson. 1982. “Cytology

of Oil Palm Cultures and Regenerant Plants”. In: Fujiwara, A. (ed.). Plant Tissue Culture

1982. Tokyo: IAPTC. pp. 727-728.

JPM (Jabatan Perdana Menteri). 2010. Economic Transformation Programme: A

Roadmap for Malaysia. Putrajaya: Performance Management and Delivery Unit

(PERMANDU), Prime Minister Office, Malaysia.

JPM (Jabatan Perdana Menteri). 2013. Economic Transformation Programme. Annual

Report 2012. Putrajaya: Performance Management and Delivery Unit (PERMANDU),

Prime Minister Office, Malaysia. p. 332.

Junaidah, J., M.Y. Rafii, C.W. Chin & G. Saleh. 2011. “Performance of Tenera Oil Palm

Population Derived from Crosses between Deli Dura and Pisifera from Different Sources

on Inland Soils”. Journal of Oil Palm Research, Vol. 23. pp. 1210-1221.

Page 45: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

274

Kang M.S. (ed.) 1990. Genotype-by-Environment Interaction and Plant Breeding. Baton

Rouge, LA, USA: Louisiana State University Agricultural Center.

Kang, M. S. (ed.). 2002. Quantitative Genetics, Genomics, and Plant Breeding.

Wallingford, UK: CABI Publishing. p. 400.

Kang, M. S. 1993. “Simultaneous Selection for Yield and Stability in Crop Performance

Trials: Consequences for Growers”. Agronomy Journal. Vol. 85. pp. 754-757.

Kang, M.S. & H.G. Gauch (ed.). 1996. Genotype-by-Environment Interaction., Boca

Raton: CRC Press.

Kang, M.S. 1994. Applied Quantitative Genetics. Baton Rouge, LA, USA: Louisiana

State University. p.157.

Kang, M.S., P.D. Gorman & N.H. Pham. 1991. “Application of Stability Statistic to

International Maize yield trails”. Theor Appl Genet. Vol. 81. pp. 162-165.

Kifli, H. 1981. Studies on Palm Oil with Special Reference to Interesterification. (PhD

Thesis). University of St. Andrews, United Kingdom. pp. 209.

Knight, R. 1970. “The Measurement and Interpretation of Genotype-Environment

Interactions”. Euphytica. Vol. 19. pp. 225-235.

Kularatne, R.S. 2000. Assessment of Genetic Diversity in Natural Oil palm (Elaeis

guineensis Jacq.) Using Amplified Length Polymorphism Markers. (PhD Thesis).

Universiti Kebangsaan Malaysia.

Kushairi A.D. 2009. “Role of Oil Palm Breeding in Wealth Creation and Quality of Life”.

Keynote paper presented at the 8th

Malaysia Congress on Genetics. Proceedings of the 8th

Malaysia Congress on Genetics. Malaysia: Genetics Society of Malaysia. pp. 14-20.

Kushairi, A. 1998. Genetic Variation for Bunch Yield, Bunch Quality and

Morphophysiological Traits in Oil Palm Breeding Populations. (PhD Thesis). University

Kebangsaan Malaysia. p. 194.

Kushairi, A., A. Mohd Din and N. Rajanaidu. 2011. “Oil Palm Breeding and Seed

Production”. In Basri, M. W., Y.M. Choon & K.W. Chan (ed.). Further Advances in Oil

Palm Research (2000-2010) Volume1. Bangi, Malaysia: Malaysian Palm Oil Board

(MPOB). pp. 47-99.

Kushairi, A., N. Rajanaidu, B.S. Jalani & A.H. Zakri. 1999. “Agronomic Performance

and Genetic Variability of Dura x Pisifera Progenies”. Journal of Oil Palm Research.

Vol. 11. (2): pp. 1-24

Page 46: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

275

Lande, R. & S.J. Arnole. 1983, “Measurement of Selection on Correlated Characters”.

Evolution. Vol. 37. (6). pp. 1210-1226.

Lawson H.A., J.E. Cady, C. Partridge, J.B. Wolf, C.F. Semenkovich, et al. 2011. “Genetic

Effects at Pleiotropic Loci Are Context-Dependent with Consequences for the

Maintenance of Genetic Variation in Populations”. PLoS Genetics. Vol.7. (9): e1002256.

doi:10.1371/journal.pgen.1002256.

Lee, C.H. & P.Y. Toh. 1991. “Yield Performance of Golden Hope D x P Planting

Materials”. The Planter. Vol. 47. pp. 317-324.

Lee, C.H., Y.Y. Yong, C. Donough, & S. B. Chiu, 1990. “Selection Progress in the Deli

dura Population”. Proceedings of International Workshop on Oil Palm Breeding

Populations. Kuala Lumpur: Palm Oil Institute of Malaysia. pp. 81–89

Legros S., I. Mialet-Serra, J.P. Caliman, F. A. Siregar, A. Clement-Vidal, D. Fabre &

M. Dingkuhn. 2009. “Phenology, Growth and Physiological Adjustments of Oil Palm

(Elaeis guineensis) to Sink Limitation Induced by Fruit Pruning”. Annals of Botany. Vol.

104. (6): pp. 1183.1194

Lin, C.S., M.R. Binns & L.P. Lefkovitch. 1986. “Stability Analysis: Where Do We

Stand?” Crop Science. Vol. 26. pp. 894-900.

Lindgren, D. 1984. “Prediction and Optimization of Genetic Gain with Regard to

Genotype x Environment Interactions. Proceedings of the conference on genotype x

environment interaction. Uppsala, Sweden. Studia Forestalia Suecica, Vol. 166. pp. 15-

24.

Luby, J.J. & D.V. Shaw. 2009. “Plant Breeders’ Perspectives on Improving Yield and

Quality Traits in Horticultural Food Crops”. HortScience. Vol. 44. (1): pp. 20-21.

Lush, J.L. 1949. “Heritability of Quantitative Characters in Farm Animals”. Heriditas

(suppl.). Vol. 35. pp. 256-261.

Lynch, M. & B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. Sunderland:

Sinauer Association Inc. p. 980.

Madon, M, M.M. Clyde & S.C. Cheah. 1998. “Cytological Analysis of Elaeis guineensis

and Elaeis oleifera Chromosomes”. Journal of Oil Palm Research. Vol. 10. (1): pp. 68-

91.

Maiti, S., M.R. Hedge& S.B. Chattopaghyay. 1988. Handbook of Annual Oilseed Crops.

New Delhi: Oxford & IBH Publishing Co, Pvt. Ltd. p. 325.

Page 47: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

276

Maizura, I., N. Rajanaidu, A. Zakri & S. Cheah. 2006. “Assessment of Diversity of Oil

Palm (Elaieis guineensis, Jacq.) Using Restriction Fragment Length Polymorphism

(RFLP)”. Genetic Resources and Crop Evolution., Vol. 53. (1): pp. 187-195.

Manshardt, R., 2004. “Crop Improvement by Conventional Breeding or Genetic

Engineering: How Different Are They?” Biotechnology No. 5. January. Hawaii: College

of Tropical Agriculture and Human Resources, University of Hawaii (UH-CATHR). p. 3.

Marcelis, L.F.M., E. Heuvelink & J. Goudriaan. 1998. Modelling Biomass Production

and Yield of Horticultural Crops: A Review. Scientia Horticulturae. Vol.74.(1-2): pp. 83-

111

Maria, M., M.M. Clyde & S.C. Cheah. 1995. “Cytological Analyses of Elaeis guineensis

(Tenera) Chromosomes”. Elaeis. Vol. 7. (2): pp. 122-134.

Mayes S, P.L. Jack & R.H.V. Corley, 2000. “The Use of Molecular Markers to

Investigate the Genetic Structure of an Oil Palm Breeding Programme”. Heredity. Vol.

85. pp. 288-293.

Mayes S, P.L. Jack, D.F. Marshall & R.H.V. Corley. 1997. “The Construction of an

RFLP Genetic Linkage Map for Oil Palm (Elaeis guineensis Jacq.)”. Genome. Vol.40. pp.

116-122.

Mayes, S., F. Hafeez, Z. Price, D. MacDonald, N. Billotte & J. Roberts. 2008. “Molecular

Research in Oil Palm, the Key Oil Crop for the Future”. In: Moore, P. H. & R. Ming (ed.)

Plant genetics/Genomics, Volume 1. Genomics of tropical crop plants. pp. 371-404

Mercer, L. C., J.C. Wynne & C.T. Young. 1990. “Inheritance of Fatty Acid Content in

Peanut Oil”. Peanut Science. Vol. 17. pp. 17-21.

Meunier, J., F. Potier, P. Amblard & B. Tailliez. 1989. “Relationship between Oil

Production and the Number of Bunches in Oil Palm (Elaeis guineensis Jacq.).

Consequences for Pollination in Young Plantations”. Oléagineux. Vol. 44. pp. 269-279.

Mialet-Serra, I, A. Clement-Vidal, O. Roupsard, C. Jourdan & M. Dingkuhn. 2008.

Whole-Plant Adjustments in Coconut (Cocos nucifera) in Response to Sink–Source

Imbalance. Tree Physiology. Vol. 28. pp. 1199-1209.

Mielke, T. (ed.). 2011. Oil World Annual 2011, Vol. 1. Hambourg: ISTA Mielke GmbH.

Minihane, A.M. & J.I. Harland. 2007. “Impact of Oil Used by the Frying Industry on

Population Fat Intake”. Crit. Rev. Food Sci. Nutr. 47: 287-297.

Page 48: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

277

Mohd Basri, W. & S. Mohd Arif. 2009. “Cost of Oil Palm Production”. The Planter. vol.

85. pp. 375-394.

Mohd Din, A. 1999. Genetic Variation for Yield, Bunch Components and Vegetative

Traits in Oil Palm (Elaeis oleifera) and Interspecific Hybrids. PhD Thesis. Bangi:

Universiti Kebangsaan Malaysia. p. 229.

Mohd Din, A., A. Kushairi, I. Maizura, Z.A. Isa, A. Noh & N. Rajanaidu. 2005b. “MPOB

Strategic Plan for Fast Track Breeding Programmes”. In: Proc. of the 2005 National

Seminar on Breeding & Clonal Technology. Bangi, Malaysia: MPOB. pp. 43-53.

Mok, C.K. 1982. “Heat Requirement for Breaking Dormancy of Oil Palm Seeds after

Storage under Different Conditions”. Proc. Int. Seed. Test. Ass. Vol. 37. pp.197-206.

Moll & Stuber. 1974. “Quantitative Genetics – Empirical Results Relative to Plant

Breeding”. Advances in Agronomy. Vol. 26. pp. 277-313.

Moller, A.P. & M.D. Jennions. 2002. “How Much Variance Can be Explained by

Ecologists and Evolutionary Biologists?” Oecologia. Vol. 132. pp. 492-500.

Moore, K. M. & D.H. Knauft. 1989. “The Inheritance of High Oleic Acid in Peanut”.

Jounal of Heredity. Vol. 80. pp. 252-253.

Moose, S.P. & R.H. Mumm. 2008. “Molecular Plant Breeding as the Foundation for 21st

Century Crop Improvement”. Plant Physiology. Vol. 147. pp. 969-977.

Moretzsohn, M.C, C.D.M. Nunes, M.E. Ferreira & D. Grattapaglia. 2000. “RAPD

Linkage Mapping of the Shell Thickness Locus in Oil Palm (Elaeis guineensis Jacq.)”.

Theor. Appl. Genet. Vol. 100. pp. 63-70

MPOB, 2005. MPOB Tests Methods: A Compendium of Tests on Palm Oil Products,

Palm Kernel Products and Fatty Acids, Food-Related Products and Others. Malaysian

Palm Oil Board, Ministry of Plantation Industries and Commodities Malaysia. p. 414.

MPOB, 2013. Overview of the Malaysian Oil Palm Industry 2012. Bangi, Malaysia:

Economic & Industry Development Division, Malaysian Palm oil Board (MPOB).

Murphy, D. J. 2007. “Future prospects for oil palm in the 21st century: Biological and

Related challenges”. European Journal of Lipid and Technology. Special Issue: Palm Oil.

Vol. 109 (4). pp. 1296-1306.

Murphy, D.J. 2009. “Oil Palm: Future Prospects for Yield and Quality Improvements”.

Lipid Technology. Vol. 21. pp. 257-260.

Page 49: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

278

Murphy, J.P., T.S. Cox, & D.M. Rodgers. 1986. “Cluster Analysis of Red Winter Wheat

Cultivars Based upon Coefficients of Parentage”. Crop Science. Vol. 26. pp. 672-676.

NAS (National Academy of Science). 1993. Managing Global Genetic Resources.

Washington, D.C: National Academy Press. p. 480.

Naser, S., H. Dehghani & S.H. Sabaghpour. 2006. “Nonparametric Methods for

Interpreting Genotype x Environment Interaction of Lentil Genotype”. Crop Science. Vol.

46. pp. 1100-1106.

Ng, K.T. & A. Southworth. 1973. “Optimum Time of Harvesting Oil Palm Fruit”. In:

Wastie, R.L. & D.A. Earp (ed.). Advances in Oil Palm Cultivation. Kuala Lumpur:

Incorporated Society of Planters.

Noh, A., M.Y. Rafii, G. Saleh, A. Kushairi & M.A. Latif. 2012. “Genetic Performance

and General Combining Ability of Oil Palm Deli dura x AVROS pisifera Tested on

Inland Soils”. The Scientific World Journal. Vol. 2012. p. 8.

Noh, A., N. Rajanaidu, A. Kusahiri, M.Y. Rafii, A. Mohd Din, Z.A. Mohd Isa & G.

Saleh. 2002.”Variability in Fatty Acid Composition. Iodine Value and Carotene Content

in the MPOB Oil Palm Germplasm Collection from Angola”. Journal of Oil Palm

Research. Vol. 14. (2): pp. 18-23.

Noor, M.R.M. & M.H. Harun. 2004. “The Role of Leaf Area Index (LAI) in Oil Palm”.

MPOB Oil Palm Bulletin. No. 48. pp. 11-16.

Norden, A. J., D. W. Gorbet, D. A. Knauft & C. T. Young. 1987. “Variability in Oil

Quality among Peanut Genotypes in the Florida Breeding Program”. Peanut Science. Vol.

14 (1). pp. 7-11.

Nyquist, W.E. 1991. “Estimation of Heritability and Prediction of Selection Response in

Plant Populations”. Crit. Rev. Plant Sci. Vol. 10. pp. 253-322.

Obisesan, I.O. & T. Fatunla. 1983. “Heritability of Fresh Fruit Bunch Yield and Its

Components in the Oil Palm (Elaeis guineensis, Jacq.)”. Theor. Appl. Genet. Vol. 65. pp.

65-68.

Obisesan, I.O. 1981. Evaluation of Yield and Associated Traits in Some Hybrids of Oil

Palm (Elaeis guineensis Jacq.). (PhD thesis). Ife, Nigeria: University of Ife. p. 220.

Obisessan, I.O. & T. Fatunla. 1982. “Heritability of Fresh Fruit Bunch Yield and Its

Components in the Oil Palm (Elaeis guineensis, Jacq.)”. Theor. Appl. Genet. Vol. 65. pp.

65-68.

Page 50: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

279

Oboh, B.O. & M.A.B. Fakorede. 1990. “Interrelations among Vegetative, Yield and

Bunch Quality Traits in Short-Stem Oil Palm Progenies”. Euphytica. Vol. 46. pp. 7-14.

Okoye, M.N., C.O. Okwuagwu & M.I. Uguru. 2009. Population Improvement for Fresh

Fruit Bunch Yield and Yield Components in Oil Palm (Elaeis guineensis Jacq.).

American-Eurasian Journal of Scientific Research. Vol. 4 (2). pp. 59-63.

Okoye, M.N., C.O. Okwuagwu, M.I. Uguru, C.D. Ataga & E.C. Okolo. 2007. “Genotype

by Trait Relations of Oil Yield in Oil Palm (Elaeis guineensis Jacq.) Based on GT

Biplot”. African Crop Science Conference Proceedings. Vol. 8. pp. 723-728.

Okwuagwu, C.O. & E.C. Okolo. 1992. “Maternal Inheritance of Kernel Size in the Oil

Palm, Elaeis guineensis Jacq”. Elaeis. Vol. 4. pp.72-78.

Okwuagwu, C.O. & E.C. Okolo. 1994. “Genetic Control of Polymorphism for Kernel-to-

Fruit Ratio in the Oil Palm (Elaeis guineensis Jacq.)”. Elaeis. Vol. 6. pp. 75-81.

Okwuagwu, C.O. & G.C.C. Tai. 1995. Estimate of Variance Components and Heritability

of Bunch Yield and Yield Components in Oil Palm (Elaeis guineensis jacq.). Plant

Breeding. Vol. 114. pp. 463-465.

Okwuagwu, C.O. 1988. “The Genetic Basis for the Low Correlation between dura and

tenera Fullsib Shell to Fruit Ratio in the Oil Palm (Elaeis guineensis Jacq.)”. In: Hassan,

A.H. et al. (ed). Proceedings 1987 International Conference on Oil Palm Progress and

prospects. Bangi, Malaysia: PORIM. pp. 143-154,

Ong, E. C., C. H. Lee, I. H. Law & A. H. Ling. 1986. “Genotype-Environment Interaction

and Stability Analysis for Bunch Yield and Its Components, Vegetative Growth and

Bunch Characters in the Oil Palm”. Proceedings of the Oil Palm Fifth International

Congress. Bangi, Malaysia: MPOB. pp 523 - 532.

Ooi, S.C., J.J. Hardon & S. Phang. 1973. “Variability in the Deli Dura Breeding

Population of the Oil Palm (Elaeis guineensis Jacq.). I. Components of Bunch Yield”.

Malaysian Agricultural Journal. Vol. 49. pp. 112-121.

Pannetier, C, P. Arthuis & D. Lievoux. 1981. "Néoformation de Jeunes Plantes d'Elaeis

guineensis à partir de Cals Primaires Obtenus sur Fragments Foliaires Cultivés In Vitro".

Oléagineux. Vol. 36. pp. 119-122.

Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln & S.D. Tanksley.

1988. “Resolution of Quantitative Trait into Mendelian Factors by Using a Complete

Linkage Map of Restriction Fragment Length Polymorphisms”. Nature Vol. 335. pp. 721-

726.

Page 51: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

280

Pedersen, J.I., H. Muller, H. Selfjeflot & B. Kirkhus. 2005. “Palm Oil versus

Hydrogenated Soybean Oil: Effects on Serum Lipids and Plasma Haemostatic Variables.

Asia Pacific Journal of Clinical Nutrition. vol. 14. (4). pp. 348-357.

PORIM. 1986. PORIM Test Methods for Oil Palm and Palm Oil Products. Bangi,

Malaysia: PORIM.

Purba, A.R., J.L. Noyer, L. Baudouin, X. Perrier, S. Hamon & P.J.L. Lagoda. 2000. “A

New Aspect of Genetic Diversity of Indonesian Oil Palm (EIaeis guineensis Jacq.)

Revealed by Isoenzyme and AFLP Markers and Its Consequences for Breeding”. Theor.

Appl. Genet. Vol. 101. pp. 956-961.

Purseglove, J.W. 1975. Tropical Crops: Monocotyledons 479-510. London: English

Language Book Society & Longman.

Rabechault, H. & J.P. Martin. 1976. Multiplication Végétative du Palmier à Huile (Elaeis

guineensis Jacq.) à l’aide de Cultures de Tissus Foliaires. Compte Rendus Hebdomadaires

des Séances de L’Académie des Sciences. Vol. 283 pp. 1735-1737.

Rafii, M.Y. 1996. Genotype x Environment Interaction and Stability Analysis in 40 Oil

Palm (Elaeis guineensis Jacq.) Progenies over Six Locations. (PhD Thesis). Universiti

Kebangsaan Malaysia. p. 291

Rafii, M.Y., B.S. Jalani, N. Rajanaidu, A. Kusahiari, A. Puteh & M.A. Latif. 2012.

“Stability Analysis of Oil Yield in Oil Palm (Elaeis guineensis) Progenies in Different

Environments”. Genet. Mol. Res. Vol. 11 (4): pp. 3629-2641.

Rafii, M.Y., N. Rajanaidu, B.S. Jalani & A. Kushairi. 2002. “Performance and

Heritability Estimation of Oil Palm Progenies Tested in Different Environments”. Journal

of Oil Palm Research. Vol. 1 (1): pp: 15-26.

Rafii, M.Y., N. Rajanidu, A. Kushairi, B.S. Jalani, B.S. & A. Mohd Din. 2000.

“Evaluation of Cameroon and Zaire Oil Palm Genetic Materials”. Proceedings of the

International Symposium on Oil Palm Genetic Resources and Utilization. Bangi,

Malaysia: MPOB. pp. G1-G34.

Rafii, M.Y., Z.A. Isa, A. Kushairi, G.B. Saleh & M.A. Latif. 2013. “Variation in Yield

Components and Vegetative Traits in Malaysian Oil Palm (Elaeis guineensis Jacq.) Dura

x Pisifera Hybrids under Various Planting Densities”. Industrial Crops and Products.

Vol. 46. pp. 147-157.

Rajanaidu N., B.S. Jalani, A. Kusahairi, M.Y. Rafii A. Mohd Din, I. Maizura & D.

Ariffin. 1999b. “Breeding Strategies for the Oil Palm Materials PS1 and PS2 and Future

Page 52: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

281

PS Series”. Proceedings of 1999 Seminar on PS1 and PS2 Planting Materials. Bangi,

Malaysia: PORIM. pp. 76-90.

Rajanaidu, N. & B.K. Tan. 1983. “Variability of Fatty Acid Composition (FAC) within

Bunches in the Oil Palm Elaeis guineensis”. Oleagineux, Vol. 38. (1). pp. 581-584.

Rajanaidu, N. & B.S. Jalani. 1994a. “Oil Palm Germplasm Collection in Senegal”. ISOPB

Newsletter. No. 10. (1): pp. 1-18.

Rajanaidu, N. & B.S. Jalani. 1994b. “Oil Palm Genetic Resources - Collection,

Evaluation, Utilization and Conservation”. Proceedings of PORIM Colloquium on Oil

Palm Genetic Resources. Malaysia 13 September 1994. Bangi, Malaysia: PORIM.

Rajanaidu, N. & M.M. Ainul. 2013. “Conservation of Oil Palm and Coconut Genetic

Resources”. In: Normah, M.N., H.F. Chin, B.M. Reed (ed.). Conservation of Tropical

Plant Species. New York: Springer Business + Science Media. pp 189-212

Rajanaidu, N. & V. Rao. 1987. “Oil Palm Genetic Collections: their Performance and Use

in the Industry”. Proceedings of the 1987 International Oil palm/Palm Oil Conference-

Agriculture. Bangi, Malaysia: PORIM. pp. 59-85.

Rajanaidu, N. 1994. PORIM Oil Palm Gene Bank: Collection, Evaluation, Utilization and

Conservation of Oil palm Genetic Resources. Malaysia: PORIM. p. 19.

Rajanaidu, N., A. Azis Ariffin, B.J. Wood & S. Sarjit. 1988. “Ripeness Standards and

Harvesting Criteria for Oil Palm Bunches”. Proceedings of the 1987 International Oil

Palm Conference on Progress and Prospects. Bangi, Malaysia: PORIM. pp. 224-230.

Rajanaidu, N., A. Kushairi & C.K. Weng. 2011. Oil Palm Biomass: Its Genetic

Variability, Certification and Sustainability. In Mohd Basri, W., C.Y. May & C.K. Weng

(ed.). Further Advances in Oil Palm Research (2000 – 2010). Bangi, Malaysia: Malaysian

Palm Oil Board. pp. 28-46.

Rajanaidu, N., A. Kushairi, A. Mohd Din, M. Marhalil, A.M. Fadiola & Z.A. Mohd Isa.

2011. “Selection Criteria (15-15-15) to Develop Sustainable Oil Palm Planting

Materials”. Proceedings of the Seminar on Breeding for Sustainability in Oil Palm (18

November 2011 in Kuala Lumpur). Kula Lumpur: International Society for Oil Palm

Breeders (ISOPB) & Malaysian Palm Oil Board (MPOB). p. 136.

Rajanaidu, N., A. Kushairi, M.Y. Rafii, A. Mohd Din, I. Maizura & B.S. Jalani. 2000a.

“Oil Palm Breeding and Genetic Resources”. In: Basiron, Y., B.S. Jalani & K.W. Chan

(ed.). Advances in Oil Palm Research. Bangi, Malaysia: Malaysian Palm Oil Board

(MPOB). pp. 171-237.

Page 53: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

282

Rajanaidu, N., A. Kushairi, M.Y.Rafii, A. Mohd Din, I. Maizura, Z.A. Isa & B.S. Jalani.

2000b. “Oil Palm Genetic Resources and their Utilization: Review”. In: Rajanaidu, N.&

D. Ariffin (ed.). International Symposium on Oil Palm Genetic Resources and utilization

(Kuala Lumpur, 8-10 June 2000). Bangi, Malaysia: Malaysian Palm Oil Board (MPOB).

Rajanaidu, N., B.S. Jalani, & A. Kushairi. 1999. “The Development of Dwarf (PS1) and

High iodine Value (PS2) Planting Materials”. In: Ariffin D., C. K. Weng & Sharifah

Sharul Rabiah Syed Alwi (ed.). Proceedings of the 1999 PIPOC International Palm Oil

Congress - Emerging Technologies and Opportunities in the Next Millennium. Bangi,

Malaysia: PORIM. pp. 115-123.

Raje, R.S. & S.K. Rao. 2000. “Genetic Parameters of Variation for Yield and Its

Components in Mungbean (Vigna radiata [L.] Wilc.) over Environments”. Legume

Research. Vol. 23. (4): pp. 211-216.

Rangaswamy, R. 2010. A Text Book of Agricultural Statistics. New Delhi: New Age

International (P) Ltd., Publishers. p. 530.

Rao, V., A.C. Soh, R.H.V. Corley, C.H. Lee, N. Rajanaidu, Y.P. Tan, C.W. Chin, K.C.

Lim, S.T. Tan, T.P. Lee & M. Ngui. 1983. “A Critical Reexamination of the Method of

Bunch Analysis in Oil Palm Breeding”. PORIM Occasional Paper 9.

Razali, M.H., A.S.M.A. Halim & S. Roslan. “A Revew on Crop Plant Production and

Ripeness Forecasting”. Int. J. Agric. Sci. Vol. 4. (2): pp. 54-63.

Rees, A. R. 1962. “High Temperature Pre-Treatment and the Germination of Oil Palm

(Elaeis guineensis Jacq.)”. Ann. Bot. N. S. Vol. 26. pp. 569-581.

Rival, A., T. Buele, S. Hamon, Y. Duval & M. Noiraot. 1997. “Comparative Flow

Cytometric Estimation of Nuclear DNA Content in Oil Palm (Elaeis guineensis Jacq.)

Tissue Cultures and Seed-derived Plants”. Plant Cell Rep. Vol 16. pp. 884-887.

Robinson, H. F., R.E. Comstock & P.H. Harvey. 1949, “Estimates of Heritability and

Degree of Dominance in Corn”. Agronomy Journal. Vol. 41. pp. 353-359.

Rosenquiest, E.A. 1982. “Performance of Identical Oil Palm Progenies in Different

Environments”. Pushparajah & P.S. Chew (ed.). The Oil Palm in Agriculture in the

Eighties. Kuala Lumpur: The Corporate Society of Planters. pp. 131-143.

Rosenquist, E.A. 1990. “An Overview of Breeding Technology and Selection”. In: Jalani,

B.S. et al. (ed.). Proceedings of 1989 International Palm oil Conference - Agriculture.

Bangi, Malaysia: PORIM. pp. 5-25.

Page 54: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

283

Rosenquist, E.A., 1986. “The Genetic Base of Oil Palm Breeding Populations”.

Proceedings of the International Workshop on Oil Palm Germplasm and Utilisation.

Kuala Lumpur: Palm Oil Institute of Malaysia. pp. 27-56.

Salunkhe, D.K., J.K. Chavan, R.N. Adsule & S.S. Kadam. 1992. World Seeds. Chemistry,

Technology and Utilization. New York: Van Nistrand Reinhold. p. 544.

Sambanthamurthi, R., K. Sundram & Y. Tan. 2000. “Chemistry and Biochemistry of

Palm Oil”. Progress in Lipid Research. Vol. 39, pp. 507-558.

SAS Institute Inc. 2010. SAS/STAT® 9-22. User’s Guide. Cary, NC: SAS Institute Inc.

Sharma, J.R. 2006. Statistical and Biometrical Techniques in Plant Breeding. New Delhi:

New Age International (P) Ltd., Publishers. p. 432.

Sharma, M. & Y.P. Tan. 1999. “Oil Palm Breeding Programmes and performance of DxP

Palnting Materials at United Plantations Berhad”. Proceedings of the seminar on

Sourcing of Oil Palm Planting Materials for Local and Overseas Joint Venture. Bangi,

Malaysia: PORIM. pp. 118-135.

Shorter, R. & V.E. Mungomery. 1981. “Analysis of Variance of Data from Multi-

Environemnt Trials”. In: Byth, D.E. & V.E. Mungomery (ed.). Interpretation of Plant

response and Adaptation to Agricultural Environments. Queensland: Australian Institute

of Agricultural Science, Queensland Branch. pp. 12-26.

Shukla, G.K. 1972. “Some Statistical Aspects of Partitioning Genotype-Environmental

Components of Variability”. Heredity. Vol. 29. pp. 237-245.

Simmonds, N.W. 1991. “Selection for Local Adaptation in a Plant Breeding Programme”.

Theor. Appl. Genet. Vol. 82. pp. 363-367.

Sinclair, T. R. 1998. “Historical Changes in Harvest Index and Crop Nitrogen

Accumulation”. Crop Science. Vol. 38. pp. 638-643.

Singh R.K. & B.D. Chaudhary. 1985. Biometrical Methods in Quantitative Genetic

Analysis. New Delhi: Kalyani Publishers. p. 318.

Singh, B.D. 2000. Plant Breeding: Principles and Methods. New Delhi: Kalyani

Publishers.

Singh, P. & S.S. Narayanan. 1993. Biometrical Techniques in Plant Breeding. New

Delhi: Kalyani Publishers. p. 182.

Page 55: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

284

Singh, R., G.T. Soon, M.P. Johti, A.R. Rahimah, C.L.O. Leslie, L.L. Eng-Tie, M.

Sharma, J. Johanns & C. Suan-Choo. 2009.”Mapping Quantitative Trait Loci (QTLs) for

Fatty Acid Composition in an Interspecific Cross of Oil Palm”. BMC Plant Biology 2009.

Vol. 9 (14).

Singh, R., S.G. Tan, J.M. Panandam, R.A. Rahman & S.C. Cheah. “Identification of

cDNA-RFLP Markers and Their Use for Molecular Mapping in Oil Palm (Elaeis

guineensis)”. As. Pac. J. Mol. Biol. & Biotech.. Vol. 6. (3): pp. 53-63.

Siregar, I.M . 1976. “Assessment of Ripeness and Crop Quality Control”. Proceedings of

the Malaysian Inter-Agricultural Oil Palm Conference. Kuala Lumpur: PORIM. pp. 740-

754

Smith, B.G. 1993. “Oil Palm Breeding: The Potential for using Physiological Selection

Criteria”. Elaeis. Vol. 5. (1). pp. 12-26.

Soh, A. C. 1998. “Review of Ortet Selection in Oil Palm”. The Planter. Vol. 74. pp. 217-

226.

Soh, A.C. & S.T. Tan. 1983. “Estimation of Genetic Variance, Heritability and

Combining Ability in Oil Palm Breeding”. Proceedings of the 4th

International SABRAO

Congress on Crop Improvement Research. Kuala Lumpur: SABRAO. pp. 379-388.

Soh, A.C. 1987. “Abnormal Oil Palm Clones. Possible Causes and Implications: Further

Discussions”. The Planter. Vol. 63. pp. 59-65.

Soh, A.C. 1999. Breeding Plans and Selection Methods in Oil Palm. Proceedings of the

Seminar on ‘Science of oil palm breeding’ (Montpellier, 1992). Bangi, Malaysia: PORIM.

pp. 65-95.

Soh, A.C., C.K. Wong, Y.W. Ho & C.W. Choong. 2009. “Oil Palm”. In: Vollmann, J. &

I. Rajcan (ed.). Oil Crops-Handbook for Plant Breeding. London, New York: Springer

Dordrecht Heidelberg. pp. 333-367.

Soh, A.C., G. Wong, C.C. Tan, P.S. Chew, S.P. Chong, Y.W. Ho, C.K. Wong, C.N.

Choo, H. Nor Azura & K. Kumar. 2011. “Commercial-Scale Propagation and Planting of

Elite Oil Palm Clones: Research and Development Towards Realization”. Journal of Oil

Palm Research. Vol. 23. pp. 935-952.

Soh, A.C., G. Wong, T.Y. Hor, C.C. Tan, & P.S. Chew. 2003. “Oil Palm Genetic

Improvement”. In: Janick, J. (ed.). Plant Breeding Reviews. Vol. 22. New Jersey: John

Wiley & Sons, New Jersey. pp. 165-219

Page 56: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

285

Soh, A.C., T. Vanialingam, B. Taniputra & K. Pamin. 1981. “Derivatives of the Dumpy

Palm - Some Experimental Results”. The Planter. Vol. 57. pp. 227-239.

Soil Survey Staff. 2010. Keys to Soil Taxonomy 11th Edition. Washington, DC: USDA-

Natural Resources Conservation Service.

Southworth A, R.H.V. Corley, J.J. Hardon & B.J. Woods.1976, Harvesting. Oil Palm

Research. Amsterdam: Elsevier. pp. 469-477.

Souza, E. & M.E. Sorrells. 1991. “Relationships among 70 North American Oat

Germplasm: I. Cluster Analysis Using Quantitative Characters”. Crop Science. Vol. 31.

pp. 599-605.

Sparnaaij, L.D., T. Menendez & G. Baak.1963. “Breeding and inheritance in the oil palm

(Elaeis guineensis Jacq.). Part I: The Design of a Breeding Programme”. J. W. Afr. Inst.

Oil Palm Res. Vol. 4. pp. 126-155.

Sprague, G.F. 1966. “Quantitative Genetics in Plant Improvement”. Kemeth, J.F. (ed.).

Plant Breeding. Iowa: Iowa State University Press, Ames. pp. 315-347.

Squire, G.R. & R.H.V. Corley, 1987. Oil Palm. In: Sethuraj, M.R.& A.S. Raghavendra

(ed.). Tree Crop Physiology. Amsterdam: Elsevier. pp: 141-167.

Squire, G.R. 1984. “Techniques in the Environmental Physiology of Oil Palm:

Measurement of Intercepted Radiation”. PORIM Bulletin. No. 8. pp. 10-31.

Squire, G.R. 1985. “A Physiological Analysis of Oil Palm Trials”. PORIM Bulletin, No.

12. pp. 12-31.

Steel, R.G. & J.H. Torrie. 1984. Principles and Procedures of Statistics, 2nd

Edition.

Singapore: MC Graw-Hill Book Co. p. 633.

Steel, R.G.D., J.H. Torrie & D. Dickey. 1997. Principles and Procedures of Statistics: a

Biometrical Approach, 3rd Edition. New York: McGraw-Hill.

Sterling, F., A. Alvarado, C. Montoya & D.L. Richardson. 1994. “Testing and Selecting

Parental Oil Palm Trees Using Progeny testing Procedures”. Proceedings of the

International seminar on Oil Palm Planting Material. Barranquilla: ISOPB.

Sterling, F., D.L. Richardson & C. Chaves. 1987. “Some Phenotypic Characteristics of

the Descendants of QB049, an Exceptional Hybrid of Oil Palm”. Proceedings Oil

Palm/Palm Oil Conference: Progress and Prospects. Bangi, Malaysia: PORIM. pp. 135-

146.

Page 57: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

286

Sundarm, K., R. Sambanthamurthi & Y. Tan. 2003. “Palm Fruit Chemistry and

Nutrition”. Asia Pacific Journal of Clinical and Nutrition. vol. 3. (3): pp. 355-362.

Sundram, K. 1997. “Modulation of Human Lipids and Lipoproteins by Dietary Palm Oil

and Palm Olein: A Review”. Asia Pacific Journal of Clinical and Nutrition. vol. 6. (1).

pp. 12-16.

Tan, B.K. & C.H. Oh. 1981. “Malaysian Palm Oil Chemical and Physical

Characteristics”. PORIM technology. No. 3. pp. 5.

Teh, H.F., B.K. Neoh, M.P.L. Hong, J.Y.S. Low, T.L.M. Ng et al. 2013. “Differential

Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp”.

PLoS ONE. Vol. 8. (4): e61344. doi:10.1371/journal.pone.0061344

Turner, P.D. & R.A. Gillbanks. 2003. Oil Palm Cultivation and Management, 2nd

Edition. Kuala Lumpur: Incorporated Society of Planters. p. 917.

van der Vossen, H.A.M. 1974. Towards more Efficient Selection for Oil Yield in Oil Palm

(Elaeis guineensis Jacquin). (PhD Thesis). University of Wageningen. Wageningen:

Centre for Agricultural Publishing and Documentation. p. 107.

Verheye, W. 2010. Growth and Production of Oil Palm. In: Verheye, W. (ed.). Land Use,

Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS). Oxford:

UNESCO-EOLSS Publishers. http://www.eolss.net

Vidya, C., S.K. Oommen & K. Vijayaraghava. 2002. Genetic Variability and Heritability

of Yield and Related Character in Yard Long bean. J. Trop . Agric., Vol. 40. pp. 11-13.

Vinod, K.K. 2009. “Genetic Mapping of Quantitative Trait Loci and Marker Assisted

Selection on Plantation Crops. In: Proceedings of the Training Programme on “in vitro

Techniques in Plantation Crops”. Kasaragod, India: Central Plantation Crops Research

Institute. pp. 111-132.

Visscher, P.M., W.G. Hill & N.R. Wray. 2008. “Heritability in the Genomic Era -

Concepts and Misconceptions”. Nature Reviews. Vol. 9. pp. 255-266.

Vollmann, J. and I. Rajcan. 2009. Oil Crop Breeding and Genetics. In Vollmann, J. and I.

Rajcan (ed.), Handbook of Plant Breeding - Oil Crop. Springer Science + Business

Media, LLC, London, New York. pp. 1-30.

Walter, A., B. Studer & R. Kolliker. 2012. “Advanced Phenotyping Offers Opportunities

for Improved Breeding of Forage and Turf Species”. Annals of Botany. Vol. 110. (6). pp.

1271-1279.

Page 58: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

287

Watson, D.J. 1947. “Comparative Physiological Studies in the Growth of Field Crops. I.

Variation in Net Assimilation Rate and Leaf Area Between Species and Varieties, and

Within and Between Years”. Annals of Botany. Vol. 11, pp. 41-76.

Weiss, T.J. 1983. Food Oils and Their Uses, 2nd

Edition. Westport, Conn.: The AVI

Publishing Co., Inc. p. 310.

Wricke, G. 1962. “Uber eine Methode zur Erfassung der Okolo gischen Streybreite in

Feldversuchen”. Z. Pflanzenzuchtung. Vol. 47. pp. 92-96.

Yan, W. & I. Rajcan. 2002. “Biplot Evaluation of Test Sides and Trait Relations of

Soybean in Ontario”. Crop Science. Vol. 42. pp. 11-20.

Yan, W., L.A. Hunt, Q. Sheng & Z. Szlavnics. 2000. “Cultivar Evaluation and Mega-

Environment Investigation based on GGE Biplot”. Crop Science. Vol. 40. pp. 597-605.

Zeven, A.C. 1967. “The Semi-wild Oil Palm and its Industry in Africa”. Agric. Res. Rep.

689. Wageningen: Wageningen University.

Zulkifli, Y., I. Maizura & S, Rajinder. 2012. “Evaluation of MPOB Oil Palm Germplasm

(Elaeis guineensis) Populations Using EST-SSR”. Journal of Palm Oil Research. Vol.

24. pp. 1368-1377.

Page 59: CROSSES Dura x Pisifera OIL PALM (Elaeis guineensis Jacq.)

288

APPENDICES

CHAIRED CONFERENCES & SEMIMARS

A1- LIST OF PAPERS PRESENTED IN SEMINARS AND CONFERENCES

1. Beyegue Djonko, H., A. Kushairi, N. Rajanaidu & B. S. Jalani. 2011. “Phenotypic

Assessment of Cameroon-Based dura x pisifera Oil Palm (Elaeis guineensis Jacq.)

Populations According to Bunch and Fruit Characters”. Programme Book of the 9th

Malaysia Genetics Congress (MGS9) ‘Appreciating the Richness of Nature through

Genetics’ (28 - 30 September 2011 at Pullman Hotel Kuching). Kuching-Sarawak,

Malaysia: Genetics Society of Malaysia (PGM)-Universiti Malaysia Sarawak. p. 127.

2. Beyegue Djonko, H., A. Kushairi, N. Rajanaidu & B.S. Jalani. 2011. “Assessment of

Bunch Yield and Its Components for Cameroon-Based Oil Palm (Elaeis guineensis

Jacq.) Population”. Proceedings of the the International Seminar ‘Breeding for

Sustainability in Oil Palm’ (18 November 2011 at KLCC, Kuala Lumpur). Kuala

Lumpur: International Society for Oil Palm Breeders (ISOPB) - Malaysian Palm Oil

Board (MPOB). pp. 147-152.

3. Beyegue Djonko, H., A. Kushairi, N. Rajanaidu & B. S. Jalani. 2012. “Assessment of

Genetic Variability among Cameroon-Based dura x pisiera Oil Palm (Elaeis

guineensis Jacq.) Populations for Morpho-vegetative Characters”. Paper presented

during the 6th Research Presentation Seminar for Graduate Students 2012 organized

by the Centre for Graduate Studies (CGS), Universiti Sains Islam Malaysia (USIM).

Award of the Best English presentation.

A2- LIST OF PAPERS ACCEPTED FOR UPCOMING CONFERENCES

4. Beyegue Djonko H., A. Kushairi, N. Rajanaidu & B. S. Jalani. 2013. “Assessment of

Variability of Cameroon-based Biparental dura x pisifera Oil Palm Genotypes for

Oil Quality Traits and Interrelationships among Traits”. Paper accepted for oral

presentation during the 10th

Malaysia Genetics Congress (MGC10) ‘Adavances in

Genetics, Biotechnology and Genomics’ co-organised by the Genetics Society of

Malaysia, Universiti Teknologi Mara, Universiti Kebangsaan Malaysia and

Universiti Putra Malaysia on 3 -5 December at Hotel Sunway Putra, Kuala Lumpur.

5. Beyegue Djonko H., A. Kushairi, N. Rajanaidu & B. S. Jalani. 2013. “Study of

Variability among Cameroon-Based dura x pisifera Oil Palm Genotypes Tested over

Two Locations for Physiological Characters”. Paper submitted for oral presentation

during the International Seminar on Oil Palm Breeding – Yesterday, Today and

Tomorrow, jointly organized by the International Society for Oil Palm Breeders

(ISOPB) and the Malaysian Palm Oil Board (MPOB) on 18 November 2013 at

Impiana KLCC Hotel, Kuala Lumpur, Malaysia