Top Banner
The Structure of Magnetic Clouds in the Inner Heliosphere: An Approach Through Grad-Shafranov Reconstruction Qiang Hu , Charlie J. Farrugia, V. Osherovich, Christian Möstl, Jiong Qiu and Bengt U. Ö. Sonnerup
21

Coronal Mass Ejection (CME)

Feb 07, 2016

Download

Documents

Patrick jenge

The Structure of Magnetic Clouds in the Inner Heliosphere: An Approach Through Grad-Shafranov Reconstruction. Qiang Hu , Charlie J. Farrugia, V. Osherovich, Christian Möstl,  Jiong Qiu and Bengt U. Ö. Sonnerup ILWS Workshop 2011. Coronal Mass Ejection (CME). - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Coronal Mass Ejection (CME)

The Structure of Magnetic Clouds in the Inner Heliosphere: An Approach

Through Grad-Shafranov Reconstruction

Qiang Hu, Charlie J. Farrugia, V. Osherovich, Christian Möstl,

Jiong Qiu and Bengt U. Ö. Sonnerup

ILWS Workshop 2011

Page 2: Coronal Mass Ejection (CME)

2

Coronal Mass Ejection (CME)

(Moore et al. 2007)

Simultaneous multi-point in-situ measurements of an Interplanetary CME

(ICME) structure(Adapted from STEREO/IMPACT website, http://sprg.ssl.berkeley.edu/impact/instruments_boom.html)

Page 3: Coronal Mass Ejection (CME)

3in-situ spacecraft data

Cylindrical flux-rope model fit (Burlaga, 1995; Lepping et al., 1990, etc.)

Modeling of Interplanetary CME

Page 4: Coronal Mass Ejection (CME)

4x: projected s/c pathx: projected s/c path

-VHT

Grad-Shafranov Reconstruction method: derive the axis orientation (z) and the cross section of locally 2 ½ D structure from in-situ single spacecraft measurements (e.g., Hu and Sonnerup 2002).

•Main features:

- 2 ½ D

- self-consistent

- non-force free

- flux rope boundary definition

- multispacecraft

actual result:actual result:

Page 5: Coronal Mass Ejection (CME)

5

• Output:1. Field configuration2. Spatial config.3. Electric Current.4. Plasma pressure p(A).5. Magnetic Flux :

- axial (toroidal) flux t= Bzxy- poloidal flux p=|Ab - Am|*L

• Relative Helicity:Krel=2L A’· Bt dxdy

A’=Bzz^

GS Reconstruction of ICME Flux Ropes (1D2D)

• Ab

Am

ACE Halloween event (Hu et al. 2005)

Page 6: Coronal Mass Ejection (CME)

6

• Relative magnetic helicity (Webb et al. 2010):

Bz(x,y)

rKr/AU: 3.5x1023 Wb2

Kr/AU (Hu and Dasgupta, 2005):

3.4x1023 Wb2

ˆ2 ' , ' ', 'r t zVK dV B A B A B B z

Page 7: Coronal Mass Ejection (CME)

7

poloidal or azimuthal magnetic flux P:

the amount of twist along the field lines

The helical structure, in-situ formed flux rope, results from magnetic reconnection.

toroidal or axial magnetic flux t

Longcope et al (2007)

ribbons

poloidal flux P

reconnection flux r

reconnection

3D view: one scenario of flux rope formation3D view: one scenario of flux rope formation3D view: one scenario of flux rope formation3D view: one scenario of flux rope formation

(Gosling et al. 1995)

(Moore et al. 2007)

Credit: ESA

reconnection

Page 8: Coronal Mass Ejection (CME)

8

• Comparison of CME and ICME fluxes (independently measured for 9 events; Qiu et al., 2007):

- flare-associated CMEs and flux-rope ICMEs with one-to-one correspondence; - reasonable flux-rope solutions satisfying diagnostic measures; - an effective length L=1 AU (uncertainty range 0.5-2 AU) .

GS method

Leamon et al. 04

Lynch et al. 05

P ~ r

Page 9: Coronal Mass Ejection (CME)

• Recent modeling and comparison of flux-rope flux and helicity contents (Kazachenko et al. 2011)

Page 10: Coronal Mass Ejection (CME)

• GS Reconstruction of Locally Toroidal Structure

(Freidberg 1987)

Z

R

O

A torus of arbitrary cross section

Page 11: Coronal Mass Ejection (CME)

s/c

Sun

O’

O

Z’R

r

t

(r, t) plane projection

r’

R s/c path

O (O’)Z’.

(R, ) plane projection

(R, , Z) axes (Z: rotation axis; : torus axis):

Search grid on (r,t) plane

Boundary of the torus

Page 12: Coronal Mass Ejection (CME)

(Farrugia et al. 2011)

Sun

Wind ST-AST-B

Page 13: Coronal Mass Ejection (CME)

Acknowledgement: Dr. J. Luhmann of UCB/SSL, and Dr. Antoinette Galvin of the University of New Hampshire, and NASA CDAWeb.

Page 14: Coronal Mass Ejection (CME)

•Effect of Te (2007/01/13 00:00:00 - 2007/01/17 00:00:00 DOY 013-017)

<Te/Tp>~12<>~0.24

Page 15: Coronal Mass Ejection (CME)

• The GS reconstruction map for the case w/o (left window) and w/ (right) Te contribution, respectively

Page 16: Coronal Mass Ejection (CME)

• The corresponding Pt(A)=p+Bz/20 fitting2

Page 17: Coronal Mass Ejection (CME)

Event 2005/10/30 00:00:00 - 2005/11/02 00:00:00 DOY 303-306

<Te/Tp>~4<>~1

Page 18: Coronal Mass Ejection (CME)

• The GS reconstruction map for the case w/o (left window) and w/ (right) Te contribution, respectively

Page 19: Coronal Mass Ejection (CME)

• The corresponding Pt(A) fitting

Page 20: Coronal Mass Ejection (CME)

Concluding Remarks

• Quantitative CME-ICME comparison provides essential insight into the underlying mechanism(s)

• Also provides validation of data analysis methods/results

• Torus-shaped geometry provides an alternative view of MC flux rope; will complement the existing analysis

• The effect of Te is limited to contribution to the plasma and pressure; it is the gradient of pressure that matters

Page 21: Coronal Mass Ejection (CME)

… Fully 3D?

z r

RSun

])2[(]/)/1[(

02

02

2

d

dGG

d

dpr

zr

rrr

GS equation:(R. H. Weening, 2000)

A torus of arbitrary cross section?