Top Banner
Folie 1 GeoFARMatics Köln, 25/11/2010 Creation of high resolution soil parameter data by use of artificial neural network technologies (advangeo®) A. Knobloch 1 , F. Schmidt 1 , M.K. Zeidler 1 , A. Barth 1 1 Beak Consultants GmbH, Freiberg / Deutschland, [email protected]
38

Creation of high resolution soil parameter databy use of artificial neural network technologies

Jun 20, 2015

Download

Technology

CAPIGI
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 1

GeoFARMaticsKöln, 25/11/2010

Creation of high resolution soil parameter databy use of artificial neural network technologies

(advangeo®)

A. Knobloch1, F. Schmidt1, M.K. Zeidler1, A. Barth1

1 Beak Consultants GmbH, Freiberg / Deutschland, [email protected]

Page 2: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 2

GeoFARMaticsKöln, 25/11/2010

Available Data and Knowledge

Data:DEM, soil map,land use, yield map Knowledge: Natural Processes

Training Data: Aerial Images,Field Observations

Page 3: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 3

GeoFARMaticsKöln, 25/11/2010

Traditional prediction methods are based mainly on the expert´s knowledge / experience supported by modern information technology

Data Analysis and Interpretation

Traditional Approach

Page 4: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 4

GeoFARMaticsKöln, 25/11/2010

The artificial neuronal network “replaces” the experts empirical data analysis

Pre-Processing

Validation

Modern Approach Using Artificial Intelligence

Page 5: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 5

GeoFARMaticsKöln, 25/11/2010

Model: Neuron Cell

The Neuron Cell as a Processor

• Functionality as a biological neural system• Consists of artificial neuron cells • Simulation of biological processes of neurons by use of suitable

mathematical operations• In most cases layer-like configuration of the neurons

• Connection between the neurons by weights w- Enforce or reduce the level of the input information- Are directed, can be trained

• Input signals- Re-computed to a single input information: the

propagation function • Output signals

- Activation function computes the output status of a neuron (often used: Sigmoid function)

Definition: Artificial Neural Network

Page 6: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 6

GeoFARMaticsKöln, 25/11/2010

Network Topology: MLP (Multi Layer Perceptron)• Set-up of neurons in layers• Direction and degree of connections• Amount of hidden layers and neurons

Principle Setup of Artificial Neural Networks

Page 7: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 7

GeoFARMaticsKöln, 25/11/2010

Learning Algorithm: Back-Propagation• Repeated input of training data• Modification of weights w• Reduces error between expected and actual output of the network

Training of Artificial Neural Networks

MSE - Curve

Page 8: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 8

GeoFARMaticsKöln, 25/11/2010

Advantages / Disadvantages of Artificial Neural Networks

Advantages:• learnable: learning from examples• generalization: able to solve similar problems that have not been

trained yet• universal: prediction, classification, pattern recognition• able to analyze complex, non-linear relationships• fault-tolerant against noisy data (e.g. face recognition)• quickness

Additional characteristics:• choice of topology and training algorithm• black box system: evaluation of weight of parameters

Page 9: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 9

GeoFARMaticsKöln, 25/11/2010

• Easy Access to Methods of

Artificial Intelligence for Spatial

Prediction• Documentation of Working Steps• Capture and Management of

Metadata for Geodata• Tools for Data Pre-Processing,

Post-Processing and

Cartographic Presentation• Integration into Standard ESRI

ArcGIS-Software

Software: advangeo

Application Metadata

Spatial Data

Referenced Data Sources

GIS Extension Data- and Model Explorer

Page 10: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 10

GeoFARMaticsKöln, 25/11/2010

Log Flow Accumulation

Input Data: Derivate of the Digital Elevation Model Slope

DEM Saxony 5m RESAMPLED Slope [°]

Case Study 1: Extensive Soil Erosion

Page 11: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 11

GeoFARMaticsKöln, 25/11/2010

Input Data: Soil Map Fine Soil (Clay, Silt, Sand), Skeleton Soil

Soil Map Fine Soil(Clay, Silt, Sand), Skeleton Soil

Case Study 1: Extensive Soil Erosion

Page 12: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 12

GeoFARMaticsKöln, 25/11/2010

Input Data: Land use (ATKIS, Biotope Type Mapping) Forest, arable land, pastures, wetland, etc.

Land use (ATKIS, Biotope Types) Single raster for each land use class(Forest, arable land, pastures, wetland., etc.)

Case Study 1: Extensive Soil Erosion

Page 13: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 13

GeoFARMaticsKöln, 25/11/2010

Training Data: Based on Aerial Images Mapping of Erosion Areas

Aerial Images – intense rainfall/flood 2002 Mapped Erosion Areas

Case Study 1: Extensive Soil Erosion

Page 14: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 14

GeoFARMaticsKöln, 25/11/2010

Training Data

OutputLayer

HiddenLayers

InputData /Layers

Weights

Validation

Result:Probability

KnownErosionAreas

Weights

Case Study 1: Extensive Soil Erosion

Page 15: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 15

GeoFARMaticsKöln, 25/11/2010

Re-Modeled Erosion Areas:

Training Areas

ca. 80 % of known erosion areas with p>75%

Test Area:

ca. 90 % of known erosion areas with p>75%

Case Study 1: Extensive Soil Erosion

Input Data:

Slope, Silt, Clay, Sand, Landuse, Flow Accumulation

+ Horizontal curvature

Probability:

Page 16: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 16

GeoFARMaticsKöln, 25/11/2010

Case Study 1: Extensive Soil Erosion

Page 17: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 17

GeoFARMaticsKöln, 25/11/2010

Validation of Prediction Results in the Field

Case Study 1: Extensive Soil Erosion

Page 18: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 18

GeoFARMaticsKöln, 25/11/2010

Optimization of Protection Measures

Alteration of Input Data:DEM

Case Study 1: Extensive Soil Erosion

Page 19: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 19

GeoFARMaticsKöln, 25/11/2010

Input DataElevation Model and its DerivatesGeology: Lithology, FoliationLanduseSoil Types

Training DataKnown Areas with Sliding / Creeping

Case Study 2: Soil Creeping

Page 20: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 20

GeoFARMaticsKöln, 25/11/2010

A B

Landslides

A

B

Dip of the Foliation to N

Case Study 2: Soil Creeping

Page 21: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 21

GeoFARMaticsKöln, 25/11/2010

Case Study 3: Erosion Gullies

Input DataElevation Model and its DerivatesGeology: Lithology, FoliationLanduseSoil Types

Training DataKnown Areas with Gullies

Page 22: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 22

GeoFARMaticsKöln, 25/11/2010

Input Data:Elevation Model and its Derivates,Soil Map,Forest Inventory Data

Training Data:Qualitative/ QuantitativeInfection Data

Investigation Area:Forests in Eastern Erzgebirge,Tharandter Wald

Case Study 4: Spread of Forest Pests

Page 23: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 23

GeoFARMaticsKöln, 25/11/2010

Training Data:Infection Data 2008Coded as:Infected = 1Rest= 0

Average Result from a Total of 15 Different Modelswith Different Input Data

Case Study 4: Spread of Forest Pests

No Endangerment

Low Endangerment

Medium Endangerment

High Endangerment

Very High Endangerment

Page 24: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 24

GeoFARMaticsKöln, 25/11/2010

Training Data:Infection Data 2008Coded as:Infection Rate

Infection Rate(m³/Infection Area)

Case Study 4: Spread of Forest Pests

Average Result from a Total of 15 Different Modelswith Different Input Data

Page 25: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 25

GeoFARMaticsKöln, 25/11/2010

Case Study 5: Regionalization of Soil Parameters: Humidity Level

Input Data:Elevation Model and its DerivatesSoil MapClimate DataLanduse

Training Data:Sounding Rods / Auger(1252 Points)

TK 5046, 5047, 5146, 5147

feu1 – feu6

Page 26: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 26

GeoFARMaticsKöln, 25/11/2010

Additional Input Data: Climate Data Evaporation, Rainfall, Relative Humidity

Evaporation [mm] Rainfall [mm] Relative Humidity [%]

Case Study 5: Regionalization of Soil Parameters: Humidity Level

Page 27: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 27

GeoFARMaticsKöln, 25/11/2010

Training Data: 1252 Sounding Rods / Auger with Humidity Level feu1 – feu6

Case Study 5: Regionalization of Soil Parameters: Humidity Level

Page 28: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 28

GeoFARMaticsKöln, 25/11/2010

Case Study 5: Regionalization of Soil Parameters: Humidity Level

Page 29: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 29

GeoFARMaticsKöln, 25/11/2010

Influence of Exposition (here: N-Hillside) and Climate (Rainfall Distribution)

Case Study 5: Regionalization of Soil Parameters: Humidity Level

Humidity Level

Page 30: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 30

GeoFARMaticsKöln, 25/11/2010

Visible Gradient of Humidity Level within Biotope Types (here: Grassland)

Case Study 5: Regionalization of Soil Parameters: Humidity Level

Humidity Level

Page 31: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 31

GeoFARMaticsKöln, 25/11/2010

Input Data:Elevation Model and its DerivatesSoil MapClimate DataLanduse

Training Data:Sounding Rods / Auger(1725 Points)

TK 5046, 5047, 5146, 5147

h0 – h7

Case Study 6: Regionalization of Soil Parameters: Humus Level

Page 32: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 32

GeoFARMaticsKöln, 25/11/2010

Case Study 6: Regionalization of Soil Parameters: Humus Level

Humus Level

Page 33: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 33

GeoFARMaticsKöln, 25/11/2010

Input DataElevation Model and its DerivatesSoil MapLanduse

Training Data:Exploratory Soil Excavation(38 Points)

TK 5046, 5047, 5146, 5147

TOC [%]

Case Study 7: Regionalization of Soil Parameters: TOC [%]

Page 34: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 34

GeoFARMaticsKöln, 25/11/2010

Case Study 7: Regionalization of Soil Parameters: TOC [%]

Page 35: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 35

GeoFARMaticsKöln, 25/11/2010

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Bere

chne

ter T

OC

[%]

Gegebener TOC [%]

Case Study 7: Regionalization of Soil Parameters: TOC [%]

Known TOC

Co

mp

ute

d T

OC

Page 36: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 36

GeoFARMaticsKöln, 25/11/2010

Outlook: Vision of a „Rasterised Soilmap“

CURRENT:

Vector Soil mapwith defined polygon boundaries with the same parameters inside

a polygon (without gradient)

Humus

Humidity

TOC

Fine Soil(Clay, Silt, Sand)Fine Skeleton SoilCoarse Skeleton Soil

VISION:

Raster Soil mapwith separate raster layers for each parameter and gradient

inside the original polygon

Page 37: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 37

GeoFARMaticsKöln, 25/11/2010

• Input Data:• Various soil data• Water balance data• DEM and derivations• Phenomena mapped

from aerial images• ECa maps• Yield maps

• Possible Results• Enhanced raster soil

maps• Prediction of pests• All other spatial

phenomena that are based on various controlling (spatial) factors

Outlook: Application of Artificial Neural Networks in Precision Farming

Page 38: Creation of high resolution soil parameter databy use of artificial neural network technologies

Folie 38

GeoFARMaticsKöln, 25/11/2010

Summary: Application of Artificial Neural Netwroks

• Various applications are possible, e.g.:– Regionalization of soil parameters,– Time series analysis,– "Raster soil map“,– Analysis of influencing factors

We are looking forward to your comments, knowledge sharing and collaboration!

[email protected]@beak.dewww.advangeo.com