Top Banner
Harley-Davidson Museum Milwaukee, WI. Jonathan Rumbaugh, BAE/MAE Mechanical Option Advisor: Dr. William Bahnfleth
36

Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

Sep 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

Harley-Davidson Museum Milwaukee, WI.

Jonathan Rumbaugh, BAE/MAE Mechanical Option

Advisor: Dr. William Bahnfleth

Page 2: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT SPONSORS

Page 3: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PRESENTATION OUTLINE

• Project Background • Existing Conditions • Thesis Goals • Structural Breadth:

• Thermal Bridging • Mechanical Depth:

• Air vs. Water • Electrical Breadth

• CHP Feasibility • Conclusion

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

PROJECT SPONSORS

Page 4: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT BACKGROUND

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

• Project Background • Building Statistics • Location & Layout

• Existing Conditions • Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

• Size (Total Square Feet): 130,000

• Number Stories Above grade: 3

• Construction timeline : April 2005 – May 2008

• Overall Project Cost: $75 million

BUILDING STATISTICS

Guggenheim by Frank Gehry

257,000 square feet

$100 million

Wordpress.com

Page 5: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

• Project Background • Building Statistics • Location & Layout

• Existing Conditions • Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

PROJECT BACKGROUND

Page 6: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

EXISTING CONDITIONS

• Project Background • Existing Conditions

• Mechanical Design • Energy Model • Emissions • Comparison

• Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

MECHANICAL DESIGN

• Two Roof Mounted 300 Ton Air-cooled Rotary Screw Chillers

• Four 2000 MBH Sealed Combustion Condensing Boilers

• Variable Primary Flow

• 11 Air Handling Units

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 7: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

EXISTING CONDITIONS

• Project Background • Existing Conditions

• Mechanical Design • Energy Model • Emissions • Comparison

• Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

ENERGY MODEL

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Desgin TRACE MODEL Design to Model

ton ton %Δ

600 585.3 -2%

Peak Cooling Plant Loads

Desgin TRACE MODEL Design to Model

MBh MBh %Δ

8000 9073 13%

Peak Heating Plant Loads

Primary Heating

24%

Primary Cooling

14%

Auxiliary 14%

Lighting 33%

Receptacle 15%

Total Building Energy [kBtu/yr]

Primary Heating 10%

Primary Cooling

16%

Auxiliary 17%

Lighting 40%

Receptacle 17%

Total Source Energy [kBtu/yr]

6%

17%

18%

41%

18%

Annual Cost Breakdown

Primary Heating

Primary Cooling

Auxiliary

Lighting

Receptacle

CostPrimary Heating 20,252.00$

Primary Cooling 62,223.50$

Auxiliary 64,463.40$

Lighting 150,907.60$

Receptacle 65,906.60$

Total 363,753.10$

Cost Breakdown

$0.10 / kWh Electricity

$0.80 / Therm Natural Gas

Page 8: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

EXISTING CONDITIONS

• Project Background • Existing Conditions

• Mechanical Design • Energy Model • Emissions • Comparison

• Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

EMISSIONS

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

1.00E+07

CO

2e

CO

2

CH

4

N2

O

NO

x

SOx

CO

TNM

OC

Lead

Me

rcu

ry

PM

10

Solid

Was

te

VO

C

Mas

s o

f P

ollu

tan

t (l

b)

Pollutant

Emissions

Precombustion

Natural Gas

Electic

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

Mas

s o

f P

ollu

tan

t (l

b)

Pollutant

Emissions : No CO2

Precombustion

Natural Gas

Electic

Calculations use factors from the

Regional Grid emissions Factors

2007. table B-10

Page 9: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

EXISTING CONDITIONS

• Project Background • Existing Conditions

• Mechanical Design • Energy Model • Emissions • Comparison

• Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

EMISSIONS

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

1.00E+07

CO

2e

CO

2

CH

4

N2

O

NO

x

SOx

CO

TNM

OC

Lead

Me

rcu

ry

PM

10

Solid

Was

te

VO

C

Mas

s o

f P

ollu

tan

t (l

b)

Pollutant

Emissions

Precombustion

Natural Gas

Electic

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

Mas

s o

f P

ollu

tan

t (l

b)

Pollutant

Emissions : No CO2

Precombustion

Natural Gas

Electic

Calculations use factors from the

Regional Grid emissions Factors

2007. table B-10

9 Million lbs. of C02e / year

867 acres

Page 10: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

EXISTING CONDITIONS

• Project Background • Existing Conditions

• Mechanical Design • Energy Model • Emissions • Comparison

• Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

COMPARISON

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

20

30

40

50

60

70

80

90

100

110

120

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

Tem

p

Kil

ow

att

Ho

urs

(k

Wh

)

Date

Museum Campus Electricity Use

2010 kWh

2010 Temp

20

30

40

50

60

70

80

90

100

110

120

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

Tem

p

Kil

ow

att

Ho

urs

(k

Wh

)

Date

Museum Campus Electricity Use

2010 kWh

TRACE KWH

2010 Temp

TRACE temp

CONCLUSION

Energy Model is an accurate representation of the

energy consumption of the facility

Page 11: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

THESIS GOALS

• Project Background • Existing Conditions • Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

GOALS

PROPOSAL

• Reduce Emissions

• Reduce Energy Consumption

• Reduce Operating cost

Emissions

Operating Cost

Energy Consumption

• Decrease Thermal Loads Through

Envelope

• Increase Efficiency of Chilled Water

Production

• Become Energy Independent From Grid

Page 12: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL BRIDGING

Location of thermal break

N

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 13: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

𝑑2𝑇

𝑑𝑥2 −ℎ𝑃

𝑘𝐴𝑐𝑇 − 𝑇∞ = 0

𝑑2𝜃

𝑑𝑥2 − 𝑚2𝜃 = 0 (Homogeneous Second Order ODE)

𝑚2 ≡ℎ𝑃

𝑘𝐴𝑐 , 𝜃 = 𝑇 − 𝑇∞

𝑑2𝜃

𝑑𝑥2 − 𝑚2𝜃 = 0 → 𝜃 𝑥 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒

−𝑚𝑥 (General Solution)

Boundary Conditions:

1. Adiabatic Tip: 𝑑𝑇

𝑑𝑥 𝑥=𝐿

= 0

2. One Direction Heat Transfer: ∆ T(base) = 𝑇(𝑏𝑎𝑠𝑒) − 𝑇∞

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 14: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

𝐶1 =𝜃𝑏𝑒−𝑚𝐿

𝑒𝑚𝐿+𝑒−𝑚𝐿 𝐶2 = 𝜃𝑏 − 𝐶1

• Conduction at the base is equal to the total convective heat

transfer

𝑞𝑓 = −𝑘𝐴𝑐𝑑𝜃

𝑑𝑥 𝑥=0

= ℎ𝜃 𝑥 𝑑𝐴𝑠

𝐴𝐹 𝑞𝑐𝑜𝑛𝑑 𝑎t base of fin

𝒒𝒇 = − 𝒌𝑨𝒄

𝒅𝑻

𝒅𝒙 𝒙=𝟎

= 𝑴𝒕𝒂𝒏𝒉 𝒎𝑳

𝑚 = ℎ𝑃

𝑘𝐴𝑐 , 𝑀 = ℎ𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞ , L = length of fin

𝑑2𝑇

𝑑𝑥2 −ℎ𝑃

𝑘𝐴𝑐𝑇 − 𝑇∞ = 0

𝑑2𝜃

𝑑𝑥2 − 𝑚2𝜃 = 0 (Homogeneous Second Order ODE)

𝑚2 ≡ℎ𝑃

𝑘𝐴𝑐 , 𝜃 = 𝑇 − 𝑇∞

𝑑2𝜃

𝑑𝑥2 − 𝑚2𝜃 = 0 → 𝜃 𝑥 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒

−𝑚𝑥 (General Solution)

Boundary Conditions:

1. Adiabatic Tip: 𝑑𝑇

𝑑𝑥 𝑥=𝐿

= 0

2. ∆T(base) = 𝑇(𝑏𝑎𝑠𝑒) − 𝑇∞

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 15: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

𝐶1 =𝜃𝑏𝑒−𝑚𝐿

𝑒𝑚𝐿+𝑒−𝑚𝐿 𝐶2 = 𝜃𝑏 − 𝐶1

• Conduction at the base is equal to the total convective heat

transfer

𝑞𝑓 = −𝑘𝐴𝑐𝑑𝜃

𝑑𝑥 𝑥=0

= ℎ𝜃 𝑥 𝑑𝐴𝑠

𝐴𝐹 𝑞𝑐𝑜𝑛𝑑 𝑎t base of fin

𝒒𝒇 = − 𝒌𝑨𝒄

𝒅𝑻

𝒅𝒙 𝒙=𝟎

= 𝑴𝒕𝒂𝒏𝒉 𝒎𝑳

𝑚 = ℎ𝑃

𝑘𝐴𝑐 , 𝑀 = ℎ𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞ , L = length of fin

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

𝒒𝒇 = − 𝒌𝑨𝒄

𝒅𝑻

𝒅𝒙 𝒙=𝟎

= 𝑴𝒕𝒂𝒏𝒉 𝒎𝑳 𝑴 = ℎ𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 16: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

𝑞𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = −𝑞𝑖𝑛𝑠𝑖𝑑𝑒 → 𝑀𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = 𝑀𝑖𝑛𝑠𝑖𝑑𝑒

ℎ𝑜𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞𝑜 = − ℎ𝑖𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞𝑖

𝑇𝑏 =ℎ𝑖 𝑇∞𝑖

+ ℎ𝑜 𝑇∞𝑜

ℎ𝑜 + ℎ𝑖

= 𝟐𝟗. 𝟖 𝒐𝑭

𝑞 =𝑀 = ℎ𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞ = 𝟒𝟐𝟐 𝑾𝒂𝒕𝒕𝒔

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

Constants:

𝑘 = 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 = 43𝑊

𝑚2𝐾

𝐴𝑐 = Cross section area of a W40x149 = 0.047 m2

ℎ𝑜 = 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑎𝑖𝑟 = 30𝑊

𝑚2𝐾

ℎ𝑖 = 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎𝑖𝑟 = 15𝑊

𝑚2𝐾

𝑇∞𝑜= 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0 0𝐹

𝑇∞𝑖= 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 72 0𝐹

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 17: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

𝑞𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = −𝑞𝑖𝑛𝑠𝑖𝑑𝑒 → 𝑀𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = 𝑀𝑖𝑛𝑠𝑖𝑑𝑒

ℎ𝑜𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞𝑜 = − ℎ𝑖𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞𝑖

𝑇𝑏 =ℎ𝑖 𝑇∞𝑖

+ ℎ𝑜 𝑇∞𝑜

ℎ𝑜+ ℎ𝑖= 𝟐𝟗. 𝟖 𝒐𝑭 < 𝟓𝟑 𝒐𝑭 dp

𝑞 =𝑀 = ℎ𝑃𝑘𝐴𝑐 𝑇𝑏 − 𝑇∞ = 𝟒𝟐𝟐 𝑾𝒂𝒕𝒕𝒔

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

8760 hr. study

Total: 272,407.12 Watts per year

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 18: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

𝑅1 =∆𝑇

𝑞 →

∆𝑇

ℎ𝑜𝑃𝑘𝐴𝑐 ∆𝑇 →

1

ℎ𝑜𝑃𝑘𝐴𝑐

𝑅2 =𝐿𝑟

𝑘𝑟𝐴𝑐 Thermal Break

𝑅3 =∆𝑇

𝑞𝑓𝑖 →

∆𝑇

ℎ𝑖𝑃𝑘𝐴𝑐 ∆𝑇 →

1

ℎ𝑖𝑃𝑘𝐴𝑐

T2 T1

𝑇2 =

ℎ𝑖𝑃𝐾𝐴𝑐1

ℎ𝑜𝑃𝑘𝐴𝑐

+𝐿𝑟

𝑘𝑟𝐴𝑐𝑇∞𝑜 + 𝑇∞𝑖

1 + ℎ𝑖𝑃𝑘𝐴𝑐1

ℎ𝑜𝑃𝑘𝐴𝑐

+𝐿𝑟

𝑘𝑟𝐴𝑐

𝑞 = − ℎ𝑖𝑃𝑘𝐴𝑐(𝑇2 − 𝑇∞𝑖)

8760 hr. study

Total: 108.19 Watts per year

Lowest indoor temp = 69 oF

Savings: $1,271.19 / year [Main gallery]

For a simple payback of 5 years

Each Thermal Break = $653

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 19: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

THERMAL ANALYSIS

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 20: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

STRUCTURAL BREADTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth

• Thermal Analysis • Structural Analysis

• Mechanical Depth • Electrical Breadth • Conclusion

STRUCTURAL ANALYSIS

Starting with the conservation of energy equation

𝑞2 = 𝑞1 + 𝑑𝑞 (From Conservation of Energy)

𝑞𝑥 = −𝑘𝐴𝑐𝑑𝑇

𝑑𝑥 (From Fourier’s Law)

𝐴𝑐 = 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 , 𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ 𝑑𝐴𝑠(𝑇 − 𝑇∞)

𝑑

𝑑𝑥−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥𝑑𝑥 = ℎ𝐴𝑠 (𝑇 − 𝑇∞)

Location of thermal break

N

Member Force Allowable Actual OK?

Beam Bending Moment

64.12 ft kips

18.5 ft kips

Yes

Beam Shear 79.1 kips 3.7 kips Yes

Girder Bending Moment

3723 ft kips

686 Yes

Girder Shear 886 kips 40.05 kips Yes

Girder Live Load Deflection

3.4” 2.75” Yes

Girder Total Deflection

6.85” 6.6” Yes

Column Load 355 kips 50 Yes

Thermal Break

Shear 13,400 psi 2.24 psi Yes

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 21: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion Carrier

Two 300 Ton Air Cooled Chillers EER 9.4

AIR VS. WATER

Carrier

EPA

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Carrier

Page 22: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

AIR VS. WATER

Equipment Price Equipment Price

AC Chiller 1 215,000.00$ WC Chiller 1 140,500.00$

AC Chiller 2 215,000.00$ WC Chiller 2 140,500.00$

Cooling Tower 1 37,000.00$

Cooling Tower 2 37,000.00$

CW Pump 1 5,575.00$

CW Pump 2 5,575.00$

CW Piping 21,000.00$

4 Boilers 120,000.00$ 4 Boilers 120,000.00$

Total 550,000.00$ Total 507,150.00$

Alternative 1: Air- Cooled Alternative 2: Water-Cooled

CAPITAL

Additional Water: 2,500 1000gal

Cost : $5,500.00 / year

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Capital: -$42,850

Page 23: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

AIR VS. WATER

Equipment Price Equipment Price

AC Chiller 1 215,000.00$ WC Chiller 1 140,500.00$

AC Chiller 2 215,000.00$ WC Chiller 2 140,500.00$

Cooling Tower 1 37,000.00$

Cooling Tower 2 37,000.00$

CW Pump 1 5,575.00$

CW Pump 2 5,575.00$

CW Piping 21,000.00$

4 Boilers 120,000.00$ 4 Boilers 120,000.00$

Total 550,000.00$ Total 507,150.00$

Alternative 1: Air- Cooled Alternative 2: Water-Cooled

CAPITAL

30 Year LCC

Existing Air-Cooled System: $4,045,288.09

Alternative 2; Water-Cooled System: $3,861,471.04

Savings: $183,817.05

*Total CO2e (lb):

Air-Cooled 9.01E+06

Water-Cooled 8.77E+06

% Diff 3%

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Capital: -$42,850

Page 24: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

COOLING TOWER VS. RIVER WATER

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Cold Water Temp = 0.739*WB + 27.35 Supply

Return

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 25: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Supply

Return

𝑣 = 0.4085𝑞

𝑑2

𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓𝑡

𝑠, 𝑞 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑈𝑆

𝑔𝑎𝑙

𝑚𝑖𝑛 ,

𝑑 = 𝑝𝑖𝑝𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑖𝑛𝑐ℎ𝑒𝑠)

COOLING TOWER VS. RIVER WATER

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 26: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

COOLING TOWER VS. RIVER WATER

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Equipment Price Equipment Price

WC Chiller 1 140,500.00$ WC Chiller 1 140,500.00$

WC Chiller 2 140,500.00$ WC Chiller 2 140,500.00$

River Pump 1 12,000.00$

Cooling Tower 1 37,000.00$ River Pump 2 12,000.00$

Cooling Tower 2 37,000.00$ River Piping 52,500.00$

Heat Exchanger 18,000.00$

Filtration System 100,000.00$

CW Pump 1 5,575.00$ CW Pump 1 5,575.00$

CW Pump 2 5,575.00$ CW Pump 2 5,575.00$

CW Piping 20,995.00$ CW Piping 4,750.00$

4 Boilers 120,000.00$ 4 Boilers 120,000.00$

Total 507,145.00$ 611,400.00$

CAPITAL

Cooling Tower River Water

Alternative 2: Water-Cooled Alternative 3: Water-Cooled

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Capital: +$104,255

Page 27: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

COOLING TOWER VS. RIVER WATER

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Equipment Price Equipment Price

WC Chiller 1 140,500.00$ WC Chiller 1 140,500.00$

WC Chiller 2 140,500.00$ WC Chiller 2 140,500.00$

River Pump 1 12,000.00$

Cooling Tower 1 37,000.00$ River Pump 2 12,000.00$

Cooling Tower 2 37,000.00$ River Piping 52,500.00$

Heat Exchanger 18,000.00$

Filtration System 100,000.00$

CW Pump 1 5,575.00$ CW Pump 1 5,575.00$

CW Pump 2 5,575.00$ CW Pump 2 5,575.00$

CW Piping 20,995.00$ CW Piping 4,750.00$

4 Boilers 120,000.00$ 4 Boilers 120,000.00$

Total 507,145.00$ 611,400.00$

CAPITAL

Cooling Tower River Water

Alternative 2: Water-Cooled Alternative 3: Water-Cooled

Simple Payback: 2.8 years

Discount payback : 3.0 years

30 Year LCC

Alternative 2; Cooling Tower System: $3,861,471.04

Alternative 3; River Water System: $3,641,264.61

Savings: $220,206.43

*Total CO2e (lb):

Alt 2: Cooling Tower 8.77E+06

Alt 3: River Water 8.57E+06

% Diff 2%

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Capital: +$104,255

Page 28: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

PROJECT DEPTH

CONCLUSION

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth

• Air vs. Water • Cooling Tower vs. River Water • Conclusion

• Electrical Breadth • Conclusion

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Air-Cooled vs. Water-Cooled with River Water • Capital cost increased 10% [$61,400.00] • Annual operating cost reduced by 14% [$21,732.00]

• 30 year LCC reduced 10% [$389,986.00] • Simple payback 3 years

Page 29: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

ELECTRICAL BREADTH

CHP FEASIBILITY

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth • Electrical Breadth

• CHP Feasibility • Conclusion

• Conclusion

CHP Results

The results generated by the CHP Emissions Calculator are intended for eductional and outreach purposes only;

it is not designed for use in developing emission inventories or preparing air permit applications.

The results of this analysis have not been reviewed or endorsed by the EPA CHP Partnership.

Spark Gap

Electric Cost: $0.10/kWh = $29.30/MMBTU

Gas Cost: : $0.80/therm = $8.00/MMBTU

1 : 3.7 Ratio , 1 : 4 [rule of thumb]

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 30: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

CHP FEASIBILITY

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth • Electrical Breadth

• CHP Feasibility • Conclusion

• Conclusion

CHP Results

The results generated by the CHP Emissions Calculator are intended for eductional and outreach purposes only;

it is not designed for use in developing emission inventories or preparing air permit applications.

The results of this analysis have not been reviewed or endorsed by the EPA CHP Partnership.

373

0

50

100

150

200

250

300

350

400

450

500

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

kW

Hours

Baseline Electric & Thermal Load Profile Recommended Generator Size

Electric Load Duration Total Avg Thermal Load

Recommended Generating Capacity

Thermal-to-Electric Ratio = 0.74

Recommended: 373 kWe Gas Engine

ELECTRICAL BREADTH

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 31: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

CHP CONCLUSION

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth • Electrical Breadth

• CHP Feasibility • Conclusion

• Conclusion

CHP Results

The results generated by the CHP Emissions Calculator are intended for eductional and outreach purposes only;

it is not designed for use in developing emission inventories or preparing air permit applications.

The results of this analysis have not been reviewed or endorsed by the EPA CHP Partnership.• Additional Cost $564,000

• Generation Cost $0.088 /kWh

1.2 cents less than purchased

• Total Savings: $140,000 /year

• Simple Payback: 4.04 Years

• CO2 reduction of 62%

ELECTRICAL BREADTH

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Page 32: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

• Project Background • Thesis Goals • Existing Conditions • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

CONCLUSION

Savings: $1,271.19 / year [Main gallery] Capital

First Year

Expense

Simple

Payback

( Years)

Discount

Payback

( Years) 30 year LCC

30 Year

Savings

*Total

CO2e (lb):

Base Case Alternative 1 550,000.00$ 156,965.89$ - - $4,046,288.09 0 9.01E+06

Alternative 2 507,145.00$ 149,806.23$ - - 3,861,471.04$ $184,817.04 8.77E+06

Alternative 3 611,400.00$ 135,233.23$ 2.8 3.0 3,656,301.16$ $389,986.93 8.57E+06

Alternative Comparison

Air-Cooled Cooling Tower River Water

Capital $550,000.00 $507,145.00 $611,400.00

Simple Payback - - 2.8 years

30 Year LCC Savings - $184,817.00 $389,986.93

Jonathan Rumbaugh Harley-Davidson Museum Mechanical Option

Total • $160,000 Annually • 4 Year Payback • 65% Reduction of CO2

+ + =

Page 33: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

Capital

First Year

Expense

Simple

Payback

( Years)

Discount

Payback

( Years) 30 year LCC

30 Year

Savings

*Total

CO2e (lb):

Base Case Alternative 1 550,000.00$ 156,965.89$ - - $4,046,288.09 0 9.01E+06

Alternative 2 507,145.00$ 149,806.23$ - - 3,861,471.04$ $184,817.04 8.77E+06

Alternative 3 611,400.00$ 135,233.23$ 2.8 3.0 3,656,301.16$ $389,986.93 8.57E+06

Alternative Comparison

QUESTIONS?

• Project Background • Existing Conditions • Thesis Goals • Structural Breadth • Mechanical Depth • Electrical Breadth • Conclusion

THANK YOU

HGA Kevin Pope, P.E. Associate Vice President, HGA Jeff Harris, P.E. Director of Mechanical Engineering, HGA, Penn State Alumni Steve Mettlach Mechanical Engineer, HGA Harley-Davidson Joyce Koker, P.E. Harley-Davidson Museum Penn State Dr. William Bahnfleth Faculty Advisor Dr. Jelena Srebric AE Mechanical Professor Dr. James Freihaut AE Mechanical Associate Professor Mr. David H. Tran AE 5th Year Structural, BAE/MS Family and friends for their support

Page 34: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

20

30

40

50

60

70

80

90

100

110

120

100,000.00

150,000.00

200,000.00

250,000.00

300,000.00

350,000.00

400,000.00

450,000.00

Tem

p

Kilo

watt

Ho

urs

(K

WH

)

Date

Museum Campus Electricity Use

Alt 1: Air-Cooled

Alt 2: Cooling Tower

Alt 3: River Water

TRACE temp

Air-Cooled

Elec Water Gas

kWh 1000gal therms

Elec 2,168,082.30

Air Side 569,425.50

Water Side 683,862.00

Hot water 12,833.20 74.90 37,736.30

total 3,434,203.00 74.90 37,736.30

Water-Cooled with Cooling Tower

Elec Water Gas

kWh 1000gal therms

Elec 2,168,082.30

Air Side 569,425.50

Water Side 557,153.20 2,505.10

Hot water 12,833.20 74.90 37,736.30

total 3,307,494.20 2,580.00 37,736.30

Water Cooled with River

Elec Water Gas

kWh 1000gal therms

Elec 2,168,082.30

Air Side 569,425.50

Water Side 459,295.80

Hot water 12,833.20 74.90 37,736.30

total 3,209,636.80 74.90 37,736.30

Elec Water Gas 30 years

kWh 1000gal therms 15,000.00$

- - 5,000.00$ per year

Air Side 569,425.50 - -

Water Side 683,862.00 - - 2.3% DR

Hot water 12,833.20 74.90 37,736.30

total 1,266,120.70 74.90 37,736.30 Equipment Price

AC Chiller 1 215,000.00$

Price per unit 0.10$ 2.20$ 0.80$ AC Chiller 2 215,000.00$

Cost 126,612.07$ 164.78$ 30,189.04$ 4 Boilers 120,000.00$

Capital 550,000.00$ Capital 550,000.00$

Alternative 1: Air-Cooled

Economic Life

Overhaul

Maintenance

Discount Rate

every 7 years up tp 21

Air Side = AHUs Water Side = Chiller and CHW pump Hot Water = Boiler and HW pump

Alternative LCC

Air-cooled 1 $4,046,288.09

Cooling Tower 2 3,861,471.04$

River 3 3,656,301.16$

Page 35: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

Energy Cost*

kWh kW $ Therms $

Jan-03 252,717 611 10% $25,272 12,113 $9,690

Feb-03 225,119 626 10% $22,512 8,256 $6,605

Mar-03 247,492 631 10% $24,749 4,217 $3,374

Apr-03 241,526 671 10% $24,153 3,102 $2,482

May-02 255,900 704 10% $25,590 3,848 $3,078

Jun-02 281,412 900 10% $28,141 11,795 $9,436

Jul-02 299,775 932 10% $29,978 14,495 $11,596

Aug-02 294,522 898 10% $29,452 13,080 $10,464

Sep-02 257,444 847 10% $25,744 8,969 $7,175

Oct-02 261,155 799 10% $26,116 6,960 $5,568

Nov-02 237,578 631 10% $23,758 3,040 $2,432

Dec-02 250,657 618 10% $25,066 10,303 $8,242

Energy

% of Total

Cost from

Peak

Demand

Peak Demand Cost*

Electricity

Gas

Fuels Thermal-to-Electric Ratio = 0.74

Recommended Prime Mover(s)

Gas Engine

Microturbine

Gas Turbine (Simple Cycle)

Phosphoric Acid Fuel Cells

Select Prime Mover

If "Yes", indicated planned size 300 kWe

Recommended Generation 373 kWe

Chose Size (per Unit) 373 kWe

Chose Number of Units 1 Unit(s)

Total Selected Capacity 373 kWe

Electric Efficiency 34 %

Gross Heat Rate Exhaust (LHV) 6,623 BTU/kWhe

Recoverable Heat Rate (LHV) 4,305 BTU/kWhe

O&M Costs $0.0120 $/kWh/yr

Electric Use 0.0000 kWe/kWe

Include Absorption Chiller

Size 89 RT

Thermal Input 1,606 MBTU/hr

O&M Costs $55 $/RT/yr

Electric Use 0.0300 kWe/RT

Electric Displaced 0.6000 kWe/RT

Select Desiccant

Chose Size (per Unit) 10,000 SCFM

Chose Number of Units 1 Unit(s)

Total Selected Capacity 0 SCFM

Regeneration Requirements (200°F) 0 BTU/hr

O&M Costs 0.000 ¢/SCFM/yr

Latent Heat Removal Rate 0 BTU/hr

Electric Use 0.00 kWe per kSCFM

Would backup generation have been

installed anyway?Yes

Would a desicant have been installed No

Gas Engine

Recommended

Yes

None

Will the Absorption ChillerDisplace an

Electric Chiller?Yes

10.000 ¢/kWh Prime Mover

N/A ¢/kWh Total ECP Cost $564 $(1000)

1.500 ¢/kWh Prime Mover

10.000 ¢/kWh Parasitic Load 2.7 kW

8.00 $/MMBTU Total Generation Capacity 373 kW

8.00 $/MMBTU Electrical Output 3,035 MWh

86.0 % Absorption Chiller Credit 60 MWh

$1.50 $/kw/month Net Total Generation Effect 3,095 MWh

373 kW Elecectric Capacity Factor 93 %

$4,943 $/yr Gross Heat Rate (LHV) 10,038 BTU/kWh

3,105 MWh Recoverable Heat 4,305 BTU/kWh

7,795 MMBTU Thermal Loads

TAT Thermal Loads (June, July, August)

PURPA (Assuming Gas or Liquid Fuel Fired) Absorption Chiller 1,795 MMBTU

55.4 % Desiccant 0 MMBTU

Yes Total Thermal Load with TAT 9,590 MMBTU

0 kWh Thermal Capacity Factor 78 %

No Thermal Energy Output

From Generator 13,065 MMBTU

From Auxiliary Boiler 0 MMBTU

COSTS WITHOUT COGENERATION $(1000) Fuel Requirements:

Electricity Costs $311 For Generator (HHV) 33,669 MMBTU

Thermal Energy Costs $80 For Auxiliary Boiler (HHV) 0 MMBTU

TOTAL $391

COSTS WITH COGENERATION $(1000) Generation Costs 8.88 ¢/kWh

Supplemental Electric Purchase $1

Peak Electric Charge Adjustment ($31)

Fuel $269

Electricity Sold $0

O&M $5

Standby Charges $7

TOTAL $251

SAVINGS

SIMPLE PAYBACK 4.04 Years

FINANCIAL RESULTS

ASSUMPTIONS

W/O Cogen Fuel Cost

Existing Boiler Efficiency

Efficiency

Sell Back

Sell Back Desired

Qualified Facility

Supplemental Elect Cost

Cogen Initial Fuel Cost

Average Electric Cost

Initial Electric Sell Back

Peak Averge Electric Cost

SITEMN Hospital

1234 W. Main St

WIMilwakee

$140

RESULTS

Annual Heat Load

CHP RESULTS

Annual Electric Load

Standby Capacity Required

Standby Demand Charge

O&M Charge

Gas Engine

Page 36: Coppin State University · 2012. 4. 20. · PRESENTATION OUTLINE • Project Background • Existing Conditions • Thesis Goals • Structural Breadth: • Thermal Bridging • Mechanical

0

50,000

100,000

150,000

200,000

250,000

300,000

May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02 Dec-02 Jan-03 Feb-03 Mar-03 Apr-03

kW

e

CHP Electric

Electric Generated Electric Needed

Electric Sold

0

50

100

150

200

250

300

350

400

0 744 1,488 2,208 2,928 3,672 4,416 5,136 5,856 6,600 7,272 8,016 8,760 9,132

kW

e

Hours

Comparision of Generation to CHP Electric Load

Average Electricity Generated Electric Load Profi le Generation Instal led

0

50

100

150

200

250

300

350

400

450

500

0 372 1,080 1,788 2,532 3,276 4,020 4,764 5,508 6,240 6,960 7,680 8,400 8,760

kW

t

Hours

Thermal Demand vs CHP Generation Thermal

Electric Gener ation Therm al ( Estim ated) Thermal Dem and

0

50

100

150

200

250

300

350

400

450

0 744 1,488 2,208 2,928 3,672 4,416 5,136 5,856 6,600 7,272 8,016 8,760

kW

Hours

Average Demand Profile

Average Demand Generator Capability