Top Banner
Cracking the Population Code Dario Ringach University of California, Los Angeles
54

Cracking the Population Code Dario Ringach University of California, Los Angeles.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Cracking the Population Code

Dario Ringach

University of California, Los Angeles

Page 2: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Two basic questions in cortical computation:

The Questions

How is information represented?

How is information processed?

Page 3: Cracking the Population Code Dario Ringach University of California, Los Angeles.

How is information encoded in populations of neurons?

Representation by Neuronal Populations

Page 4: Cracking the Population Code Dario Ringach University of California, Los Angeles.

How is information encoded in populations of neurons?

1. Quantities are encoded as rate codes in ensembles of 50-100 neurons (eg, Shadlen and Newsome, 1998).

Representation by Neuronal Populations

Page 5: Cracking the Population Code Dario Ringach University of California, Los Angeles.

How is information encoded in populations of neurons?

1. Quantities are encoded as rate codes in ensembles of 50-100 neurons (eg, Shadlen and Newsome, 1998).

2. Quantities are encoded as precise temporal patterns of spiking across a population of cells (e.g, Abeles, 1991).

Representation by Neuronal Populations

Page 6: Cracking the Population Code Dario Ringach University of California, Los Angeles.

How is information encoded in populations of neurons?

1. Quantities are encoded as rate codes in ensembles of 50-100 neurons (eg, Shadlen and Newsome, 1998).

2. Quantities are encoded as precise temporal patterns of spiking across a population of cells (e.g, Abeles, 1991).

3. Quantities might be encoded as the variance of responses across ensembles of neurons (Shamir & Sompolinsky, 2001; Abbott & Dayan, 1999)

Representation by Neuronal Populations

Page 7: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Coding by Mean and Covariance

Neuron #1

Neuro

n #

2

Averbeck et al, Nat Rev Neurosci, 2006

Mean only

B

A

Responses of two neurons to the repeated presentation of two stimuli:

Page 8: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Coding by Mean and Covariance

Neuron #1

Neuro

n #

2

Averbeck et al, Nat Rev Neurosci, 2006

Neuron #1

Mean only Covariance only

B

A A

B

Responses of two neurons to the repeated presentation of two stimuli:

Page 9: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Coding by Mean and Covariance

Neuron #1

Neuro

n #

2

Averbeck et al, Nat Rev Neurosci, 2006

Neuron #1

Mean only Covariance only

Neuron #1

Both

B

A A

B BA

Responses of two neurons to the repeated presentation of two stimuli:

Page 10: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Macaque Primary Visual Cortex

Page 11: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Orientation Tuning

Receptive field

Page 12: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Orientation Columns

Page 13: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Primary Visual Cortex

4mm

V1 surface and vasculature under green illumination

Page 14: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Orientation Columns and Array Recordings

1mm

Optical imaging of intrinsic signals under 700nm light

Page 15: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Alignment of Orientation Map and Array

0.0

0.4

Find the optimal translation and rotation of the array on the cortex that maximizes the agreement between the electrical and optical measurements of preferred orientation.

(3 parameters and 96 data points!)

Error surfaces:

xt xt

yt ytf

f

opticalq

elecq

Page 16: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Micro-machined Electrode Arrays

Page 17: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Array Insertion Sequence

1 2

3 4

Page 18: Cracking the Population Code Dario Ringach University of California, Los Angeles.

( ) dt Rt+ Îr

Input

Output

Basic Experiment

( ) 1t Sq Î

We record single unit activity (12-50 cells), multi-unit activity (50-80 sites) and local field potentials (96 sites). What can we say about:

/

0, , 1k k N

k N

q p=

= -L

( ) ( )( )|P t tr t q+

Page 19: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Dynamics of Mean States

( ) ( ) ( ){ }| 1i iE t trm t t q= + =

18m

1m

( )( )1

0i

i

if tt

otherwise

q qq

ì =ïïº íïïî

2m

3m

Page 20: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Dynamics of Mean Responses

Multidimensional scaling to d=3 (for visualization only)

Page 21: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Dynamics of Mean Responses

Multidimensional scaling to d=3 (for visualization only)

Page 22: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Stimulus Triggered Covariance

( ) ( ) ( ) ( ){ }| 1Ti iE t t tr rt t t qS = D + D + =

18m

1m

2m

3m

2S

3S

Page 23: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Covariance matrices are low-dimensional

il

Average spectrum for co-variance matrices in two experiments

Page 24: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Covariance matrices are low-dimensional (!)

Two Examples

Page 25: Cracking the Population Code Dario Ringach University of California, Los Angeles.

18m

1m

im

jm

iS

jS

Bhattacharyya Distance and Error Bounds

( ) ( )| ,i i iP Nr :q m S

( ) 1 1 21 2

1 2

1 1log

4 2 2

TBD m m- S +S

= D S +S D +S S

Differences in mean Differences in co-variance

( ) ( )exp / 2P error BD< -

Bhattacharyya distance:

Page 26: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Information in Covariance Information in Mean?

Page 27: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Bayes’ Decision Boundaries – N-category classification

( ) ( )| ,i i iP Nr :q m S iS

jmjS

imHyperquadratic decision surfaces

( ) 0t t

i i i ig x xW x w x w= + +

Where:

11

2i iW -=- S

1i i iw m-=S

( )1 10

1 1log log

2 2i

ti i i i iw Pm m q- -=- S - S +

Page 28: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Confusion Matrix and Probability of Classification

Page 29: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Confusion Matrix and Probability of Classification

Page 30: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Stimulus-Triggered Responses

150ms

n=41 channels ordered according their preferred orientationC

hannel #

(ori

enta

tion)

0.0

2.0

/r rD

Page 31: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Stimulus-Triggered Responses

150ms

n=32 channels ordered according their preferred orientationC

hannel #

(ori

enta

tion)

0.0

2.0

/r rD

Page 32: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Mean Population Responses

Page 33: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Mean Population Responses

Page 34: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Population Mean and Variance Tuning

( )2,l s

Page 35: Cracking the Population Code Dario Ringach University of California, Los Angeles.

( )2,l s

Population Mean and Variance Tuning

Page 36: Cracking the Population Code Dario Ringach University of California, Los Angeles.

( )2,l s

Population Mean and Variance Tuning

Page 37: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Population Mean and Variance Tuning

Page 38: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Population Mean and Variance Tuning

Page 39: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Population Mean and Variance Tuning

Page 40: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Bandwidth of Mean and Variance Signals

Page 41: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Estimates of Mean and Variance in Single Trials

1i

inl l= å ( )

22 1i

ins l l l= - +å

Population of independent Poisson spiking cells:

{ }il

Page 42: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Estimating Mean and Variances Trial-to-Trial

mean

variance

Noise correlation = 0.0

Page 43: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Estimating Mean and Variances Trial-to-Trial

mean

variance

Noise correlation = 0.1

Page 44: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Estimating Mean and Variances Trial-to-Trial

mean

variance

Noise correlation = 0.2

Page 45: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Tiling the Stimulus Space and Response Heterogeneity

Dimension #1

Dim

en

sion #

2

Orientation

Page 46: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Tiling the Stimulus Space and Response Heterogeneity

Dimension #1

Dim

en

sion #

2

Orientation

Population response to the same stimulus

Page 47: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Tiling the Stimulus Space and Response Heterogeneity

Dimension #1

Dim

en

sion #

2

Orientation

Population response to the same stimulus

Page 48: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Tiling the Stimulus Space and Response Heterogeneity

Dimension #1

Dim

en

sion #

2

Orientation

Population response from independentsingle cell measurements

Page 49: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Tiling the Stimulus Space and Response Heterogeneity

Dimension #1

Dim

en

sion #

2

Orientation

Population response from independentsingle cell measurements

Page 50: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Silberberg et al, J Neurophysiol., 2004

Can single cells respond to input variance?

Page 51: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Can single cells respond to input variance?

Silberberg et al, J Neurophysiol., 2004

Page 52: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Summary

• Heterogeneity leads to population variance as a natural coding signal in the cortex.

• Response variance has as smaller bandwidth than the mean response.

• For small values of noise correlation variance is already a more reliable signal than the mean.

Page 53: Cracking the Population Code Dario Ringach University of California, Los Angeles.

• In a two-category classification problem the variance signal carries about 95% of the total information (carried by mean and variance together.)

• The covariance of the class-conditional population responses is low dimensional, with the first eigenvector most likely indicating fluctuations in cortical excitability (or gain).

• Cells may be perfectly capable of decoding the variance across their inputs (Silberberg et al, 2004)

• In prostheses, the use of linear decoding based on population rates may be sub-optimal. Quadratic models may work better.

Summary

ty x Hx=

Page 54: Cracking the Population Code Dario Ringach University of California, Los Angeles.

Acknowledgements

V1 imaging/electrophysiology (NIH/NEI)

Brian MaloneAndy HenrieIan Nauhaus

Topological Data Analysis (DARPA)

Gunnar Carlsson (Stanford)Guillermo Sapiro (UMN)Tigran Ishakov (Stanford)Facundo Memoli (Stanford)

Bayesian Analysis of Motion in MT (NSF/ONR)

Alan Yuille (UCLA)HongJing Lu (Hong Kong)

Neovision phase 2 (DARPA)

Frank Werblin (Berkeley)Volkan Ozguz (Irvine Sensors)Suresh Subramanian (Irvine Sensors)James DiCarlo (MIT)Bob Desimone (MIT)Tommy Poggio (MIT)Dean Scribner (Naval Research Labs)