Top Banner
J. Barth/CTS 1998 Core Technologies for Space Systems Space Radiation Environments Janet Barth & Ken LaBel NASA/ NASA/ Goddard Goddard Space Flight Center Space Flight Center Greenbelt, Maryland November 12, 1998
32

Core Technologies for Space Systems

Feb 22, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Core Technologies for Space Systems

J. Barth/CTS 1998

Core Technologies for Space Systems

Space Radiation Environments

Janet Barth & Ken LaBelNASA/NASA/GoddardGoddard Space Flight Center Space Flight Center

Greenbelt, MarylandNovember 12, 1998

Page 2: Core Technologies for Space Systems

J. Barth/CTS 1998

The Radiation Environment

Solar Protons&

Heavier Ions

Galactic Cosmic Rays

Trapped Particles

Nikkei Science, Inc. of Japan, by K. Endo

Page 3: Core Technologies for Space Systems

J. Barth/CTS 1998

Effects on Electronicsu Total Ionizing Dose

» Trapped Protons & Electrons» Solar Protons

u Single Event Effects» Protons

− Trapped− Solar

» Heavier Ions− Galactic Cosmic Rays− Solar

» Neutrons

u DisplacementDamage» Protons» Electrons» Neutrons

Page 4: Core Technologies for Space Systems

J. Barth/CTS 1998

Sun:Dominates the Environment

Trapped Particles

Heavier Ions

ProtonsSource

SunModulator

Galactic Cosmic RaysAtmospheric

NeutronsTrapped Particles

Page 5: Core Technologies for Space Systems

J. Barth/CTS 1998

Gradual Eventsu Coronal Mass

Ejectionsu Particles Accelerated

by Shock Waveu Largest Proton Eventsu Decay of X-Ray

Emission Occurs OverSeveral Hours

u Large Distribution inSolar LongitudeHolloman AFB/SOON

Page 6: Core Technologies for Space Systems

J. Barth/CTS 1998

Impulsive Events

u Solar Flaresu Particles Accelerated

Directlyu Heavy Ion Richu Sharp Peak in X-Ray

Emissionu Concentrated Solar

LongitudeDistribution

Page 7: Core Technologies for Space Systems

J. Barth/CTS 1998

1947 1997

Sunspot Cycle

Length Varies from 9 - 13 Years7 Years Solar Maximum, 4 Years Solar Minimum

Years0

50

150

200

250

100

300

Suns

pot N

umbe

rs Cycle 18

Cycle 22Cycle 21Cycle 20Cycle 19

after Lund Observatory

Page 8: Core Technologies for Space Systems

J. Barth/CTS 1998

Galactic Cosmic Ray Ionsu All Elements in Periodic Tableu Energies in GeVu Found Everywhere in Interplanetary Spaceu Omnidirectionalu Mostly Fully Ionizedu Cyclic Variation in Fluence Levels

» Lowest Levels = Solar Maximum Peak» Highest Levels = Lowest Point in Solar Minimum

u Single Event Effects Hazardu Model: CREME96

Page 9: Core Technologies for Space Systems

J. Barth/CTS 1998

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 01 0 -2

1 0 -1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

1 0 1 0

GCRs: Nuclear CompositionRe

lativ

e Flu

x (S

i = 1

06 )

C

Nuclear Charge (Z)

HHe

OSi Fe

ZrBa Pt

PbIndividual Elements Even-Z Elements Elemental Groups

Energy = 2 GeV/n, Normalized to Silicon = 106

Page 10: Core Technologies for Space Systems

J. Barth/CTS 1998

1 9 7 5 1 9 7 7 1 9 7 9 1 9 8 1 1 9 8 3 1 9 8 5 1 9 8 7 1 9 8 9 1 9 9 1 1 9 9 3 1 9 9 51 0 -5

1 0 -4

1 0 -3

1 0 -2

1 0 -1

1 0 0

1 0 1

1 0 2

GCRs: Solar Modulation

Date

CNO

(#/c

m2 /

ster

/s/M

eV/n

) CNO - 24 Hour Averaged Mean Exposure Flux

Energy = 25-250 MeV/n IMP-8

Page 11: Core Technologies for Space Systems

J. Barth/CTS 1998

1 0 -1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 -6

1 0 -5

1 0 -4

1 0 -3

1 0 -2

1 0 -1

1 0 0

1 0 1

S u rfa c e I n c i d e n t1 0 0 m ils ( 2 . 5 4 m m ) A l5 0 0 m ils ( 1 2 . 7 m m ) A l

GCRs: Shielded Fluences - FePa

rticle

s (#/

cm2 /

day/

MeV

/n) Interplanetary, CREME 96, Solar Minimum

Energy (MeV/n)

Page 12: Core Technologies for Space Systems

J. Barth/CTS 1998

1 0 -1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 -6

1 0 -5

1 0 -4

1 0 -3

1 0 -2

1 0 -1

G E OG T OM E OE O SL E O

GCRs: Shielded Fluences - FeCREME 96, Solar Minimum, 100 mils (2.54 mm) Al

Energy (MeV/nuc)

Parti

cles (

#/cm

2 /da

y/M

eV/n

uc)

Page 13: Core Technologies for Space Systems

J. Barth/CTS 1998

GCRs: Integral LET SpectraCREME 96, Solar Minimum, 100 mils (2.54 mm)Al

LET (MeV-cm2/mg)

LET

Flue

nce (

#/cm

2 /da

y)

1 0 -1 1 0 0 1 0 1 1 0 21 0 - 81 0 - 71 0 - 61 0 - 51 0 - 41 0 - 31 0 - 21 0 - 11 0 01 0 11 0 21 0 31 0 4

G E OG T OM E OE O SL E O

Z = 2 - 92

Page 14: Core Technologies for Space Systems

J. Barth/CTS 1998

Solar Particle Eventsu Results in Increased Levels of Protons & Heavier Ionsu Energies

» Protons - 100s of MeV» Heavier Ions - 100s of GeV

u Abundances Dependent on Radial Distance from Sunu Partially Ionized - Greater Ability to Penetrate

Magnetosphere Than Galactic Cosmic Raysu Number & Intensity of Events Increases Dramatically

During Solar Maximumu Models

» Dose & Displacement Damage - SOLPRO, JPL, Xapsos/NRL» Single Event Effects - CREME96 (Protons & Heavier Ions)

Page 15: Core Technologies for Space Systems

J. Barth/CTS 1998

Sunspot Cycle with Solar Proton Events

1 9 6 5 1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 51 0 7

1 0 8

1 0 9

1 0 1 0

1 0 1 1> 1 0 M e V ; Φ ≥ 1 0 8 p /c m 2

> 3 0 M e V ; Φ ≥ 1 0 7 p /c m 2

Z u r i c h S m o o t h e d S u n s p o t N u m b e r

C y c l e 2 0 C y c l e 2 1 C y c le 22

*

**

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

Prot

ons (

#/cm

2 )

Year

Proton Event Fluences

Smoo

thed

Sun

spot

Num

bers

Page 16: Core Technologies for Space Systems

J. Barth/CTS 1998

Solar Proton Event - October 1989

10 -4

10 -3

10 -2

10 -1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 5

1 6

1 7

1 8

19

20

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

-2000

2 0 0

O c t o b e r N o v e m b e r

Coun

ts/c

m2 /

s/st

er/M

eVnT

Protons & Electrons - Magnetic Field99% Worst Case Event

GOES Space Environment Monitor

Page 17: Core Technologies for Space Systems

J. Barth/CTS 1998

Proton Event Spectra - Cycle 22

1 0 0 1 0 1 1 0 21 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

1 0 1 0

1 0 1 1

1 0 1 2

1 0 1 3

2 0 M a r 1 9 9 14 J u n e 1 9 9 12 7 S e p t 1 9 9 12 0 F e b 1 9 9 4A u g 1 9 7 21 9 O c t 1 9 8 9

Energy (> MeV)

Prot

on F

luen

ce (#

/cm

2 /ev

ent)

Total Integral Proton Fluence

Page 18: Core Technologies for Space Systems

J. Barth/CTS 1998

Solar Protons: Orbits

1 0 -1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5

e 2

1 0 -1 41 0 -1 31 0 -1 21 0 -1 11 0 -1 0

1 0 -91 0 -81 0 -71 0 -61 0 -51 0 -41 0 -31 0 -21 0 -11 0 01 0 11 0 21 0 31 0 4

GE

O

G E OE O SI = 6 0 d e g / H = 8 0 0 k mL E O

Energy (MeV)

Prot

ons (

#/cm

2 /se

c/M

eV)

Proton Levels Predicted by CREME 96

Averaged Over Worst Day

Page 19: Core Technologies for Space Systems

J. Barth/CTS 1998

Effect of Shielding on Heavy Ions

1 0 - 1 1 0 0 1 0 1 1 0 2

s e 1 0 0

1 0 - 1 51 0 - 1 41 0 - 1 31 0 - 1 21 0 - 1 11 0 - 1 0

1 0 -91 0 -81 0 -71 0 -61 0 -51 0 -41 0 -31 0 -21 0 -11 0 01 0 11 0 21 0 31 0 4

slet

100

S o la r P e a k s - 1 0 0 m ilsS o la r P e a k s - 2 0 0 m ilsS o la r P e a k s - 4 0 0 m ilsP e a k G C R - 1 0 0 m ilsP e a k G C R - 4 0 0 m ilsFl

uenc

e (#/

cm2 /

s)

LET (MeV-cm2/mg)

Transient Particles Unattenuated by the Magnetosphere

CREME96

Page 20: Core Technologies for Space Systems

J. Barth/CTS 1998

Trapped Radiation

Trapped ParticlesProtons, Electrons, Heavy Ions

Nikkei Science, Inc. of Japan, by K. Endo

Page 21: Core Technologies for Space Systems

J. Barth/CTS 1998

Trapped - Van Allen Beltsu Omnidirectionalu Components

» Protons: E ~ .04 - 500 MeV» Electrons: E ~ .04 - 7(?) MeV» Heavier Ions: Low E - Non-problem for Electronics

u Location of Peak Levels Depends on Energyu Average Counts Vary Slowly with the Solar Cycleu Location of Populations Shifts with Timeu Counts Can Increase by Orders of Magnitude During

Magnetic Storms» March 1991 Storm - Increases Were Long Term

Page 22: Core Technologies for Space Systems

J. Barth/CTS 1998

Trapped Particle Modelsu NASA AP-8 & AE-8u Air Force CRRES & APEX Models

» CRRESPRO, CRRESELE, CRRESRAD & APEXRADu New Models - NASA Space Environment and Effects

Program» Low Altitude Model for Protons- < 1000 km

− Boeing− Based on TIROS Data

» Model Being Extended to Higher Altitudes− Will Combine CRRES and TIROS Data

» Will Begin Electron Modeling if Funding is Available

Page 23: Core Technologies for Space Systems

J. Barth/CTS 1998

Proton & Electron Intensities

1 2 3 4 5 6 7 8 9 101234

L-Shell

AP-8 Model AE-8 ModelEp > 10 MeV Ee > 1 MeV

NASA/GSFC

#/cm2/sec #/cm2/sec

Page 24: Core Technologies for Space Systems

J. Barth/CTS 1998

TIROS/NOAA Trapped Protons

1976 1980 1984 1988 1992 1996

104

103

102

101 50

100

150

200

250

Prot

on F

lux

(#/c

m2 /s

)

Date

Solar Cycle Variation: 80-215 MeV Protons

L=1.20

L=1.18

L=1.16

L=1.14

B/Bmin=1.0

Rad

io F

lux

F 10

.7

Huston et al.

Page 25: Core Technologies for Space Systems

J. Barth/CTS 1998

Trapped Protons - 1000 km

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Geographic Longitude (deg)

-80

-60

-40

-20

0

20

40

60

80

Geo

cent

ric L

atitu

de (d

eg)

1 10

100 1000

5000

Integral Proton Flux Contours for E > 30 MeV (#/cm 2/s)Altitude = 1000 km, Solar Maximum

Page 26: Core Technologies for Space Systems

J. Barth/CTS 1998

Trapped Electrons - 1000 km

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Geographic Longitude (deg)

-80

-60

-40

-20

0

20

40

60

80

Geo

cent

ric L

atitu

de (d

eg)

1

1

1

1

1

1

1000

1000

1000

1000

10000

10000

10000 10000 10000

100000 100000

100000

100000 500000

Integral Electron Flux Contours for E > 0.5 MeV (#/cm 2/s)Altitude = 1000 km, Solar Maximum

Page 27: Core Technologies for Space Systems

J. Barth/CTS 1998

SRAM Upset Rates on CRUX/APEX

- 1 8 0 - 1 5 0 - 1 2 0 - 9 0 - 6 0 - 3 0 0 3 0 60 9 0 1 2 0 1 5 0 1 8 0

L o n g i t u d e

- 9 0

- 7 5

- 6 0

- 4 5

- 3 0

- 1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

Latit

ude

H i t a c h i 1 M : A l t i t u d e : 1 2 5 0 k m - 1 3 5 0 k m

1 . 0 E - 7 t o 5 . 0 E - 75 . 0 E - 7 t o 1 . 0 E - 61 . 0 E - 6 t o 5 . 0 E - 65 . 0 E - 6 t o 1 . 0 E - 51 . 0 E - 5 t o 5 . 0 E - 55 . 0 E - 5 t o 1 . 0 E - 41 . 0 E - 4 t o 5 . 0 E - 45 . 0 E - 4 t o 1 . 0 E - 31 . 0 E - 3 t o 5 . 0 E - 3

U p s e t s / B i t / D a y

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

L o n g i t u d e

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

Latit

ude

Hi tach i 1M:A l t i t ude :650km - 750km

1.0E-7 to 5 .0E-75 .0E-7 to 1 .0E-61 .0E-6 to 5 .0E-65 .0E-6 to 1 .0E-51 .0E-5 to 5 .0E-55 .0E-5 to 1 .0E-41 .0E-4 to 5 .0E-45 .0E-4 to 1 .0E-31 .0E-3 to 5 .0E-3

Upsets /B i t /Day

- 1 8 0 - 1 5 0 - 1 2 0 - 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0

L o n g i t u d e

- 9 0

- 7 5

- 6 0

- 4 5

- 3 0

- 1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

Latit

ude

H i t a c h i 1 M :A l t i t u d e : 1 7 5 0 k m - 1 8 5 0 k m

1 . 0 E - 7 t o 5 . 0 E - 75 . 0 E - 7 t o 1 . 0 E - 61 . 0 E - 6 t o 5 . 0 E - 65 . 0 E - 6 t o 1 . 0 E - 51 . 0 E - 5 t o 5 . 0 E - 55 . 0 E - 5 t o 1 . 0 E - 41 . 0 E - 4 t o 5 . 0 E - 45 . 0 E - 4 t o 1 . 0 E - 31 . 0 E - 3 t o 5 . 0 E - 3

U p s e t s / B i t / D a y

- 1 8 0 - 1 5 0 - 1 2 0 - 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0

L o n g i t u d e

- 9 0

- 7 5

- 6 0

- 4 5

- 3 0

- 1 5

0

1 5

3 0

4 5

6 0

7 5

9 0

Latit

ude

H i t a c h i 1 M : A l t i t u d e : 2 4 5 0 k m - 2 5 5 0 k m

1 . 0 E - 7 t o 5 . 0 E - 75 . 0 E - 7 t o 1 . 0 E - 61 . 0 E - 6 t o 5 . 0 E - 65 . 0 E - 6 t o 1 . 0 E - 51 . 0 E - 5 t o 5 . 0 E - 55 . 0 E - 5 t o 1 . 0 E - 41 . 0 E - 4 t o 5 . 0 E - 45 . 0 E - 4 t o 1 . 0 E - 31 . 0 E - 3 t o 5 . 0 E - 3

U p s e t s / B i t / D a y

Page 28: Core Technologies for Space Systems

J. Barth/CTS 1998

Magnetic Storms - HipparcosL-

Shel

l

4-Day, 9-Orbit Averages

Star Mapper - Radiation Background

Daly, et al.

March1990 1991 1992

2

4

6

Page 29: Core Technologies for Space Systems

J. Barth/CTS 1998

CRRES - Measured Proton Belt

AF Phillips Laboratory, SPD/GD

Page 30: Core Technologies for Space Systems

J. Barth/CTS 1998

Solar Cycle Effectsu Solar Maximum

» Trapped Proton Levels Lower, Electrons Higher» GCR Levels Lower» Neutron Levels in the Atmosphere Are Lower» Solar Events More Frequent & Greater Intensity» Magnetic Storms More Frequent --> Can Increase Particle

Levels in Beltsu Solar Minimum

» Trapped Protons Higher, Electrons Lower» GCR Levels Higher» Neutron Levels in the Atmosphere Are Higher» Solar Events Are Rare

Page 31: Core Technologies for Space Systems

J. Barth/CTS 1998

Models of the Environmentu Trapped Particles

» NASA AP-8 & AE-8 - Data from 1960s & 1970s» AFRL CRRESPRO & CRRESELE - Solar Max Only» MDAC* - Low Altitude Improvements for Protons Based on

NOAA/TIROS Data» “AP-9”* in Development» Will Begin “AE-9” Development if Funding Levels Permit

u Galactic Cosmic Ray Heavy Ions» CREME96* - Update to Outdated CREME86

u Solar Protons - Dose & Degradation» New Solar Proton Model* - Total Fluence

u Solar Heavy Ions - Single Event Effects» CREME96* - Update to Inadequate CREME86

* Supported by NASA/Space Environment & Effects Program

Page 32: Core Technologies for Space Systems

J. Barth/CTS 1998

Environment Definitionu Total Ionizing Dose

» Dose-Depth Curves or Spacecraft Specific Dose Levels− Trapped Protons & Electrons− Solar Protons− Secondary Bremsstrahlung (High Electron Environments)

u Single Event Effects - Average & Peak Conditions» Galactic Cosmic Ray Heavy Ions (LET Spectra)» Solar Heavy Ions (LET Spectra)» Solar Protons (Energy Spectra)» Trapped Protons (Energy Spectra)