Top Banner
Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots
20

Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Dec 31, 2015

Download

Documents

Barnaby Randall
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc.

6.6De Moivre’s Theorem and

nth Roots

Page 2: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 2

What you’ll learn about

The Complex Plane Trigonometric Form of Complex Numbers Multiplication and Division of Complex Numbers Powers of Complex Numbers Roots of Complex Numbers

… and whyThe material extends your equation-solving technique to include equations of the form zn = c, n is an integer and c is a complex number.

Page 3: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 3

Complex Plane

Page 4: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 4

Absolute Value (Modulus) of a Complex Number

2 2

The or of a complex number

is | | | | .

In the complex plane, | | is the distance of

from the origin.

z a bi z a bi a b

a bi a bi

absolute value modulus

Page 5: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 5

Graph of z = a + bi

Page 6: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 6

Trigonometric Form of a Complex Number

The trigonometric form of the complex number

z a bi is

z r cos isin where a r cos , b r sin , r a2 b2 ,

and tan b / a. The number r is the absolute

value or modulus of z, and is an argument of z.

Page 7: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 7

Example Finding Trigonometric Form

Find the trigonometric form with 0 2 for the

complex number 1 3i.

Page 8: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 8

Example Finding Trigonometric Form

Find r: r |1 3i | 12 3 2 2.

Find : tan 3

1 so

3

.

Therefore, 1 3i2 cos3

isin3

.

Find the trigonometric form with 0 2 for the

complex number 1 3i.

Page 9: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 9

Product and Quotient of Complex Numbers

Let z1r

1cos

1 isin

1 and z2r

2cos

2 isin

2 .Then

1. z1z

2r

1r

2cos

1

2 isin 1

2 .

2. z

1

z2

r1

r2

cos 1

2 isin 1

2 , r20.

Page 10: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 10

Example Multiplying Complex Numbers

Express the product of z1 and z

2 in standard form.

z14 cos

4

isin4

, z2 2 cos

6

isin6

Page 11: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 11

Example Multiplying Complex Numbers

z1z

2r

1r

2cos

1

2 isin 1

2

4 2 cos4

6

isin

4

6

4 2 cos512

isin

512

4 2 0.259 i0.966 1.464 5.464i

Express the product of z1 and z

2 in standard form.

z14 cos

4

isin4

, z2 2 cos

6

isin6

Page 12: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 12

A Geometric Interpretation of z2

Page 13: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 13

De Moivre’s Theorem

Let z r cos isin and let n be a positive integer.

Then

zn r cos isin n

r n cos n isin n .

Page 14: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 14

Example Using De Moivre’s Theorem

Find 3

2 i

1

2

4

using De Moivre's theorem.

Page 15: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 15

Example Using De Moivre’s Theorem

The argument of z 3

2 i

1

2 is

76

,

and its modulus 3

2 i

1

2

3

4

1

41.

Hence,

z 2cos76

isin76

Find 3

2 i

1

2

4

using De Moivre's theorem.

Page 16: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 16

Example Using De Moivre’s Theorem

z4 cos 476

isin 4

76

cos14

3

isin

143

cos23

isin

23

1

2 i

3

2

Find 3

2 i

1

2

4

using De Moivre's theorem.

Page 17: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 17

nth Root of a Complex Number

A complex number v a bi is an nth root of z if

vn z.

If z 1, the v is an nth root of unity.

Page 18: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 18

Finding nth Roots of a Complex Number

If z r cos isin , then the n distinct

complex numbers

rn cos 2k

n isin

2k

n

,

where k 0,1,2,..,n 1,

are the nth roots of the complex number z.

Page 19: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 19

Example Finding Cube Roots

Find the cube roots of 1.

Page 20: Copyright © 2011 Pearson, Inc. 6.6 De Moivre’s Theorem and nth Roots.

Copyright © 2011 Pearson, Inc. Slide 6.1 - 20

Example Finding Cube Roots

Write 1 in complex form: z 10i cos0 isin0

The third roots of 1 are the complex numbers

cos0 2k

3 isin

0 2k

3 for k 0,1,2.

z1cos0 isin0 1

z2cos

23

isin23

1

2

3

2i

z3cos

43

isin43

1

2

3

2i

Find the cube roots of 1.