Top Banner
Computational Mechanics, AAU, Esbjerg Nonlinear FEM Course in Nonlinear FEM Dynamics
77

Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

May 18, 2018

Download

Documents

trinhnhan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Course inNonlinear FEM

Dynamics

Page 2: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 2Computational Mechanics, AAU, EsbjergNonlinear FEM

Outline

Lecture 1 – IntroductionLecture 2 – Geometric nonlinearityLecture 3 – Material nonlinearityLecture 4 – Material nonlinearity continuedLecture 5 – Geometric nonlinearity revisitedLecture 6 – Issues in nonlinear FEALecture 7 – Contact nonlinearityLecture 8 – Contact nonlinearity continuedLecture 9 – DynamicsLecture 10 – Dynamics continued

Page 3: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 3Computational Mechanics, AAU, EsbjergNonlinear FEM

Nonlinear FEMLecture 1 – Introduction, Cook [17.1]:

– Types of nonlinear problems– Definitions

Lecture 2 – Geometric nonlinearity, Cook [17.10, 18.1-18.6]:– Linear buckling or eigen buckling– Prestress and stress stiffening– Nonlinear buckling and imperfections– Solution methods

Lecture 3 – Material nonlinearity, Cook [17.3, 17.4]:– Plasticity systems– Yield criteria

Lecture 4 – Material nonlinearity revisited, Cook [17.6, 17.2]:– Flow rules– Hardening rules– Tangent stiffness

Page 4: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 4Computational Mechanics, AAU, EsbjergNonlinear FEM

Nonlinear FEMLecture 5 – Geometric nonlinearity revisited, Cook [17.9, 17.3-17.4]:

- The incremental equation of equilibrium- The nonlinear strain-displacement matrix- The tangent-stiffness matrix- Strain measures

Lecture 6 – Issues in nonlinear FEA, Cook [17.2, 17.9-17.10]:– Solution methods and strategies– Convergence and stop criteria– Postprocessing/Results– Troubleshooting

Page 5: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Elements for Mass-Spring-Damper Systems

Page 6: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 6Computational Mechanics, AAU, EsbjergNonlinear FEM

MASS21: Structural Mass

Large deflectionSpecial Features

Key for element coordinate systemKEYOPT(2)

0 - 3-D mass with rotary inertia2 - 3-D mass without rotary inertia3 - 2-D mass with rotary inertia4 - 2-D mass without rotary inertia

KEYOPT(3)

NoneBody Loads

NoneSurface Loads

NoneMaterial Properties

MASSX, MASSY, MASSZ, IXX, IYY, IZZ if KEYOPT(3) = 0MASS if KEYOPT(3) = 2MASS, IZZ if KEYOPT(3) = 3MASS if KEYOPT(3) = 4

Real Constants

UX, UY, UZ, ROTX, ROTY, ROTZ if KEYOPT(3) = 0UX, UY, UZ if KEYOPT(3) = 2UX, UY, ROTZ if KEYOPT(3) = 3UX, UY if KEYOPT(3) = 4

Degrees of Freedom

INodes

MASS21Element Name

Page 7: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 7Computational Mechanics, AAU, EsbjergNonlinear FEM

COMBIN14: Spring/Damper

Nonlinear (if CV2 is not zero), Stress stiffening, Large deflection, etc.

Special Features

0 - Linear Solution (default)1 - Nonlinear solution (required if CV2 is non-zero)

KEYOPT(1)

0 - 3-D longitudinal spring-damper1 - 3-D torsional spring-damper2 - 2-D longitudinal spring-damper (2-D elements must lie in an X-Y plane)

KEYOPT(3)

NoneBody Loads

NoneSurface Loads

NoneMaterial Properties

K, CV1, CV2Real Constants

UX, UY, UZ if KEYOPT(3) = 0ROTX, ROTY, ROTZ if KEYOPT(3) = 1UX, UY if KEYOPT(3) = 2etc.

Degrees of Freedom

I, JNodes

COMBIN14Element Name

Page 8: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 8Computational Mechanics, AAU, EsbjergNonlinear FEM

Equivalent Mass/Spring/Damper

Dissipated Energy

Potential Energy

Kinetic Energy

Rotational SystemsTranslational Systems

2

21 yMKE eq=

2

21 yKPE eq=

2yDdt

dDEeq=

2

21 θeqJKE =

2

21 θeqKPE =

2

21 θeqD

dtdDE

=

Page 9: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Design of Spring/Damper in a Recoil Landing System

Page 10: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 10Computational Mechanics, AAU, EsbjergNonlinear FEM

Problem Description

Vehicle mass M

Piston

Cylinder

Damper D

Spring K

Rod

Foot

Page 11: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 11Computational Mechanics, AAU, EsbjergNonlinear FEM

Modeling Considerations

y

D

K

M

0V(0)y ,0)0(0

===++

yKyyDyM

Page 12: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 12Computational Mechanics, AAU, EsbjergNonlinear FEM

Equivalent Spring/Damper

y

ΔL

K

θ

( )2cos213 θyKPE ×=

( )2cos3 θKKeq =

( )2cos3 θyDdt

dDE×=

( )2cos3 θDDeq =

Page 13: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 13Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (1/2)FINISH/CLEAR/TITLE, Recoil Landing System (SI)/PREP7

K = 72000M = 2000D = 24000 ! Critically dampedV0 = 5 ! 18 km/Hr

ET, 1, COMBIN14,,, 2ET, 2, MASS21,,, 4R, 1, K, DR, 2, M

N, 1, 0 ! GroundN, 2, 1 ! VehicleTYPE, 1 $ REAL, 1 $ E, 1, 2TYPE, 2 $ REAL, 2 $ E, 2FINISH

0102030405060708091011121314151617181920

Page 14: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 14Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (2/2)/SOLU

ANTYPE, TRANSTRNOPT, FULLD, ALL, UY, 0D, 1, UX, 0IC, 2, UX, 0, -V0DELTIM, 0.01TIME, 2OUTRES, NSOL, ALLSOLVEFINISH

/POST26

NSOL, 2, 2, U, X, DISP/GRID, 1/AXLAB, Y, DISPLACEMENTPLVAR, 2

22232425262728293031323334353637383940

Page 15: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Design of Damper in a Spring Scale

Page 16: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 16Computational Mechanics, AAU, EsbjergNonlinear FEM

Problem DescriptionItem placed on platform mass m

Plateform mass Mp

Spring K mass Mk

Rack mass Mr Damper Dmass Md

Calibrated dial Jc

Gear ratio n

Geared magnifier Jg

R

Page 17: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 17Computational Mechanics, AAU, EsbjergNonlinear FEM

Modeling Considerations

Itemm

ScaleM

SpringK

DamperD

y

( )0(0)y ,0)0( ===+++

ymgKyyDyMm

2

2

23 RnJ

RJMMMMM cgk

drp +++++=

Page 18: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 18Computational Mechanics, AAU, EsbjergNonlinear FEM

Lumped Masses (1/4)Lumped Mass for a Spring

L

Vo

V

xdm

Equivalent lumped mass Meq

LxVV o=

621

21 2

0

22 okL ko

L

VMLdxM

LxVdmVKE =⎟⎠⎞

⎜⎝⎛== ∫∫

3k

eqMM =

Page 19: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 19Computational Mechanics, AAU, EsbjergNonlinear FEM

Lumped Masses (2/4)Lumped Mass for a Gear-and-Rack Set

R

Mr

JG

Vo

Rolls without slipping

θ

22

2222

21

21

21

21

21

oG

ro

GorGor VRJM

RVJVMJVMKE ⎟

⎠⎞

⎜⎝⎛ +=⎟

⎠⎞

⎜⎝⎛+=+= θ

2RJMM G

req +=

Page 20: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 20Computational Mechanics, AAU, EsbjergNonlinear FEM

Lumped Masses (3/4)Lumped Mass for a Geared Shafts Set

J1

J2

N1

N2Jeq

Gears

Shafts

222

2221 2

121

21

21

21

gc

gcg

c

gggggccgg N

NJJ

NN

JJJJKE θθ

θθθ⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+=⎟⎟

⎞⎜⎜⎝

⎛+=+=

2

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

c

gcgeq N

NJJJ

Page 21: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 21Computational Mechanics, AAU, EsbjergNonlinear FEM

Lumped Masses (4/4)Lumped Mass for the Spring Scale System

2

2

RnJJ

MM cgreq

++=

2

2

23 RnJ

RJMMMMM cgk

drp +++++=

Gear set

Page 22: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 22Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (1/2)FINISH/CLEAR/TITLE, Spring Scale (cgs)/PREP7

m = 1500 ! GMeq = 500 ! GK = 3.2E6 ! dyn/cmD = 6.4E4 ! dyn-s/cm

ET, 1, COMBIN14,,, 2ET, 2, MASS21,,, 4R, 1, K, DR, 2, m+Meq

N, 1, 0N, 2, 1TYPE, 1 $ REAL, 1 $ E, 1, 2TYPE, 2 $ REAL, 2 $ E, 2FINISH

0102030405060708091011121314151617181920

Page 23: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 23Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (2/2)/SOLU

ANTYPE, TRANSTRNOPT, FULLDELTIM, 0.02TIME, 2KBC, 1D, ALL, UY, 0D, 1, UX, 0F, 2, FX, -m*981OUTRES, NSOL, ALLSOLVEFINISH

/POST26

NSOL, 2, 2, U, X, DISP/GRID, 1PLVAR, 2

22232425262728293031323334353637383940

Page 24: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Quenching of a Shaft

Page 25: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 25Computational Mechanics, AAU, EsbjergNonlinear FEM

Problem Description

T(0)

Tb(0)T(t)

Tb(t)

Shaft

Bath

mb = 1 lb

Before quenching After quenching

ms = 0.069 lb

Page 26: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 26Computational Mechanics, AAU, EsbjergNonlinear FEM

Modeling Considerations

ms, Cs, Ts mb, Cb, Tbh, A

Page 27: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 27Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (1/2)FINISH/CLEAR/TITLE, Unit: lb(mass)-ft-(Btu)-hr-F/PREP7

PI = 4*ATAN(1)ET, 1, MASS71R, 1, PI*(1/4/12)**2/4*(5/12)MP, DENS, 1, 486MP, C, 1, 0.11

ET, 2, LINK34R, 2, 0.028MP, HF, 2, 300

0102030405060708091011121314

ET, 3, MASS71,,, 1R, 3, 1/62MP, DENS, 3, 62MP, C, 3, 1.0

N, 1, 0N, 2, 1

TYPE, 1 $ REAL, 1 $ MAT, 1E, 1TYPE, 2 $ REAL, 2 $ MAT, 2E, 1, 2TYPE, 3 $ REAL, 3 $ MAT, 3E, 2FINISH

161718192021222324252627282930

Page 28: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 28Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (2/2)/SOLU

ANTYPE, TRANSTRNOPT, FULLDELTIM, 0.0001KBC, 1TIME, 0.01IC, 1, TEMP, 1300IC, 2, TEMP, 75

OUTRES, NSOL, ALLSOLVEFINISH

/POST26

NSOL, 2, 1, TEMP,, SHAFTNSOL, 3, 2, TEMP,, WATER/GRID, 1PLVAR, 2, 3

3233343536373839404142434445464748495051

Page 29: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Elements Related to Lumped-Mass Systems

Page 30: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 30Computational Mechanics, AAU, EsbjergNonlinear FEM

Masses

Page 31: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 31Computational Mechanics, AAU, EsbjergNonlinear FEM

Springs/Dampers

Page 32: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 32Computational Mechanics, AAU, EsbjergNonlinear FEM

Thermal Links

Page 33: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 33Computational Mechanics, AAU, EsbjergNonlinear FEM

Circuit Element

Page 34: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 34Computational Mechanics, AAU, EsbjergNonlinear FEM

Dynamic Effects

• Inertia force• Damping force• Elastic Force• External force• Dynamic Effects

FKDDCDM =++

FKD =

Page 35: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 35Computational Mechanics, AAU, EsbjergNonlinear FEM

Transient Dynamic Analysis

FKDDCDM =++

Page 36: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 36Computational Mechanics, AAU, EsbjergNonlinear FEM

Modal Analysis (1/3)

0KDDCDM =++

Page 37: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 37Computational Mechanics, AAU, EsbjergNonlinear FEM

Modal Analysis (2/3)

0KDDCDM =++

0KDDM =+

21 ξ−= ud ff

πξ2−= eR

Page 38: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 38Computational Mechanics, AAU, EsbjergNonlinear FEM

Modal Analysis (3/3)

• Avoid resonance• Exploit resonance• Assess structural stiffness• Structural modal degrees of freedom• Further dynamic analyses• etc.

Page 39: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 39Computational Mechanics, AAU, EsbjergNonlinear FEM

Harmonic Response Analysis

( )Φ+=++ tωsinFKDDCDM

Page 40: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Solution Methods

Page 41: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 41Computational Mechanics, AAU, EsbjergNonlinear FEM

Solution Methods

Solution Methods for Equation of Motion

Direct Integration Mode Superposition

Implicit Explicit

ReduceFull Full Reduce

Page 42: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 42Computational Mechanics, AAU, EsbjergNonlinear FEM

Solution methods

Page 43: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 43Computational Mechanics, AAU, EsbjergNonlinear FEM

Direct Integration

• Implicit method (ANSYS)• Explicit method (LS-DYNA)

Page 44: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 44Computational Mechanics, AAU, EsbjergNonlinear FEM

Implicit vs. Explicit Methods

( )ttttttt Δ+Δ−Δ+ = DDDfD ,,...,

( )ttttttt DDDfD ,,..., 2 Δ−Δ−Δ+ =

Implicit method

Explicit method

Page 45: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 45Computational Mechanics, AAU, EsbjergNonlinear FEM

Linear vs. nonlinear dynamics• Dynamics or equation of motion:

– The causal relation between the present state and the next state in the future. It is a deterministic rule which tells us what happens in the next time step.

– In the case of a continuous time, the time step is infinitesimally small. Thus, the equation of motion is a differential equation or a system of differential equations:du/dt = F(u), where u is the state and t is the time variable.

– An example is the equation of motion of an undriven and undamped pendulum.

– In the case of a discrete time, the time steps are nonzero and the dynamics is a map:un+1 = F(un), with the discrete time n.

– An example is the baker map. Note, that the corresponding physical time points tn do not necessarily occur equidistantly. Only the order has to be the same. That is, n < m implies tn < tm.

– The dynamics is linear if the causal relation between the present state and the next state is linear. Otherwise it is nonlinear.

Page 46: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 46Computational Mechanics, AAU, EsbjergNonlinear FEM

Implicit vs. Explicit• What is the difference between implicit and explicit dynamics? (Difference

between regular ANSYS and ANSYS/LS-DYNA?)

• For computers, matrix multiplication is easy. Matrix inversion is the more computationally expensive operation. The equations we solve in nonlinear, dynamic analyses in ANSYS and in LS-DYNA are:[M]{a} + [C]{v} + [K]{x} = {F}

• Hence, in ANSYS, we need to invert the [K] matrix when using direct solvers (frontal, sparse). Iterative solvers use a different technique from direct solvers, however, the inversion of [K] is the CPU-intensive operation for any 'regular' ANSYS solver, direct or iterative.

• We then can solve for displacements {x}. Of course, with nonlinearities, [K(x)] is also a function of {x}, so we need to use Newton-Raphson method to solve for [K] as well (material nonlinearities and contact get thrown into [K(x)])

Page 47: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 47Computational Mechanics, AAU, EsbjergNonlinear FEM

Implicit vs. explicit• In LS-DYNA, on the other hand, we solve for accelerations {a} first.

• It is assumed that the mass matrix is lumped. This basically forces the use of lower-order elements, i.e. for all explicit dynamics codes (ANSYS/LS-DYNA, MSC.Dytran, ABAQUS/Explicit), lower-order elements are used.

• The benefit of doing lumped mass is, if we solve for {a}, then [M], if lumped, is a diagonal mass matrix. This means that inversion of [M] is trivial (diagonal terms only)

• Another way to view it, is that we now have N set of *uncoupled*equations. Hence, we just have to do matrix multiplication, which is less CPU-intensive. Also, [K] does not need to be inverted, and accounting for material nonlinearties and contact is easier.

Page 48: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 48Computational Mechanics, AAU, EsbjergNonlinear FEM

Implicit vs. explicit• The terms 'implicit' and 'explicit' refer to time integration

• For example– backward Euler method, that is an example of an implicit time integration scheme– central difference or forward Euler are examples of explicit time integration schemes

• It relates to when you calculate the quantities - either based on current or previous time step.

• In any case, this is a very simplified explanation, and the main point is that implicit time integration is unconditionally stable, whereas explicit time integration is not (there is a critical timestep the timestep delta(t) needs to be smaller than).

• Implicit, e.g. 'regular' ANSYS allows for much larger time steps• Explicit, e.g. LS-DYNA requires much smaller time steps. Also, LS-DYNA requires

very tiny steps, i.e. good for impact/short-duration events, not usually things like maybe creep where the model's time scale may be on the order of hours or more.

Page 49: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 49Computational Mechanics, AAU, EsbjergNonlinear FEM

Implicit vs. explicit• 'Regular' ANSYS uses implicit time integration. This means that {x}

is solved for, but we need to invert [K], which means that each iteration is computationally expensive. However, because we solve for {x}, it is implicit, and we don't need very tiny timesteps (i.e., each iteration is expensive, but we usually don't need too many iterations total). – The overall timescale doesn't affect us much (although there are

considerations of small enough timesteps for proper momentum transfer, capturing dynamic response).

• ANSYS/LS-DYNA uses explicit time integration. This means that {a} is solved for, and inverting [M] is trivial -- each iteration is very efficient. However, because we solve for {a}, then determine {x}, it is explicit, and we need very small timesteps (many, many iterations) to ensure stability of solution since we get {x} by calculating {a} first. – (i.e., each iteration is cheap, but we usually need many, many iterations

total)

Page 50: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 50Computational Mechanics, AAU, EsbjergNonlinear FEM

Mode Superposition Method

nnCCCC MMMMD ...332211 +++=

Page 51: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 51Computational Mechanics, AAU, EsbjergNonlinear FEM

Reduced Method

FKD =

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

s

m

s

m

sssm

msmm

FF

DD

KKKK

FDK =m

( )msmssss DKFKD −= −1

smssmsmm KKKKK 1−−=

sssmsm FKKFF 1−−=

where

Page 52: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 52Computational Mechanics, AAU, EsbjergNonlinear FEM

Methods for Nonlinear Dynamic Analysis

• For nonlinear analysis, the only methods applicable is DIRECT INTEGRATION method.

• Reduced method can not be used for nonlinear analysis.

• Either implicit or explicit methods can be used.

Page 53: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Mass and Damping

Page 54: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 54Computational Mechanics, AAU, EsbjergNonlinear FEM

Consistent vs. Lumped Mass Matrices

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

xx

xx

xx

xxxxxxxx

xxxxxxxxxx

xx

ROTZUYUX

ROTZUYUX

j

j

j

i

i

i

000000000000000000000000000000

0000

00000000

0000

Consistent mass matrix

Lumped mass matrix

Page 55: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 55Computational Mechanics, AAU, EsbjergNonlinear FEM

Damping

• Damping effects is the total of all energy dissipation mechanisms– Hysteresis (solid damping)– Viscous damping– Dry-friction (Coulomb damping)

Page 56: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 56Computational Mechanics, AAU, EsbjergNonlinear FEM

Idealization of Structural Damping

• Structural dampings are usually small (2%-7%).

• Equivalent viscous damping is assumed in ANSYS, i.e.,

DCF =D

Page 57: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 57Computational Mechanics, AAU, EsbjergNonlinear FEM

How ANSYS Forms Damping Matrix?

• Alpha damping• Beta damping• Material dependent beta damping• Element damping matrices• Frequency-dependent damping matrix

[ ] [ ] ( )[ ] [ ] [ ] [ ]ξξββββα CCKKMC +⎟⎟⎠

⎞⎜⎜⎝

⎛+⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

Ω++++= ∑∑

==

em N

kk

N

jjj

mjc

11

2

Page 58: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Copper Cylinder Impacting on a Rigid Wall

Page 59: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 59Computational Mechanics, AAU, EsbjergNonlinear FEM

Problem Description

x

y

L D

Initial Velocity Vo

Page 60: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 60Computational Mechanics, AAU, EsbjergNonlinear FEM

Modeling Consideration

• Material: bilinear plastic model.• VISCO106 (2D viscoplastic solid) is

used.• Use axisymmetric model.

Page 61: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 61Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (1/4)FINISH/CLEAR/TITLE, UNITS: SI/PREP7

ET, 1, VISCO106,,, 1MP, EX, 1, 117E9MP, NUXY, 1, 0.35MP, DENS, 1, 8930

TB, BISO, 1TBDATA,, 400E6, 100E6TBPLOT, BISO, 1

RECTNG, 0, 0.0032, 0, 0.0324LESIZE, 1,,, 4LESIZE, 2,,, 20MSHAPE, 0, 2DMSHKEY, 1AMESH, ALLFINISH

010203040506070809101112131415161718192021

Page 62: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 62Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (2/4)/SOLU

ANTYPE, TRANSTRNOPT, FULLNLGEOM, ONIC, ALL, UY, 0, -227NSEL, S, LOC, X, 0D, ALL, UX, 0NSEL, S, LOC, Y, 0D, ALL, UY, 0NSEL, ALL/PBC, U,, ONEPLOT

TIME, 80E-6DELTIM, 0.4E-6KBC, 1OUTRES, ALL, 4SOLVEFINISH

2324252627282930313233343536373839404142

Page 63: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 63Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (3/4)

/POST26

TOPNODE = NODE(0,0.0324,0)

NSOL, 2, TOPNODE, U, Y, DISPDERIV, 3, 2, 1,, VELO

/GRID, 1/AXLAB, X, TIME s/AXLAB, Y, DISPLACEMENT mPLVAR, 2/AXLAB, Y, VELOCITY m/sPLVAR, 3FINISH

4445464748495051525354555657

Page 64: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 64Computational Mechanics, AAU, EsbjergNonlinear FEM

ANSYS Procedure (4/4)/POST1

SET, LASTPLDISP, 2PLNSOL, EPTO, EQV

ANTIME, 30

59606162636465

Page 65: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Dynamic Loads

Page 66: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 66Computational Mechanics, AAU, EsbjergNonlinear FEM

Dynamic Loads: An Example/SOLU...F, ... ! 22.5 at the nodesTIME, 0.5 ! Ending timeDELTIM, ... ! Integration stepKBC, 0 ! Ramped loadingAUTOTS, ON ! OptionOUTRES, ... ! OptionSOLVE ! Load step 1

F, ... ! 10 at the nodesTIME, 1 ! Ending timeSOLVE ! Load step 2

FDELE, ... ! Zero the forceTIME, 1.5 ! Ending timeKBC, 1 ! Stepped loadingSOLVE ! Load step 3

010203040506070809101112131415161718

0 0.5 1.0 1.5Time (s)

Force (N)22.5

10

Page 67: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Initial Conditions

Page 68: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 68Computational Mechanics, AAU, EsbjergNonlinear FEM

Example: An Stationary Plate Subjected to an Impulse Load

• This is the default initial condition. No input is needed.

Page 69: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 69Computational Mechanics, AAU, EsbjergNonlinear FEM

Example: Initial Velocity on a Golf Club Head

• This simple initial condition can be specified by using IC command.

NSEL, ALL

IC, ALL, UY, 0, V0

Page 70: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 70Computational Mechanics, AAU, EsbjergNonlinear FEM

Example: Plucking a Cantilever Beam

/SOLUANTYPE, TRANS...TIMINT, OFF ! Transient effects offTIME, 0.001 ! Small time intervalD, ... ! Apply displacement at desired nodesKBC, 1 ! Stepped loadsNSUBST, 2 ! To avoid non-zero velocitySOLVE

TIMINT, ON ! Transient effects onTIME, ... ! Actual time at end of loadDDELE, ... ! Delete the applied displacementSOLVE

0102030405060708091011121314

Page 71: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 71Computational Mechanics, AAU, EsbjergNonlinear FEM

Example: Dropping an Object from Rest

/SOLUTIMINT, OFF ! Transient effects offTIME, 0.001 ! Small time intervalNSEL, ... ! Select all nodes on the objectD, ALL, ALL, 0 ! Temporarily fix themNSEL, ALLACEL, ... ! Apply accelerationKBC, 1 ! Stepped loadsNSUBST, 2 ! To avoid non-zero velocitySOLVE ! Load step 1

TIMINT, ON ! Transient effects onTIME, ... ! Actual time at end of loadNSEL, ... ! Select all nodes on the objectDDELE, ALL, ALL ! Release themNSEL, ALLSOLVE ! Load step 2

0102030405060708091011121314151617

Page 72: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Computational Mechanics, AAU, EsbjergNonlinear FEM

Integration time Steps

Page 73: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 73Computational Mechanics, AAU, EsbjergNonlinear FEM

Response Frequency

Response

Time

Minimumresponse

time

20pt ≤Δ

Page 74: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 74Computational Mechanics, AAU, EsbjergNonlinear FEM

Abrupt Changes in Loading

0 0.5 1.0 1.5Time (s)

Force (N)

22.5

10

Page 75: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 75Computational Mechanics, AAU, EsbjergNonlinear FEM

Contact Frequency

30Tt ≤Δ

Page 76: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 76Computational Mechanics, AAU, EsbjergNonlinear FEM

Wave Propagation

cxt

≤Δ

Page 77: Course in Nonlinear FEM - homes.civil.aau.dk - /homes.civil.aau.dk/shl/ansysc/FEM-nonlinear-dynamics.pdfDynamics 2 Computational Mechanics, AAU, Esbjerg Nonlinear FEM Outline Lecture

Dynamics 77Computational Mechanics, AAU, EsbjergNonlinear FEM

Exercise: Rocket Flight

y

140 in.

Thrust

Time

100 lb

1 sec.1

2

3