Top Banner
Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based Heterogeneous Catalyst. Francesco Ferlin, a Mitchell Van der Hulst, a Stefano Santoro, a Daniela Lanari, b and Luigi Vaccaro a * a Laboratory of Green S.O.C. – Dipartimento di Chimica, biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 – Perugia, Italy. E‐mail: [email protected]; http://www.dcbb.unipg.it/greensoc. b Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy CONTENTS Page ESI 1 Contents Page ESI 2 General information Page ESI 2–6 General small and larger scale batch and flow procedures, details of the flow reactor, E‐factor calculations Page ESI 7 Leaching of Manganese species during flow procedure Page ESI 7 Graphic data for off‐line analysis in continuous flow synthesis of 6a Page ESI 7‐8 E‐factor calculation for literature protocols Page ESI 8 Table of manganese leaching in different reaction medium Page ESI 8 Catalyst regeneration screening Page ESI 9–14 Characterization data Page ESI 14 References Page ESI 15‐33 Tables of the characterization data Page ESI 34–75 Copies of the 1 H‐ and 13 C‐NMR and 19 F‐NMR spectra ESI - 1 Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019
73

Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Mar 17, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Electronic Supporting Information 

 

 

Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based Heterogeneous Catalyst. 

Francesco Ferlin,a Mitchell Van der Hulst,a Stefano Santoro,a Daniela Lanari,b and Luigi Vaccaroa* 

a Laboratory of Green S.O.C. – Dipartimento di Chimica, biologia e Biotecnologie, Università degli Studi di 

Perugia, Via Elce di Sotto 8, 06123 – Perugia, Italy. E‐mail: [email protected]

http://www.dcbb.unipg.it/greensoc. 

b Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy 

 

 

 

 

CONTENTS 

Page     ESI 1       Contents  

Page     ESI 2       General information  

Page     ESI 2–6      General small and larger scale batch and flow procedures, details of 

          the flow reactor, E‐factor calculations  

Page    ESI 7      Leaching of Manganese species during flow procedure  

Page    ESI 7      Graphic data for off‐line analysis in continuous flow synthesis of 6a 

Page    ESI 7‐8      E‐factor calculation for literature protocols 

Page    ESI 8      Table of manganese leaching in different reaction medium 

Page    ESI 8      Catalyst regeneration screening 

Page     ESI 9–14     Characterization data  

Page    ESI 14      References 

Page    ESI 15‐33    Tables of the characterization data 

Page     ESI 34–75    Copies of the 1H‐ and 13C‐NMR and 19F‐NMR spectra 

   

ESI - 1

Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2019

Page 2: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

General Information  

Unless otherwise stated, all solvents and reagents were used as obtained from commercial sources without 

further  purification.  GC  analyses  were  performed  using  a  Hewlett‐Packard  HP  5890A  equipped  with  a  capillary column DB‐35MS (30 m, 0.53 mm) and a FID detector. GC‐EIMS analyses were carried out using a 

Hewlett‐Packard  HP  6890N  Network  GC  system/5975  MassSelective  Detector  equipped  with  an  electron  impact ionizer at 70 eV. NMR spectra were recorded on a Bruker DRX‐ADVANCE 400 MHz (1H at 400 MHz 

and  13C at 100.6 MHz). The deuterated solvent used was CDCl3. Elemental analyses were conducted on a 

Fisons  EA1108CHN.  Melting  points  were  measured  on  a  Büchi  510.  Metal  leaching  in  solution  measurements  were  carried  out  using  an  Agilent  4210  MP‐AES  instrument.  Flow  procedures  were performed using tailored pressure tubes as a reagents reservoir and Supelco HPLC Column Blank as catalyst 

columns. Characterization data and copies of the 1H‐NMR, 13C‐NMR and 19F‐NMR are reported below. 

Procedures for catalyst synthesis: 

General procedures for K‐OMS synthesis: 

MnSO4 hydrate (4.4 g, 26.0 mmol) and concentrated HNO3 (1.5 mL) were dissolved in deionized water (15.0 

mL). Then a solution made by dissolving KMnO4 (2.9 g, 18.4 mmol) in deionized water (40.0 mL) was added 

drop‐wise to make a brown slurry. The slurry was then refluxed at 100–110 °C in a 250 mL round‐bottom 

flask  for  24  h.  The  product  was  washed  with  copious  amounts  of  deionized  water  to  remove  unreacted  precursors,  filtered,  and  then  dried  at  120  °C  overnight,  yielding  4.2  g  of  K‐OMS.  A  small  aliquot  of  the resulting material was dissolved in a 10 mL volumetric flask into 5 mL of HCl/HNO3 solution (3:1, aqua regia) 

and stirred at 50 °C for 30 minutes or until complete dissolution take place. The solution was adjusted to 10 

mL with deionized water and then measured with MP‐AES instrument. Manganese loading was 62% w/w.  

General procedures for H‐OMS synthesis: 

K‐OMS (2 g) from the previous synthesis were stirred in a 1M solution of HNO3 (20 mL) at 70 °C for 24 h. The 

product was washed with copious amounts of deionized water  to remove unreacted precursors,  filtered, 

and then dried at 120 °C overnight, yielding 1.8 g of H‐OMS. A small aliquot of the resulting material was 

dissolved in a 10 mL volumetric flask into 5 mL of HCl/HNO3 solution (3:1, aqua regia) and stirred at 50 °C 

for  30  minutes  or  until  complete  dissolution  take  place.  The  solution  was  adjusted  to  10  mL  with 

deionized water and then measured with MP‐AES instrument. Manganese loading was 62% w/w. 

XRD of the materials: 

0 10 20 30 40 50 60 70 80800

1000

1200

1400

1600

1800

2000

2200

cou

nts

pe

r se

cond

2

K-OMS-2

0 10 20 30 40 50 60 70 801600

1800

2000

2200

2400

2600

2800

3000

coun

ts p

er s

econ

d

2

H-OMS-2

ESI - 2

Page 3: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

General procedures for batch optimization of reaction conditions: 

General procedures for benzyl alcohol oxidation in batch with stoichiometric quantity of catalyst: 

In a 4 mL screw‐capped vial equipped with a magnetic stirring bar, benzyl alcohol (1) (1 mmol, 103 μL), the 

desired  solvent  (0.25  M,  4  mL),  and  catalyst  (100  mol%)  were  consecutively  added,  and  the  resulting 

mixture  was  left  under  stirring  at  reflux  temperature  for  30  minutes.  The  reaction  mixture  was  then 

removed from the heating plate and cooled to room temperature. An aliquot of the reaction mixture was 

filtered through a short pad of celite and analyzed by GLC to determine the conversion, using samples of 

pure compounds as reference. 

General procedures for benzyl alcohol oxidation in batch with catalytic quantity of catalyst: 

In a 4 mL screw‐capped vial equipped with a magnetic stirring bar, benzyl alcohol (1) (1 mmol, 103 μL), the 

desired solvent (0.25 M, 4 mL), and catalyst (20 mol%) were consecutively added, and the resulting mixture 

was  left under  stirring at  reflux  temperature  for 24 h. The  reaction mixture was  then  removed  from the 

heating plate and cooled to room temperature. An aliquot of the reaction mixture was filtered through a 

short pad of celite and analyzed by GLC to determine the conversion, using samples of pure compounds as 

reference. 

General procedures for imine (5) formation: 

In a 4 mL screw‐capped vial equipped with a magnetic stirring bar, benzaldehyde (2) (0.4 mmol, 41 μL), o‐

aminophenol (4) (0.2 mmol, 21.8 mg) and CPME (0.1 M, 2 mL), were consecutively added, and the resulting 

mixture was  left  under  stirring  at  the  temperature  indicated  (Table  3  of main  text)  for  10 minutes.  The 

reaction mixture was then removed from the heating plate and cooled to room temperature. An aliquot of 

the reaction mixture was taken and analyzed by GLC to determine the conversion, using samples of pure 

compounds as reference. 

General procedures  for  the  synthesis of 6 via oxidative cyclization of 5 with  stoichiometric quantity of 

catalyst: 

In  a  4  mL  screw‐capped  vial  equipped  with  a  magnetic  stirring  bar,  imine  (5)  (1  mmol,  197.2  mg),  the 

desired  solvent  (0.25  M,  4  mL),  and  catalyst  (100  mol%)  were  consecutively  added,  and  the  resulting 

mixture  was  left  under  stirring  at  reflux  temperature  for  30  minutes.  The  reaction  mixture  was  then 

removed from the heating plate and cooled to room temperature. An aliquot of the reaction mixture was 

filtered through a short pad of celite and analyzed by GLC to determine the conversion, using samples of 

pure compounds as reference. 

General procedures for the synthesis of 6 via oxidative cyclization of 5 with catalytic quantity of catalyst: 

In  a  4  mL  screw‐capped  vial  equipped  with  a  magnetic  stirring  bar,  imine  (5)  (1  mmol,  197.2  mg),  the 

desired solvent (0.25 M, 4 mL), and catalyst (20 mol%) were consecutively added, and the resulting mixture 

was  left under  stirring at  reflux  temperature  for 24 h. The  reaction mixture was  then  removed  from the 

heating plate and cooled to room temperature. An aliquot of the reaction mixture was filtered through a 

short pad of celite and analyzed by GLC to determine the conversion, using samples of pure compounds as 

reference. 

ESI - 3

Page 4: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

General multistep procedure and E‐factor calculation for the synthesis of 6 in batch conditions: 

In  a  4 mL  screw‐capped  vial  equipped with  a magnetic  stirring  bar,  benzyl  alcohol  (1)  (0.4 mmol,  41  μL), 

CPME (0.1 M, 2 mL), and H‐OMS (100 mol%, 0.4 mmol of Mn, 35.4 mg) were consecutively added, and the 

resulting mixture was left under stirring at 106 °C for 30 minutes. The reaction mixture was then removed 

from  the  heating  plate  and  cooled  to  room  temperature.  The  heterogeneous  mixture  was  filtered  over  sintered  glass  funnel  into  a  4  mL  screw‐capped  vial  containing  o‐aminophenol  (0.2  mmol,  21.8  mg).  The resulting  yellowish  solution  was  vigorously  stirred  at  106  °C  for  10  minutes  and  K‐OMS  (100  mol%,  0.2  mmol, 17.7 mg) was  then added. The  resulting mixture was  left under stirring at 106  °C  for 30 minutes. A 

small  aliquot  of  the  reaction  mixture  was  subjected  to  MP‐AES  analysis  to  determine  the  manganese  leaching. The heterogeneous mixture was finally filtered over sintered glass funnel and washed with CPME 

(2x2mL).  The  solvent  was  distilled  under  reduced  pressure  and  recovered  as  pure  (98  %  of  the  total  amount,  confirmed  by  1H‐NMR), 2 mL of EtOH  was  added  and  then  evaporated  to  remove  unreacted benzaldehyde furnishing the pure product as white crystals (0.18 mmol, 36.7 mg) in 94 % yield. 

E‐factor: [5.16 g (CPME) + 0.035 g (H‐OMS) + 0.043 g (benzyl alcohol) + 0.022 g (o‐aminophenol) + 0.017 g (K‐OMS)  +  1.58  g  (EtOH)]  –  [0.035  g  (H‐OMS)  +  0.017  g  (K‐OMS)  +  5.05  (CPME  recovered)  +  0.037  g  (product, 94 % yield)]/ 0.037 g (product, 94 % yield)] = 46.4 

General procedure for multistep continuous flow protocol for the synthesis of 6 

Description of Flow system: 

O2

H-OMST-piece

Reservoir

REACTOR 1

= Back pressure regulator

LINE 1

3

C1 C2 C3

C41

off-linesampling

C5

LINE 1: 

C1: Stainless steel tube 6mm (supplied by Nordival srl), 20 cm 

C2: PTFE tube (1/16’’), Internal Diameter (ID): 1 mm. Length: 30 cm 

ESI - 4

Page 5: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

C3: PTFE tube (1/16’’), ID: 1 mm. Length: 2 cm 

C4: PTFE tube (1/16’’), ID: 1 mm. Length: 2 cm 

C5: PTFE tube (1/16’’), ID: 1 mm. Length: 3 cm connected to a needle valve (supplied by Nordival srl) used 

for off‐line analysis 

PTFE tube (1/16’’) has been supplied by ABreg srl. 

Reactor 1: Supelco HPLC Column Blank 20 cm 

Back Pressure Regulator 1: 75 psi BPR (supplied by Upchurch) 

T‐Piece: stainless steel T‐piece 6mm with 6mm – 1/16’’ reducer (supplied by Nordival srl) 

Reservoir: tailor made PTFE reservoir end capped tailor made PTFE plug (Fig. S1) with 6mm Tube adapter 

(supplied by Nordival srl). 

Figure. S1. Tailor made PTFE plug 

LINE 2: 

C1: Stainless steel tube 6mm (supplied by Nordival srl), 20 cm 

Reservoir: tailor made PTFE reservoir end capped tailor made PTFE plug (Fig. S1) with 6mm Tube adapter ( 

supplied by Nordival srl). 

C2: PTFE tube (1/16’’), Internal Diameter (ID): 1 mm. Length: 20 cm 

T‐Piece: stainless steel T‐piece 6mm with 6mm – 1/16’’ reducer (supplied by Nordival srl) 

C3: PTFE tube (1/16’’), ID: 1 mm. Length: 2 cm 

Back Pressure Regulator 2: 75 psi BPR (supplied by Upchurch) 

C4: PTFE tube (1/16’’), ID: 1 mm. Length: 2 cm 

C4: PTFE tube (1/16’’), ID: 1 mm. Length: 60 cm (loop) 

Reactor 2: Supelco HPLC Column Blank 20 cm 

C5: PTFE tube (1/16’’), ID: 1 mm. Length: 5 cm 

Back Pressure Regulator 2: 40 psi BPR (supplied by Upchurch) 

C6: PTFE tube (1/16’’), ID: 1 mm. Length: 5 cm 

ESI - 5

Page 6: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

C7: PTFE tube (1/16’’), ID: 1 mm. Length: 3 cm connected to a needle valve (supplied by Nordival srl) used 

for off‐line analysis 

PTFE tube (1/16’’) has been supplied by ABreg srl. 

Product collector: graduated cylinder. 

General  information: reactor 1, reactor 2 and  loop have been thermostated  into a stainless steel box. All 

the connection between 1/16’’ tubes, BPRs and reactors have been realized with PTFE HPLC peek (supplied 

by ABreg srl).   

Small scale continuous flow procedures and E‐factor calculation (4 mmol): 

Reservoir 1 was charged with 4 mL of CPME and benzyl alcohol (4 mmol, 0.432 g, 414 μL), then the oxygen 

line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of 

H‐OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit 

of column 1, the nitrogen line was set to 5 bar and the o‐aminophenol solution (3.7 mmol, 0.404 g in 4 mL 

of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T‐piece. The resulting 

mixture  continuously  flowed  through  the  loop,  in  which  imine  formation  took  place,  before  reaching 

column 2 (filled with 68 mg of K‐OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the 

end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash 

the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered 

via distillation under reduced pressure  (98% of  the total amount, confirmed by 1H‐NMR) and the residue 

was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6 (3.6 

mmol, 0.708 g) in 98% yield. 

E‐factor = [24 g (CPME) + 0.432 g (benzyl alcohol) + 0.404 g (o‐aminophenol) + 3.9 g (EtOH)] – [23.5 (CPME 

recovered) + 0.708 g (product, 98 % yield)]/ 0.708 g (product, 98 % yield)] = 6.4 

Multi‐gram scale continuous flow procedures and E‐factor calculation (280 mmol): 

Reservoir 1 was charged with 1M CPME (300 mL) solution of benzyl alcohol (308 mmol, 33.3 g, 32 mL), then 

the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled 

with 78 mg of H‐OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow 

reached the exit of column 1, the nitrogen line was set to 5 bar and the o‐aminophenol solution (280 mmol, 

30.5 g  in 300 mL of CPME 0.9M) previously charged  into  reservoir 2  started  to mix with  flow 1  into a T‐

piece. The  resulting mixture continuously  flowed  through  the  loop,  in which  imine  formation  took place, 

before reaching column 2 (filled with 68 mg of K‐OMS) at a flow rate of 0.2 mL/min with a residence time of 

40 min. At the end of the process the system has been completely flushed, both line with 55 mL of CPME in 

order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME 

was  recovered  via distillation under  reduced pressure  (98% of  the  total  amount,  confirmed by 1H‐NMR) 

and the residue was washed with 90 mL of EtOH in order to remove unreacted benzaldehyde, furnishing 

pure  product  6  (274.4 mmol,  53.5  g)  in  98%  yield with  a  productivity  of  2.3  g/h  after  steady  state was 

reached. 

E‐factor = [ 610 g (CPME) + 33.3 g (benzyl alcohol) + 30.5 g (o‐aminophenol) + 71 g (EtOH)] – [598 (CPME 

recovered) + 53.5 g (product, 98 % yield)]/ 53.5 g (product, 98 % yield)] = 1.7 

ESI - 6

Page 7: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Leaching of Manganese species during flow procedure over 40 mmol 

Graphic data for off‐line analysis in continuous flow synthesis of 6a  

E‐factor calculation for literature protocols for the synthesis of 2‐arylbenzoxazoles 

Reference  Procedure  E‐factor Pan et al.  Tetrahedron Lett. 2002, 43, 951–954 

To  a  solution  of  2‐aminophenol  (0.109  g,  1.0  mmol)  in MeOH  (5  mL)  was  added  benzaldehyde  (0.106  g,  1.0 mmol). The resulting mixture was heated at 45°C  for 12 h. After  concentration  under  reduced  pressure,  theresidue was dissolved  in CH2Cl2  (10 mL) and DDQ (0.250g,  1.1  mmol)  was  then  added.  After  stirring  at  roomtemperature  for  30  min,  the  resulting  mixture  wasdiluted  with  additional  CH2Cl2  (10  mL)  and  washedsequentially with saturated Na2CO3  (10 mL×2) and brine(10  mL).  The  organic  layer  was  dried  over  anhydrousNa2SO4.  After  evaporation,  the  crude  was  purified  byflash column chromatography. Yield 93 %

{0.109 g [aminophenol] + 3.9 g [MeOH] + 0.106 g [benzaldehyde] + 26.6 g [DCM] + 0.250 g [DDQ] + 22.0 g [sodium carbonate] + 11.5 g [brine] – 0.181 g [product]} /0.181 g [product] = 355

P. H. Tran et al.  RSC Adv., 2018, 8, 11834–11842

2‐Aminophenol  (109  mg,  1.0  mmol)  was  treated  with benzaldehyde  (106  mg,  1.0  mmol)  in  the  presence  of triphenyl(butyl‐3‐sulphonyl)phosphonium toluenesulfonate (20.5 mg, 7 mol%) in a 10 mL glass tube at  100  C  under  solvent‐free  magnetic  stirring.  Upon completion  of  the  reaction  as  indicated  by  TLC  after  30 min,  the mixture was diluted and extracted with diethyl ether (10 x 5 mL). Then the ethereal solution was washed with water  (2 x 20 mL) and dried over Na2SO4. The final 

{0.109 g [aminophenol] + 0.106 g 

[benzaldehyde] + 0.02 g [catalyst] + 35.6 g 

[Diethyl Ether] + 40.0 g [water] – 0.177 g 

[product] – 0.02 g [catalyst]} / 0.177 g 

[product] = 427 

00,050,1

0,150,2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40Mn Lea

ching (ppm)

mmol

96,5

97

97,5

98

98,5

99

99,5

100

0,5 1

1,5 2

2,5 3

3,5 4

4,5 5

5,5 6

6,5 7

7,5 8

8,5 9

9,5 10

10,5 11

11,5 12

12,5 13

13,5 14

14,5 15

15,5 16

16,5 17

17,5 18

18,5 19

19,5 20

20,5 21

21,5 22

22,5 23

23,5

Conversion (%)

time (h)

Analytical Data for continuous flow synthesis of 6a

C (%) of 1a C (%) of 4 into 5a conversion of 5a to 6a

ESI - 7

Page 8: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

product was obtained  after  solvent  removal  by  a  rotary evaporator  followed  by  the  purifcation  on  a  silica  gel column chromatography using acetone/petroleum ether (1/19) as an eluent solvent. Yield 91 % 

Panahi et al. ACS Catal. 2014, 4, 1686−1692

To  a  mixture  of  primary  alcohol  (1  mmol)  and  2‐aminophenol  (1  mmol)  in  toluene  (2  mL),  DABCO  (0.5 mmol),  PFMN  (50  mg),  and  Ru2Cl4(CO)6  (10  mg)  were added,  and  the  resulting  mixture  was  heated  to  the refluxing temperature of toluene for 24 h under N2 gas. After completion of the reaction, the mixture was cooled to  room  temperature,  and  the  PFMN  ligand  was magnetically  separated  from  the  reaction  mixture.  The reaction mixture was quenched with water and extracted with  diethyl  ether  (10  mL,  3  times),  and  the  organic phase was dried over Na2SO4. The benzoxazole product was purified by column chromatography and obtained in 77 % yield. 

{0.112 g [benzyl alcohol] + 0.109 g 

[aminophenol] + 2.6 g [Toluene] + 0.06 g 

[DABCO] + 0.05 g [PFMN] + 0.01 g 

[catalyst] + 21.4 g [diethyl ether] – 0.05 g 

[PFMN]  – 0.152 g [product]} / 0.152 g 

[product] = 158 

Table of Manganese leaching in different reaction medium 

Table S1. Leaching of Mn in different reaction medium for the oxidation of 1a.a 

Entry  Medium  T (°C) C (%)b H‐OMS

Leaching of Mn (ppm)c

1  Toluene  110  >99 7.32 

2  CH3CN  82  47 2.63 

3  Toluene/EtOH (1:1)  110  29 5.70 

4  Toluene/EtOH (3:7)  110  9 ‐ 

5  EtOH  78  3 ‐ 

6  EtOAc  77  38 4.76 

7  BuOH  82  30 3.28 

8  tBuOH  82  41 3.56 

9  Solvent‐free  ‐  2 ‐ 

10  2‐MeTHF  80  55 0.83 

11  TAME  86  > 99 1.04 

12  CPME  106  > 99 0.06 

a Reaction condition: 1a (1 mmol), medium 4 mL [0.25M], reaction time 30 min, K‐ or H‐OMS: 1 eq. 

b Conversion to 2a, measured by GLC analyses 

using samples of pure compounds as reference. c Leaching measurement has been determined with MP‐AES. 

Catalyst regeneration screening 

General procedures for catalyst regeneration and reuse: 

In a 5 mL schlenk pressure tube equipped with a magnetic stirring bar, benzyl alcohol 1a (1 mmol, 103 μL), 

CPME  (0.25 M,  4 mL),  and  H‐OMS were  consecutively  added,  and  the  resulting mixture  was  left  under 

stirring  at  reflux  temperature  for  the  desired  time.  The  reaction  mixture  was  then  removed  from  the 

heating plate and cooled to room temperature. An aliquot of the reaction mixture was filtered through a 

short pad of celite and analyzed by GLC to determine the conversion, using samples of pure compounds as 

reference. The reaction mixture was filtered over a Büchner funnel to recover the catalyst and washed with 

CPME (2x5 mL). The recovered catalyst has been placed  in a schlenk pressure tube and heated at 100 °C 

under the desired gas pressure during 1h. 

ESI - 8

Page 9: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Table S2. Regeneration screening of the catalyst for the oxidation of 1a with catalytic quantities of H‐OMS.a 

Entry  C (%)b  in Run 1  additive used for regeneration  Pressure (bar)  C (%)c  over consecutive runs

Run 2 Run 3  Run 4  Run 5

1  > 99  O2  1  > 99 96  90  88 

2  > 99  N2  1  26  ‐  ‐  ‐ 

3  > 99  Air  1  72  46  ‐  ‐ 

4  > 99  Argon  1  22  ‐  ‐  ‐ 

5  > 99  O2  2  > 99 > 99 > 99 > 99

6  > 99  Air  2  92  85 83 77

7  > 99  ‐  ‐  32  ‐ ‐ ‐

8  > 99  O2  3  > 99 > 99 > 99 > 99

9  > 99  H2O2 (1 eq)  ‐  58  43 ‐ ‐

10  > 99  H2O2 (10 eq)  ‐  72  57 37 ‐a Reaction condition: 1a (1 mmol), medium 4 mL [0.25M], reaction time 24 h, H‐OMS: 20 mol %. 

b Conversion of 1a, measured by GLC analyses using 

samples of pure compounds as reference, data refers to run 1 executed following optimized condition. c Conversion of 1a over consecutive runs 

measured by GLC analyses using samples of pure

Table S3. Regeneration screening of the catalyst for the oxidation of 1a with stoichiometric quantities of H‐OMS.a 

Entry  C (%)b  in Run 1  additive used for regeneration  Pressure (bar)  C (%)c  over consecutive runs

Run 2 Run 3  Run 4  Run 5

1  > 99  O2  1  > 99 96  90  88 

2  > 99  N2  1  55  20  ‐  ‐ 

3  > 99  Air  1  89  44  ‐  ‐ 

4  > 99  Argon  1  44  21  ‐  ‐ 

5  > 99  O2  2  > 99 > 99 > 99 > 99

6  > 99  Air  2  95  87 85 81

7  > 99  ‐  ‐  55  18 ‐ ‐

8  > 99  O2  3  > 99 > 99 > 99 > 99

9  > 99  H2O2 (1 eq)  ‐  73  60 22 ‐

10  > 99  H2O2 (10 eq)  ‐  74  66 37 ‐a Reaction condition: 1a (1 mmol), medium 4 mL [0.25M], reaction time 30 min, H‐OMS: 100 mol %. 

b Conversion of 1a, measured by GLC analyses 

using samples of pure compounds as reference, data refers to run 1 executed following optimized condition. c Conversion of 1a over consecutive 

runs measured by GLC analyses using samples of pure compounds as reference. 

ESI - 9

Page 10: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Characterization data for compound 6 a‐s 

2‐phenylbenzo[d]oxazole (6a)1 has been synthesized following multi‐gram scale flow 

procedure using benzyl alcohol (40 mmol) and o‐aminophenol (37 mmol) in 98% Yield. White crystals. M.p. 

102‐105. 1H‐NMR (400 MHz, CDCl3) δ 8.29 – 8.26 (m, 2H), 7.81 – 7.79 (m, 1H), 7.62 – 7.50 (m, 4H), 7.37 – 7.35 (m, 

2H). 13C‐NMR (101 MHz, CDCl3) δ 163.1, 150.8, 142.1, 131.5, 128.9, 127.6, 127.2, 125.1, 124.6, 120.0, 110.6. GC‐EIMS 

(m/z, %):  195  (100),  181  (68),  180  (54),  161  (62),  145  (22),  121  (16).  Elemental Analysis  calculated  for  C13H9NO: C, 

79.98; H, 4.65; N, 7.17; experimental:  C, 79.91; H, 4.68; N, 7.02 

2‐phenylbenzo[d]thiazole (6b)2 has been synthesized following small scale flow procedure 

using the appropriate benzyl alcohol (4 mmol) and o‐aminothiophenol (3.7 mmol)  in 98% Yield. White crystals. M.p. 

116‐118. 1H‐NMR (400 MHz, CDCl3) δ 8.15 – 8.08 (m, 3H), 7.94 – 7.89 (m, 1H), 7.54 – 7.48 (m, 4H), 7.42 – 7.39 (m, 

1H).  13C‐NMR  (101 MHz,  CDCl3)  δ  168.09,  154.18,  135.10,  133.65,  131.00,  129.05,  127.59,  126.35,  125.22,  123.27, 

121.65. GC‐EIMS (m/z, %): 211 (100), 184 (25), 108 (75), 82 (34), 68 (54). Elemental Analysis calculated for C13H9NS: C, 

73.90; H, 4.29; N, 6.63; S, 15.17; experimental: C, 74.01; H, 3.98; N, 6.53; S, 15.12 

2‐(4‐fluorophenyl)benzo[d]oxazole  (6c)3  has  been  synthesized  following  small  scale 

flow  procedure  using  the  appropriate  benzyl  alcohol  (4  mmol)  and  o‐aminophenol  (3.7  mmol)  in  95%  Yield.  Pale 

yellow crystals. M.p. 94‐96. 1H‐NMR (400 MHz, CDCl3) δ 8.32 – 8.21 (m, 2H), 7.81 – 7.71 (m, 1H), 7.63 – 7.54 (m, 1H), 

7.36 (dd, J = 6.0, 3.2 Hz, 2H), 7.22 (t, J = 8.6 Hz, 2H). 13C‐NMR (101 MHz, CDCl3) δ 164.9 (d, JCF= 251.2 Hz), 162.2, 150.8, 

142.0, 129.9 (d,  JCF= 8.9 Hz), 125.2, 124.7, 123.5 (d,  JCF= 3.0 Hz), 120.0, 116.2  (d,  JCF= 22.1 Hz), 110.6. 19F‐NMR (376 

MHz, CDCl3) δ ‐ 107.4. GC‐EIMS (m/z, %): 213 (100), 194 (63), 193 (17), 180 (57), 161 (30), 121 (18). Elemental Analysis 

calculated for C13H8FNO: C, 73.23; H, 3.78; N, 6.57; experimental: C, 73.18; H, 3.59; N, 6.40 

2‐(4‐(trifluoromethyl)phenyl)benzo[d]oxazole  (6d)3  has  been  synthesized  following 

small scale flow procedure using the appropriate benzyl alcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 96% Yield. 

White crystals. M.p. 145‐146. 1H‐NMR (400 MHz, CDCl3) δ 8.37 (d, J = 8.1 Hz, 2H), 7.80 (t, J = 8.3 Hz, 3H), 7.65 – 7.57 

(m, 1H), 7.40  (td,  J = 6.1, 5.0, 3.5 Hz, 2H).  13C‐NMR (101 MHz, CDCl3) δ 161.5, 150.9, 141.9, 133.0  (q,  JCF= 32.8 Hz), 

130.4, 127.9, 125.9 (q, JCF= 3.7 Hz), 125.8, 125.0, 122.4 (q, JCF= 270.8 Hz), 120.4, 110.8. 19F‐NMR (376 MHz, CDCl3) δ – 

63.0. GC‐EIMS (m/z, %): 263 (100), 244 (62), 243 (15), 181 (60), 121 (24). Elemental Analysis calculated for C14H8F3NO: 

C, 63.88; H, 3.06; N, 5.32; experimental: C, 63.64; H, 2.98; N, 5.12 

ESI - 10

Page 11: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

2‐(4‐methoxyphenyl)benzo[d]oxazole (6e)1 has been synthesized following small scale 

flow  procedure  using  the  appropriate  benzyl  alcohol  (4  mmol)  and  o‐aminophenol  (3.7  mmol)  in  98%  Yield.  Pale yellow crystals. M.p. 99‐101.1H‐NMR (400 MHz, CDCl3) δ 8.21 (d, J = 8.9 Hz, 2H), 8.08 (d, J = 8.8 Hz, 1H), 7.83 – 7.67 (m, 

1H), 7.59 – 7.52 (m, 1H), 7.37 – 7.28 (m, 2H), 7.03 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 1H), 3.89 (s, 3H). 13C‐NMR (101 

MHz, CDCl3) δ 163.2, 162.4, 150.6, 142.1, 132.3, 129.5, 124.7, 124.5, 121.8, 119.6, 119.5, 114.4, 113.7, 110.4, 55.5. GC‐

EIMS (m/z, %): 225 (100), 195 (80), 181 (64), 160 (25), 121 (15), 107 (55). Elemental Analysis calculated for C14H11NO2: 

C, 74.65; H, 4.92; N, 6.22; experimental: C, 74.50; H, 4.84; N, 6.16 

 

 

2‐(4‐(methylthio)phenyl)benzo[d]oxazole  (6f)1  has  been  synthesized  following  small 

scale flow procedure using the appropriate benzyl alcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 94% Yield. Pale 

yellow crystals. M.p. 105‐107. 1H‐NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.6 Hz, 2H), 7.82 – 7.68 (m, 1H), 7.62 – 7.51 (m, 

1H), 7.41 – 7.30  (m, 4H), 2.55  (s, 3H).  13C‐NMR  (101 MHz, CDCl3) δ 162.9, 150.6, 143.8, 142.0, 127.9, 125.8, 125.0, 

124.6,  123.2,  119.8,  110.5,  15.0.  GC‐EIMS  (m/z,  %):  241  (100),  196  (74),  195  (82),  181  (77),  121  (28),  106  (53). 

Elemental Analysis calculated for C14H11NOS: C, 69.68; H, 4.59; N, 5.80; S, 13.29; experimental: C, 69.33; H, 4.12; N, 

5.64; S, 13.25 

 

2‐(4‐(sec‐butyl)phenyl)benzo[d]oxazole  (6g) has been  synthesized  following  small 

scale  flow  procedure  using  the  appropriate  benzyl  alcohol  (4 mmol)  and o‐aminophenol  (3.7 mmol)  in  99%  Yield. White crystals. M.p. 98‐101.1H‐NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.0 Hz, 2H), 7.81 – 7.73 (m, 1H), 7.61 – 7.54 (m, 

1H), 7.38 – 7.28 (m, 4H), 2.56 (d, J = 7.2 Hz, 2H), 1.94 (dt, J = 13.5, 6.8 Hz, 1H), 0.94 (d, J = 6.6 Hz, 6H). 13C‐NMR (101 

MHz, CDCl3) δ 163.4, 150.7, 145.9, 142.1, 129.7, 127.5, 124.9, 124.6, 124.5, 119.9, 110.5, 45.5, 30.2, 29.7, 22.4. GC‐

EIMS (m/z, %): 251 (100), 223 (43), 222 (32), 196 (77), 195 (63), 145 (20), 121 (33). Elemental Analysis calculated for 

C17H17NO: C, 81.24; H, 6.82; N, 5.57; experimental: C, 81.09; H, 6.64; N, 5.32 

 

 

2‐(3‐methoxyphenyl)benzo[d]oxazole  (6h)  has  been  synthesized  following  small  scale 

flow procedure  using  the  appropriate benzyl  alcohol  (4 mmol)  and o‐aminophenol  (3.7 mmol)  in  98% Yield. White 

crystals. M.p. 70‐72. 1H‐NMR (400 MHz, CDCl3) δ 7.86 (d, J = 7.7 Hz, 1H), 7.79 (dd, J = 6.2, 2.9 Hz, 2H), 7.58 (dt, J = 7.4, 

3.7 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.36 (dd, J = 6.0, 3.3 Hz, 2H), 7.09 (dd, J = 8.2, 2.6 Hz, 1H), 3.92 (s, 3H). 13C‐NMR 

(101 MHz, CDCl3) δ 163.0, 160.0, 150.8, 142.0, 130.0, 128.3, 125.2, 124.6, 120.1, 120.0, 118.4, 111.9, 110.6, 55.5. GC‐

EIMS (m/z, %): 225 (100), 195 (82), 181 (60), 180 (17), 160 (28), 121 (18). Elemental Analysis calculated for C14H11NO2: 

C, 74.65; H, 4.92; N, 6.22; experimental: C, 74.54; H, 4.82; N, 6.20 

 

 

ESI - 11

Page 12: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

2‐(3‐chlorophenyl)benzo[d]oxazole  (6k)  has  been  synthesized  following  small  scale  flow 

procedure using the appropriate benzyl alcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 98% Yield. White crystals. 

M.p. 125‐127. 1H‐NMR (400 MHz, CDCl3) δ 8.26 (d, J = 1.9 Hz, 1H), 8.14 (dd, J = 7.5, 1.1 Hz, 1H), 7.81 – 7.75 (m, 1H), 

7.62 – 7.56 (m, 1H), 7.53 – 7.42 (m, 2H), 7.42 – 7.33 (m, 2H). 13C‐NMR (101 MHz, CDCl3) δ 161.7, 150.8, 141.9, 135.1, 

131.5, 130.3, 128.9, 127.6, 125.7, 125.6, 124.8, 120.2, 110.7. GC‐EIMS (m/z, %): 231 (33), 229 (100), 197 (52), 196 (44), 

181 (29), 160 (37). Elemental Analysis calculated for C13H8ClNO: C, 67.99; H, 3.51; N, 6.10; experimental: C, 67.83; H, 

3.34; N, 6.01 

 

 

2‐(3‐bromophenyl)benzo[d]oxazole  (6i)  has  been  synthesized  following  small  scale  flow 

procedure using  the appropriate benzyl  alcohol  (4 mmol)  and o‐aminophenol  (3.7 mmol)  in 96% Yield.  Pale brown crystals. M.p. 128‐129. 1H‐NMR (400 MHz, CDCl3) δ 8.41 (t, J = 1.8 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.81 – 7.75 (m, 1H), 

7.65 (dt, J = 8.1, 1.4 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.42 – 7.33 (m, 3H). 13C‐NMR (101 MHz, CDCl3) δ 161.5, 150.8, 141.9, 

134.4, 130.5, 130.5, 129.1, 126.1, 125.6, 124.8, 123.0, 120.2, 110.7. GC‐EIMS (m/z, %): 275 (100), 273 (100), 247 (32), 

245  (31),  194  (51),  166  (23),  139  (17).  Elemental  Analysis  calculated  for  C13H8BrNO:  C,  56.96;  H,  2.94;  N,  5.11; 

experimental: C, 56.93; H, 2.90; N, 5.03 

 

 

2‐(3‐nitrophenyl)benzo[d]oxazole  (6j)4  has  been  synthesized  following  small  scale  flow 

procedure using the appropriate benzyl alcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 92% Yield. Yellow crystals. M.p. 209‐211. 1H‐NMR (400 MHz, CDCl3) δ 9.11 (t, J = 2.0 Hz, 1H), 8.59 (d, J = 7.8 Hz, 1H), 8.43 – 8.36 (m, 1H), 7.87 – 

7.78 (m, 1H), 7.74 (t, J = 8.0 Hz, 1H), 7.69 – 7.60 (m, 1H), 7.49 – 7.35 (m, 2H). 13C‐NMR (101 MHz, CDCl3) δ 160.6, 150.9, 

148.7, 141.8, 133.0, 130.2, 129.0, 126.1, 125.8, 125.2, 122.5, 120.5, 110.9. GC‐EIMS (m/z, %): 240 (100), 224 (17), 196 

(22),  195  (47),  121  (22).  Elemental  Analysis  calculated  for  C13H8N2O3:  C,  65.00;  H,  3.36;  N,  11.66;  experimental:  C, 

65.10; H, 3.12; N, 11.43 

 

 

 

2‐(3,5‐dibromophenyl)benzo[d]oxazole (6l) has been synthesized following small scale flow 

procedure using  the appropriate benzyl  alcohol  (4 mmol)  and o‐aminophenol  (3.7 mmol)  in 98% Yield.  Pale brown crystals. M.p. 132‐133. 1H‐NMR (400 MHz, CDCl3) δ 8.34 (d, J = 1.8 Hz, 2H), 7.88 – 7.72 (m, 2H), 7.65 – 7.54 (m, 1H), 

7.45 – 7.36 (m, 2H). 13C‐NMR (101 MHz, CDCl3) δ 160.1, 150.8, 141.7, 136.7, 130.4, 129.1, 126.0, 125.1, 123.5, 120.4, 

110.8.  GC‐EIMS  (m/z, %):  355  (49),  353  (100),  351  (50),  274  (22),  272  (22),  193  (17),  165  (18).  Elemental  Analysis 

calculated for C13H7Br2NO: C, 44.23; H, 2.00; N, 3.97; experimental: C, 44.18; H, 2.01; N, 3.78 

ESI - 12

Page 13: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

 

 

2‐mesitylbenzo[d]oxazole  (6m)  has  been  synthesized  following  small  scale  flow 

procedure using the appropriate benzylalcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 98% Yield. White crystals. 

M.p. 112‐115. 1H‐NMR (400 MHz, CDCl3) δ 7.87 – 7.80 (m, 2H), 7.64 – 7.55 (m, 1H), 7.40 – 7.37 (m, 1H), 6.98 (s, 2H), 

2.36 – 2.30 (m, 9H). 13C‐NMR (101 MHz, CDCl3) δ 163.3, 150.6, 141.6, 140.3, 138.5, 130.5, 128.7, 125.0, 124.9, 124.2, 

120.2,  110.6,  21.3,  20.4.  GC‐EIMS  (m/z,  %):  237  (100),  222  (48),  208  (43),  194  (20),  130  (26),  118  (52).  Elemental 

Analysis calculated for C16H15NO: C, 80.98; H, 6.37; N, 5.90; experimental: C, 80.82; H, 6.17; N, 5.88 

 

 

2‐(2,3,4,5,6‐pentamethylphenyl)benzo[d]oxazole  (6n)  has  been  synthesized  following 

small scale flow procedure using the appropriate benzyl alcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 99% Yield. 

White crystals. M.p. 130‐131. 1H‐NMR (400 MHz, Chloroform‐d) δ 7.93 – 7.79 (m, 1H), 7.63 – 7.55 (m, 1H), 7.45 – 7.33 

(m, 2H), 2.31 (s, 3H), 2.25 (s, 6H), 2.09 (s, 6H). 13C‐NMR (101 MHz, CDCl3) δ 164.8, 150.7, 141.5, 137.6, 133.4, 132.9, 

126.3, 124.9, 124.2, 120.2, 110.7, 18.1, 17.0, 16.3. GC‐EIMS (m/z, %): 265 (100), 250 (52), 235 (25), 157 (46), 132 (22), 

114 (16). Elemental Analysis calculated for C18H19NO: C, 81.47; H, 7.22; N, 5.28; experimental: C, 81.27; H, 7.14; N, 5.18 

 

 

2‐(benzo[d][1,3]dioxol‐5‐yl)benzo[d]oxazole  (6o)  has  been  synthesized  following 

small scale flow procedure using the appropriate benzyl alcohol (4 mmol) and o‐aminophenol (3.7 mmol) in 99% Yield. 

Pale yellow crystals. M.p 137‐138. 1H‐NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 8.2, 1.7 Hz, 1H), 7.78 – 7.69 (m, 2H), 

7.59 – 7.52  (m, 1H), 7.39 – 7.29  (m, 2H), 6.95  (d, J = 8.2 Hz, 1H), 6.08  (s, 2H).  13C‐NMR (101 MHz, CDCl3) δ 162.88, 

150.68,  150.58,  148.24,  142.19,  124.79,  124.51,  122.81,  121.17,  119.73,  110.43,  108.75,  107.70,  101.77.  GC‐EIMS 

(m/z,  %):  239  (100),  238  (82),  209  (25),  181  (32),  153  (44),  119  (51),  63  (55).  Elemental  Analysis  calculated  for 

C14H9NO3: C, 70.29; H, 3.79; N, 5.86; experimental: C, 70.01; H, 3.70; N, 5.78 

 

 

6‐methyl‐2‐phenylbenzo[d]oxazole (6p) has been synthesized following small scale flow 

procedure using benzyl alcohol (4 mmol) and 3‐methyl‐2‐aminophenol (3.7 mmol) in 98% Yield. White crystals. M.p. 

143‐145. 1H NMR (400 MHz, CDCl3) δ 8.26 – 8.23 (m, 2H), 7.54 – 7.52 (m, 3H), 7.47 (d, J = 8.8 Hz, 1H), 7.29 (d, J = 2.4 

Hz, 1H), 6.97 (dd, J = 8.9, 2.6 Hz, 1H), 3.89 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 163.81, 157.41, 145.42, 142.91, 131.42, 

128.90, 127.50, 127.25, 113.74, 110.73, 102.87, 55.93. GC‐EIMS (m/z, %): 209 (100), 208 (75), 195 (35), 194 (25), 130 

ESI - 13

Page 14: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

(55), 118 (32). Elemental Analysis calculated for C14H11NO: C, 80.36; H, 5.30; N, 6.69; experimental: C, 80.34; H, 5.28; 

N, 6.68 

 

5‐methoxy‐2‐phenylbenzo[d]oxazole (6q) has been synthesized following small scale 

flow procedure using benzyl alcohol (4 mmol) and 4‐methoxy‐2‐aminophenol (3.7 mmol) in 98% Yield. White crystals. M.p. 155‐157. 1H NMR (400 MHz, CDCl3) δ 8.29 – 8.23 (m, 2H), 7.67 (d, J = 8.1 Hz, 1H), 7.58 – 7.52 (m, 3H), 7.42 (s, 1H), 7.20 (dd, J = 8.2, 1.5 Hz, 1H), 2.54 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 162.58, 155.68, 151.07, 139.92, 135.59, 131.30, 128.89, 127.47, 125.83, 119.35, 110.78, 21.83. GC‐EIMS (m/z,%): 225 (100), 195 (75), 194 (35), 181 (45), 180 (37), 160 (25), 158 (55), 121 (40). Elemental Analysis calculated for C14H11NO2: C, 74.65; H, 4.92; N, 6.22; experimental: C, 74.61; H, 4.88; N, 6.20  

 

 

7‐chloro‐2‐phenylbenzo[d]oxazole  (6r)    has  been  synthesized  following  small  scale  flow 

procedure using benzyl alcohol (4 mmol) and 6‐chloro‐2‐aminophenol (3.7 mmol)  in 95% Yield. Pale yellow crystals. M.p. 118‐121. 1H NMR (400 MHz, CDCl3) δ 8.32 (dd, J = 7.7, 2.0 Hz, 2H), 7.69 (dd, J = 7.7, 1.2 Hz, 1H), 7.59 – 7.55 (m, 

3H), 7.39 – 7.28 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 163.45, 158.64, 147.40, 143.36, 131.99, 129.00, 127.88, 126.56, 

125.43, 125.33, 118.48. GC‐EIMS (m/z, %): 231 (35), 229 (100), 197 (22), 196 (64), 194 (44), 181 (32), 160 (57), 158 

(25). Elemental Analysis calculated for C13H8ClNO: C, 67.99; H, 3.51; N, 6.10; experimental: C, 67.93; H, 3.46; N, 6.11 

 

 

  2‐(3,5‐dichlorophenyl)benzo[d]oxazole‐6‐carboxylic  acid  (Tafamidis)  has  been 

synthesized  following  small  scale  flow  procedure  using  3,5‐dichlorobenzyl  alcohol  (4  mmol)  and  4‐amino‐3‐

hydroxybenzoic acid  (3.7 mmol)  in 92% Yield. Pale yellow crystals. M.p. 187‐188.  1H NMR  (400 MHz, Acetone‐d6) δ 

8.92 (s, 1H), 8.15 (d, J = 2.0 Hz, 2H), 7.63 – 7.58 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H). 13C NMR (101 MHz, Acetone‐d6) δ 

166.27, 157.95, 152.25, 139.57, 135.17, 130.80, 130.72, 127.54, 126.05, 121.41, 120.07, 112.44. GC‐EIMS  (m/z, %): 

310 (63), 308 (100), 306 (50), 292 (22), 294 (27), 272 (47), 264 (44), 236 (38), 181 (25). Elemental Analysis calculated 

for C14H7Cl2NO3: C, 54.58; H, 2.29; N, 4.55; experimental: C, 54.57; H, 2.25; N, 4.58 

E‐factor = [24 g (CPME) + 0.708 g (3,5‐dichlorobenzyl alcohol) + 0.566 g (o‐aminophenol) + 3.9 g (EtOH)] – 

[23.5 (CPME recovered) + 1.05 g (product, 92 % yield)]/ 1.05 g (product, 92 % yield)] = 4.4 

References: 

[1] N. Khatun, S. Guin, S. K. Routa, B. K. Patel RSC Adv., 2014, 4, 10770‐10778 

[2] K. Chakrabarti, M. Majia, S. Kundu Green Chem., 2019, 21, 1999‐2004 

[3] L. Tang, Z. Yang, T. Sun, D. Zhang, X. Ma, W. Rao, Y. Zhou Adv. Synth. Catal. 2018, 360, 3055–3062 

[4] P. Saha, T. Ramana, N. Purkait, M. A. Ali, R. Paul, T. Punniyamurthy J. Org. Chem., 2009, 74, 8719–8725 

ESI - 14

Page 15: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-phenylbenzo[d]oxazole (6a)

Lit. Ref.

METHOD: Reservoir 1 was charged with 1M CPME solution of benzyl alcohol (43.2 mmol, 4.7 g, 4.5 mL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (40 mmol, 4.3 g in 43 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 25 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 15 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6a (39.2 mmol, 7.7 g) in 98% yield with a productivity of 2.3 g/h after steady state was reached.

Mol Formula C13H9NO m.p. 102-105 °C Elemental Analysis: Calc.: C, 79.98; H, 4.65; N, 7.17; found: C, 79.91; H, 4.68; N, 7.02

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

7.37 – 7.35 2 m

7.62 – 7.50 4 m

7.81 – 7.79 1 m

8.29 – 8.26 2 m

13C NMR (100.6 MHz, CDCl3) δ : 163.1, 150.8, 142.1, 131.5, 128.9, 127.6, 127.2, 125.1, 124.6, 120.0, 110.6.

GC-EIMS (m/z, %): 195 (100), 181 (68), 180 (54), 161 (62), 145 (22), 121 (16).

ESI - 15

Page 16: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-phenylbenzo[d]thiazole (6b)

Lit. Ref. K. Chakrabarti, M. Majia, S. Kundu Green Chem., 2019, 21, 1999-2004

METHOD: Reservoir 1 was charged with 4 mL of CPME and benzyl alcohol (4 mmol, 0.432 g, 414 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminothiophenol solution (3.7 mmol, 0.463 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6b (3.6 mmol, 0.766 g) in 98% yield

Mol Formula C13H9NS m.p. 116-118 °C Elemental Analysis: Calc.: C, 73.90; H, 4.29; N, 6.63; S, 15.17; found: C, 74.01; H, 3.98; N, 6.53; S, 15.12

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

7.42 – 7.39 1 m

7.54 – 7.48 4 m

7.94 – 7.89 1 m

8.15 – 8.08 3 m

13C NMR (100.6 MHz, CDCl3) δ : 168.09, 154.18, 135.10, 133.65, 131.00, 129.05, 127.59, 126.35, 125.22, 123.27, 121.65

GC-EIMS (m/z, %): 211 (100), 184 (25), 108 (75), 82 (34), 68 (54)

ESI - 16

Page 17: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(4-fluorophenyl)benzo[d]oxazole (6c)

Lit. Ref. L. Tang, Z. Yang, T. Sun, D. Zhang, X. Ma, W. Rao, Y. Zhou Adv. Synth. Catal. 2018, 360, 3055–3062

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL W

F

FF

METHOD: Reservoir 1 was charged with 4 mL of CPME and 4-fluoro benzyl alcohol (4 mmol, 436 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6c (3.5 mmol, 0.749 g) in 95% yield

Mol Formula C13H8FNO m.p. 94-96 °C

Elemental Analysis: Calc.: C, 73.23; H, 3.78; N, 6.57; found: C, 73.18; H, 3.59; N, 6.40

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.32 – 8.21 2 m

7.81 – 7.71 1 m

7.63 – 7.54 1 m

7.36 2 dd 6.0, 3.2

7.22 2 t 8.6

13C NMR (100.6 MHz, CDCl3) δ : 164.9 (d, JCF= 251.2 Hz), 162.2, 150.8, 142.0, 129.9 (d, JCF= 8.9 Hz), 125.2, 124.7, 123.5 (d, JCF= 3.0 Hz), 120.0, 116.2 (d, JCF= 22.1 Hz), 110.6

GC-EIMS (m/z, %): 213 (100), 194 (63), 193 (17), 180 (57), 161 (30), 121 (18)

ESI - 17

Page 18: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (6d)

Lit. Ref. L. Tang, Z. Yang, T. Sun, D. Zhang, X. Ma, W. Rao, Y. Zhou Adv. Synth. Catal. 2018, 360, 3055–3062

METHOD: Reservoir 1 was charged with 4 mL of CPME and 4-trifluoromethyl benzyl alcohol (4 mmol, 548 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6d (3.6 mmol, 0.935 g) in 96% yield

Mol Formula C14H8F3NO m.p. 145-146 °C

Elemental Analysis: Calc.: C, 63.88; H, 3.06; N, 5.32; found: C, 63.64; H, 2.98; N, 5.12

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.37 2 d 8.1

7.80 3 t 8.3

7.65 – 7.57 1 m

7.40 2 td 6.1, 5.0, 3.5

13C NMR (100.6 MHz, CDCl3) δ : 161.5, 150.9, 141.9, 133.0 (q, JCF= 32.8 Hz), 130.4, 127.9, 125.9 (q, JCF= 3.7 Hz), 125.8, 125.0, 122.4 (q, JCF= 270.8 Hz), 120.4, 110.8

GC-EIMS (m/z, %): 263 (100), 244 (62), 243 (15), 181 (60), 121 (24)

ESI - 18

Page 19: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(4-methoxyphenyl)benzo[d]oxazole (6e)

Lit. Ref. N. Khatun, S. Guin, S. K. Routa, B. K. Patel RSC Adv., 2014, 4, 10770-10778

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL W

MeO

OMeMeO

METHOD: Reservoir 1 was charged with 4 mL of CPME and 4-methoxy benzyl alcohol (4 mmol, 497 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6e (3.6 mmol, 0.817 g) in 98% yield

Mol Formula C14H11NO2 m.p. 99-101 °C

Elemental Analysis: Calc.: C, 74.65; H, 4.92; N, 6.22; found: C, 74.50; H, 4.84; N, 6.16

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.21 2 d 8.9

8.08 1 d 8.8

7.83 – 7.67 1 m

7.59 – 7.52 1 m

7.37 – 7.28 2 m 8.1

7.03 2 d 8.9

6.95 1 d 8.9

3.89 3 s

13C NMR (100.6 MHz, CDCl3) δ : 163.2, 162.4, 150.6, 142.1, 132.3, 129.5, 124.7, 124.5, 121.8, 119.6, 119.5, 114.4, 113.7, 110.4, 55.5

GC-EIMS (m/z, %): 225 (100), 195 (80), 181 (64), 160 (25), 121 (15), 107 (55)

ESI - 19

Page 20: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(4-(methylthio)phenyl)benzo[d]oxazole (6f)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and 4-methylthio benzyl alcohol (4 mmol, 617 mg), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6f (3.4 mmol, 0.820 g) in 94% yield

Mol Formula C14H11NOS m.p. 105-107 °C Elemental Analysis: Calc.: C, 69.68; H, 4.59; N, 5.80; S, 13.29; found: 69.33; H, 4.12; N, 5.64; S, 13.25

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.17 2 d 8.6

7.82 – 7.68 1 m 8.1

7.62 – 7.51 1 m 8.9

7.41 – 7.30 4 m 8.9

2.55 3 s

13C NMR (100.6 MHz, CDCl3) δ : 162.9, 150.6, 143.8, 142.0, 127.9, 125.8, 125.0, 124.6, 123.2, 119.8, 110.5, 15.0

GC-EIMS (m/z, %): 241 (100), 196 (74), 195 (82), 181 (77), 121 (28), 106 (53)

ESI - 20

Page 21: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(4-(sec-butyl)phenyl)benzo[d]oxazole (6g)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and 4-secbutyl benzyl alcohol (4 mmol, 672 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6g (3.6 mmol, 0.919 g) in 99% yield

Mol Formula C17H17NO m.p. 98-101 °C

Elemental Analysis: Calc.: C, 81.24; H, 6.82; N, 5.57; found: C, 81.09; H, 6.64; N, 5.32

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.17 2 d 8.0

7.81 – 7.73 1 m

7.61 – 7.54 1 m

7.38 – 7.28 4 m

2.56 2 d 7.2

1.94 1 dt 13.5, 6.8

0.94 6 d 6.6

13C NMR (100.6 MHz, CDCl3) δ : 163.4, 150.7, 145.9, 142.1, 129.7, 127.5, 124.9, 124.6, 124.5, 119.9, 110.5, 45.5, 30.2, 29.7, 22.4

GC-EIMS (m/z, %): 251 (100), 223 (43), 222 (32), 196 (77), 195 (63), 145 (20), 121 (33).

ESI - 21

Page 22: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(3-methoxyphenyl)benzo[d]oxazole (6h)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and 3-methoxy benzyl alcohol (4 mmol, 497 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6h (3.6 mmol, 0.816 g) in 98% yield

Mol Formula C14H11NO2 m.p. 70-72 °C

Elemental Analysis: Calc.: C, 74.65; H, 4.92; N, 6.22; found: C, 74.54; H, 4.82; N, 6.20

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

7.86 1 d 7.7

7.79 2 dd 6.2, 2.9

7.58 1 dt 7.4, 3.7

7.43 1 t 8.0

7.36 2 dd 6.0, 3.3

7.09 1 dd 8.2, 2.6

3.92 3 s

13C NMR (100.6 MHz, CDCl3) δ : 163.0, 160.0, 150.8, 142.0, 130.0, 128.3, 125.2, 124.6, 120.1, 120.0, 118.4, 111.9, 110.6, 55.5

GC-EIMS (m/z, %): 225 (100), 195 (82), 181 (60), 180 (17), 160 (28), 121 (18)

ESI - 22

Page 23: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(3-chlorophenyl)benzo[d]oxazole (6k)

Lit. Ref.

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL WClCl

Cl

METHOD: Reservoir 1 was charged with 4 mL of CPME and 3-chloro benzyl alcohol (4 mmol, 471 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6k (3.6 mmol, 0.827 g) in 98% yield

Mol Formula C13H8ClNO m.p. 125-127 °C

Elemental Analysis: Calc.: C, 67.99; H, 3.51; N, 6.10; found: C, 67.83; H, 3.34; N, 6.01

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.26 1 d 1.9

8.14 1 dd 7.5, 1.1

7.81 – 7.75 1 m

7.62 – 7.56 1 m

7.53 – 7.42 2 m

7.42 – 7.33 2 m

13C NMR (100.6 MHz, CDCl3) δ : 161.7, 150.8, 141.9, 135.1, 131.5, 130.3, 128.9, 127.6, 125.7, 125.6, 124.8, 120.2, 110.7

GC-EIMS (m/z, %): 231 (33), 229 (100), 197 (52), 196 (44), 181 (29), 160 (37)

ESI - 23

Page 24: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(3-bromophenyl)benzo[d]oxazole (6i)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and 3-bromo benzyl alcohol (4 mmol, 354 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6i (3.5 mmol, 0.973 g) in 96% yield

Mol Formula C13H8BrNO m.p. 128-129 °C

Elemental Analysis: Calc.: C, 56.96; H, 2.94; N, 5.11; found: C, 56.93; H, 2.90; N, 5.03

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.41 1 t 1.8

8.18 1 d 7.8

7.81 – 7.75 1 m

7.65 1 dt 8.1, 1.4

7.61 – 7.55 1 m

7.42 – 7.33 3 m

13C NMR (100.6 MHz, CDCl3) δ : 161.5, 150.8, 141.9, 134.4, 130.5, 130.5, 129.1, 126.1, 125.6, 124.8, 123.0, 120.2, 110.7

GC-EIMS (m/z, %): 275 (100), 273 (100), 247 (32), 245 (31), 194 (51), 166 (23), 139 (17)

ESI - 24

Page 25: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(3-nitrophenyl)benzo[d]oxazole (6j)

Lit. Ref. P. Saha, T. Ramana, N. Purkait, M. A. Ali, R. Paul, T. Punniyamurthy J. Org. Chem., 2009, 74, 8719–8725

METHOD: Reservoir 1 was charged with 4 mL of CPME and 3-nitro benzyl alcohol (4 mmol, 475 μL), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6j (3.4 mmol, 0.818 g) in 92% yield

Mol Formula C13H8N2O3 m.p. 209-211 °C

Elemental Analysis: Calc.: C, 65.00; H, 3.36; N, 11.66; found: C, 65.10; H, 3.12; N, 11.43

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

9.11 1 t 2.0

8.59 1 d 7.8

8.43 – 8.36 1 m 7.8

7.87 – 7.78 1 m

7.74 1 t 8.0

7.69 – 7.60 1 m

7.49 – 7.35 2 m

13C NMR (100.6 MHz, CDCl3) δ : 160.6, 150.9, 148.7, 141.8, 133.0, 130.2, 129.0, 126.1, 125.8, 125.2, 122.5, 120.5, 110.9.

GC-EIMS (m/z, %): 240 (100), 224 (17), 196 (22), 195 (47), 121 (22).

ESI - 25

Page 26: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(3,5-dibromophenyl)benzo[d]oxazole (6l)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and 3,5-dinitro benzyl alcohol (4 mmol, 1.06 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6l (3.6 mmol, 1.3 g) in 98% yield

Mol Formula C13H7Br2NO m.p. 132-133 °C

Elemental Analysis: Calc.: C, 44.23; H, 2.00; N, 3.97; found: C, 44.18; H, 2.01; N, 3.78

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.34 2 d 1.8

7.87 – 7.78 1 m

7.88 – 7.72 1 m 8.0

7.65 – 7.54 1 m

7.45 – 7.36 2 m

13C NMR (100.6 MHz, CDCl3) δ : 160.1, 150.8, 141.7, 136.7, 130.4, 129.1, 126.0, 125.1, 123.5, 120.4, 110.8

GC-EIMS (m/z, %): 355 (49), 353 (100), 351 (50), 274 (22), 272 (22), 193 (17), 165 (18)

ESI - 26

Page 27: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-mesitylbenzo[d]oxazole (6m)

Lit. Ref.

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL W

Me

MeMe

Me

Me

Me

Me

Me Me

METHOD: Reservoir 1 was charged with 4 mL of CPME and 2,4,6-trimethyl benzyl alcohol (4 mmol, 0.600 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6m (3.6 mmol, 0.854 g) in 98% yield

Mol Formula C16H15NO m.p. 112-115 °C

Elemental Analysis: Calc.: C, 80.98; H, 6.37; N, 5.90; found: C, 80.82; H, 6.17; N, 5.88

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

7.87 – 7.80 2 m

7.64 – 7.55 1 m

7.40 – 7.37 1 m

6.98 2 s

2.36 – 2.30 9 m

13C NMR (100.6 MHz, CDCl3) δ : 163.3, 150.6, 141.6, 140.3, 138.5, 130.5, 128.7, 125.0, 124.9, 124.2, 120.2, 110.6, 21.3, 20.4

GC-EIMS (m/z, %): 237 (100), 222 (48), 208 (43), 194 (20), 130 (26), 118 (52)

ESI - 27

Page 28: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(2,3,4,5,6-pentamethylphenyl)benzo[d]oxazole (6n)

Lit. Ref.

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL WMe

Me

Me MeMe

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

METHOD: Reservoir 1 was charged with 4 mL of CPME and 2,3,4,5,6-pentamethyl benzyl alcohol (4 mmol, 0.713 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6n (3.7 mmol, 0.972 g) in 99% yield

Mol Formula C18H19NO m.p. 130-131 °C

Elemental Analysis: Calc.: C, 81.47; H, 7.22; N, 5.28; found: C, 81.27; H, 7.14; N, 5.18

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

7.93 – 7.79 1 m

7.63 – 7.55 1 m 1.8

7.45 – 7.33 2 m

2.31 3 s 8.0

2.25 6 s

2.09 6 s

13C NMR (100.6 MHz, CDCl3) δ : 164.8, 150.7, 141.5, 137.6, 133.4, 132.9, 126.3, 124.9, 124.2, 120.2, 110.7, 18.1, 17.0, 16.3

GC-EIMS (m/z, %): 265 (100), 250 (52), 235 (25), 157 (46), 132 (22), 114 (16)

ESI - 28

Page 29: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(benzo[d][1,3]dioxol-5-yl)benzo[d]oxazole (6o)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and 4-piperyl benzyl alcohol (4 mmol, 0.609 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.404 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6o (3.7 mmol, 0.876 g) in 99% yield

Mol Formula C14H9NO3 m.p. 137-138 °C

Elemental Analysis: Calc.: C, 70.29; H, 3.79; N, 5.86; found: C, 70.01; H, 3.70; N, 5.78

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

7.84 1 dd 8.2, 1.7

7.78 – 7.69 2 m 1.8

7.59 – 7.52 1 m

7.39 – 7.29 2 m

6.95 1 d 8.2

6.08 2 s

13C NMR (100.6 MHz, CDCl3) δ : 162.88, 150.68, 150.58, 148.24, 142.19, 124.79, 124.51, 122.81, 121.17, 119.73, 110.43, 108.75, 107.70, 101.77

GC-EIMS (m/z, %): 239 (100), 238 (82), 209 (25), 181 (32), 153 (44), 119 (51), 63 (55)

   

ESI - 29

Page 30: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 6-methyl-2-phenylbenzo[d]oxazole (6p)

Lit. Ref.

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL W

Me

Me

METHOD: Reservoir 1 was charged with 4 mL of CPME and benzyl alcohol (4 mmol, 0.432 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the 3-methyl-2-aminophenol solution (3.7 mmol, 0.455 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6p (3.6 mmol, 0.757 g) in 98% yield

Mol Formula C14H11NO m.p. 143-145 °C

Elemental Analysis: Calc.: C, 80.36; H, 5.30; N, 6.69; found: C, 80.34; H, 5.28; N, 6.68

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.26 – 8.23 2 m

7.54 – 7.52 3 m

7.47 1 d 8.8

7.29 1 d 2.4

6.97 1 dd 8.9, 2.6

3.89 3 s

13C NMR (100.6 MHz, CDCl3) δ : 163.81, 157.41, 145.42, 142.91, 131.42, 128.90, 127.50, 127.25, 113.74, 110.73, 102.87, 55.93

GC-EIMS (m/z, %): 209 (100), 208 (75), 195 (35), 194 (25), 130 (55), 118 (32)

 

   

ESI - 30

Page 31: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 5-methoxy-2-phenylbenzo[d]oxazole (6q)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and benzyl alcohol (4 mmol, 0.432 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the 4-methoxy-2-aminophenol solution (3.7 mmol, 0.514 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6q (3.6 mmol, 0.810 g) in 98% yield

Mol Formula C14H11NO2 m.p. 155-157 °C

Elemental Analysis: Calc.: C, 74.65; H, 4.92; N, 6.22; found: C, 74.61; H, 4.88; N, 6.20

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.29 – 8.23 2 m

7.67 1 d 8.1

7.58 – 7.52 3 m

7.42 1 s

7.20 1 dd 8.2, 1.5

2.54 3 s

13C NMR (100.6 MHz, CDCl3) δ : 162.58, 155.68, 151.07, 139.92, 135.59, 131.30, 128.89, 127.47, 125.83, 119.35, 110.78, 21.83

GC-EIMS (m/z, %): 225 (100), 195 (75), 194 (35), 181 (45), 180 (37), 160 (25), 158 (55), 121 (40)

 

   

ESI - 31

Page 32: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 7-chloro-2-phenylbenzo[d]oxazole (6r)

Lit. Ref.

METHOD: Reservoir 1 was charged with 4 mL of CPME and benzyl alcohol (4 mmol, 0.432 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the o-aminophenol solution (3.7 mmol, 0.531 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product 6r (3.5 mmol, 0.804 g) in 95% yield

Mol Formula C13H8ClNO m.p. 118-121 °C

Elemental Analysis: Calc.: C, 67.99; H, 3.51; N, 6.10; found: C, 67.93; H, 3.46; N, 6.11

1H NMR 400 MHz CDCl3

value No. H Mult. j value/Hz

8.32 2 dd 7.7, 2.0

7.69 1 dd 7.7, 1.2

7.59 – 7.55 3 m

7.39 – 7.28 2 m

13C NMR (100.6 MHz, CDCl3) δ : 163.45, 158.64, 147.40, 143.36, 131.99, 129.00, 127.88, 126.56, 125.43, 125.33, 118.48

GC-EIMS (m/z, %): 231 (35), 229 (100), 197 (22), 196 (64), 194 (44), 181 (32), 160 (57), 158 (25)

 

   

ESI - 32

Page 33: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

Chem. Name 2-(3,5-dichlorophenyl)benzo[d]oxazole-6-carboxylic acid (Tafamidis)

Lit. Ref.

OH

CPME

O

CPME O

N

NH2

OH

O2O2

K-MnH-Mn H

FL W FL WCl

Cl

Cl

Cl

HO

O

Cl

Cl

HO

O

METHOD: Reservoir 1 was charged with 4 mL of CPME and 3,5-dichlorobenzyl alcohol (4 mmol, 0.708 g), then the oxygen line has been set to 5 bar of pressure and the solvent started to flow through column 1 (filled with 78 mg of H-OMS) at a flow rate of 0.2 mL/min with a residence time of 13 minutes. When the flow reached the exit of column 1, the nitrogen line was set to 5 bar and the 4-Amino-3-hydroxybenzoic acid solution (3.7 mmol, 0.566 g in 4 mL of CPME 0.9M) previously charged into reservoir 2 started to mix with flow 1 into a T-piece. The resulting mixture continuously flowed through the loop, in which imine formation took place, before reaching column 2 (filled with 68 mg of K-OMS) at a flow rate of 0.2 mL/min with a residence time of 40 min. At the end of the process the system has been completely flushed, both line with 10 mL of CPME in order to wash the catalyst columns. The product has been collected into the product reservoir. Then CPME was recovered via distillation under reduced pressure (98% of the total amount, confirmed by 1H-NMR) and the residue was washed with 5 mL of EtOH in order to remove unreacted benzaldehyde, furnishing pure product Tafamidis (3.4 mmol, 1.05 g) in 92% yield

Mol Formula C14H7Cl2NO3 m.p. 187-188 °C

Elemental Analysis: Calc.: C, 54.58; H, 2.29; N, 4.55; found: C, 54.57; H, 2.25; N, 4.58

1H NMR 400 MHz Acetone-d6

value No. H Mult. j value/Hz

8.92 1 s

8.15 2 d 2

7.63 – 7.58 2 m

7.48 1 d 8.7

13C NMR (100.6 MHz, Acetone-d6) δ : 166.27, 157.95, 152.25, 139.57, 135.17, 130.80, 130.72, 127.54, 126.05, 121.41, 120.07, 112.44.

GC-EIMS (m/z, %): 310 (63), 308 (100), 306 (50), 292 (22), 294 (27), 272 (47), 264 (44), 236 (38), 181 (25).

 

ESI - 33

Page 34: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

2.184.261.00

2.07

7.350

7.360

7.367

7.373

7.524

7.529

7.534

7.541

7.547

7.577

7.585

7.592

7.597

7.601

7.785

7.791

7.799

7.807

8.264

8.273

8.283

8.288

2-phenylbenzo[d]oxazole (6a)

ESI - 34

Page 35: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180ppm

110.610

120.042

124.591

125.119

127.193

127.639

128.923

131.527

142.140

150.779

163.052

2-phenylbenzo[d]oxazole (6a)

ESI - 35

Page 36: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

1.044.29

1.00

2.99

7.378

7.381

7.396

7.399

7.401

7.416

7.419

7.490

7.493

7.499

7.506

7.510

7.514

7.516

7.522

7.528

7.531

7.900

7.903

7.907

7.920

7.923

7.926

8.093

8.096

8.098

8.104

8.108

8.110

8.115

8.119

8.122

8.125

8.128

2-phenylbenzo[d]thiazole (6b)

ESI - 36

Page 37: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180ppm

121.654

123.270

125.219

126.348

127.591

129.051

130.998

133.651

135.099

154.179

168.092

2-phenylbenzo[d]thiazole (6b)

ESI - 37

Page 38: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

2.062.161.011.00

2.08

7.198

7.219

7.241

7.351

7.359

7.366

7.374

7.570

7.578

7.584

7.586

7.593

7.759

7.765

7.769

7.774

7.782

8.250

8.255

8.263

8.268

8.272

8.286

2-(4-fluorophenyl)benzo[d]oxazole (6c)

ESI - 38

Page 39: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-100102030405060708090100110120130140150160170180ppm

110.596

116.114

116.335

119.984

123.453

123.483

124.707

125.183

129.829

129.918

141.989

150.772

162.194

163.595

166.107 2-(4-fluorophenyl)benzo[d]oxazole (6c)

ESI - 39

Page 40: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-135-130-125-120-115-110-105-100-95-90-85ppm

-107.511

-107.497

-107.489

-107.483

-107.474

-107.466

-107.460

-107.452

-107.438

2-(4-fluorophenyl)benzo[d]oxazole (6c)

ESI - 40

Page 41: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

2.021.003.04

2.04

7.370

7.384

7.388

7.396

7.405

7.410

7.423

7.599

7.603

7.611

7.615

7.622

7.776

7.796

7.805

7.818

8.362

8.382

2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (6d)

ESI - 41

Page 42: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180200ppm

110.812

120.415

122.399

124.961

125.830

125.879

125.918

125.956

125.993

127.869

130.440

132.513

132.840

133.165

133.493

141.895

150.870

161.489

2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (6d)

ESI - 42

Page 43: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-140-130-120-110-100-90-80-70-60-50-40-30-20-100ppm

-62.981

2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (6d)

ESI - 43

Page 44: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

3.33

1.032.31

2.341.131.22

1.002.32

3.890

6.935

6.957

7.020

7.043

7.301

7.314

7.319

7.329

7.338

7.343

7.356

7.544

7.550

7.552

7.567

7.744

7.748

7.754

7.758

7.761

7.766

8.066

8.088

8.199

8.221

2-(4-methoxyphenyl)benzo[d]oxazole (6e)

ESI - 44

Page 45: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180ppm

55.475

110.414

113.730

114.403

119.557

119.591

121.836

124.503

124.679

129.470

132.323

142.050

150.633

162.415

163.212

2-(4-methoxyphenyl)benzo[d]oxazole (6e)

ESI - 45

Page 46: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

3.10

4.010.981.00

1.97

2.552

7.337

7.344

7.349

7.360

7.365

7.559

7.566

7.568

7.571

7.577

7.582

7.750

7.756

7.761

7.763

7.766

7.773

8.155

8.177

2-(4-(methylthio)phenyl)benzo[d]oxazole (6f)

ESI - 46

Page 47: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180ppm

15.010

110.530

119.777

123.237

124.644

125.025

125.749

127.898

141.947

143.840

150.639

162.910

2-(4-(methylthio)phenyl)benzo[d]oxazole (6f)

ESI - 47

Page 48: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

6.21

1.12

2.02

3.950.941.00

1.99

0.932

0.948

1.901

1.918

1.935

1.952

1.969

2.553

2.571

7.298

7.318

7.333

7.343

7.346

7.356

7.565

7.575

7.588

7.757

7.762

7.769

7.772

7.780

8.161

8.181

2-(4-(sec-butyl)phenyl)benzo[d]oxazole (6g)

ESI - 48

Page 49: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160ppm

22.374

29.718

30.194

45.450

110.515

119.849

124.503

124.616

124.889

127.507

129.711

142.141

145.905

150.706

163.358

2-(4-(sec-butyl)phenyl)benzo[d]oxazole (6g)

ESI - 49

Page 50: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

3.27

1.00

2.06

1.09

1.05

2.00

1.04

3.92

0

7.07

57.

081

7.09

57.

101

7.33

8 7.

349

7.35

77.

364

7.37

27.

382

7.41

17.

431

7.45

17.

566

7.57

77.

585

7.59

27.

600

7.61

07.

774

7.78

27.

786

7.79

07.

797

7.84

77.

866

2-(3-methoxyphenyl)benzo[d]oxazole (6h)

ESI - 50

Page 51: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160ppm

55.542

110.629

111.903

118.407

120.011

120.143

124.640

125.205

128.303

130.027

141.989

150.746

159.961

162.976

2-(3-methoxyphenyl)benzo[d]oxazole (6h)

ESI - 51

Page 52: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

2.162.080.991.00

1.050.89

7.354

7.366

7.372

7.376

7.379

7.384

7.389

7.402

7.441

7.461

7.480

7.493

7.497

7.501

7.518

7.581

7.587

7.595

7.604

7.763

7.773

7.781

7.785

7.791

7.796

7.805

8.132

8.135

8.151

8.153

8.255

8.260

8.264

2-(3-chlorophenyl)benzo[d]oxazole (6k)

ESI - 52

Page 53: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160ppm

110.724

120.242

124.837

125.564

125.656

127.635

128.867

130.247

131.508

135.092

141.907

150.790

161.653

2-(3-chlorophenyl)benzo[d]oxazole (6k)

ESI - 53

Page 54: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

3.171.020.971.00

1.02

0.89

7.361

7.367

7.371

7.374

7.378

7.384

7.391

7.411

7.574

7.580

7.585

7.589

7.597

7.639

7.642

7.646

7.659

7.663

7.666

7.768

7.776

7.780

7.791

8.171

8.190

8.410

8.414

8.419

2-(3-bromophenyl)benzo[d]oxazole (6i)

ESI - 54

Page 55: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160ppm

110.724

120.234

123.028

124.844

125.576

126.090

129.056

130.468

130.517

134.420

141.872

150.781

161.488

2-(3-bromophenyl)benzo[d]oxazole (6i)

ESI - 55

Page 56: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

2.161.031.091.00

0.95

1.00

0.83

7.395

7.409

7.415

7.424

7.433

7.439

7.453

7.633

7.636

7.650

7.656

7.719

7.739

7.759

7.813

7.819

7.826

7.832

7.836

8.377

8.380

8.383

8.385

8.400

8.403

8.584

8.604

9.100

9.105

9.110

2-(3-nitrophenyl)benzo[d]oxazole (6j)

ESI - 56

Page 57: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180200ppm

110.917

120.531

122.519

125.148

125.812

126.098

128.984

130.153

133.044

141.811

148.731

150.901

160.597

2-(3-nitrophenyl)benzo[d]oxazole (6j)

ESI - 57

Page 58: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

2.431.202.17

2.00

7.389

7.398

7.407

7.412

7.586

7.591

7.597

7.601

7.604

7.610

7.774

7.780

7.783

7.786

7.792

7.797

7.812

7.817

7.821

8.343

8.347

2-(3,5-dibromophenyl)benzo[d]oxazole (6l)

ESI - 58

Page 59: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160ppm

110.830

120.442

123.537

125.072

125.992

129.133

130.358

136.714

141.734

150.830

160.104

2-(3,5-dibromophenyl)benzo[d]oxazole (6l)

ESI - 59

Page 60: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

9.10

1.87

1.910.951.00

2.295

2.356

6.980

7.373

7.381

7.387

7.395

7.579

7.587

7.592

7.596

7.602

7.818

7.825

7.829

7.834

7.842

2-mesitylbenzo[d]oxazole (6m)

ESI - 60

Page 61: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180200ppm

20.355

21.298

110.619

120.155

124.237

124.905

124.983

128.652

130.544

138.491

140.298

141.586

150.635

163.313

2-mesitylbenzo[d]oxazole (6m)

ESI - 61

Page 62: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

5.936.002.96

1.930.951.00

2.087

2.253

2.307

7.374

7.380

7.383

7.387

7.390

7.397

7.571

7.579

7.583

7.588

7.594

7.818

7.824

7.829

7.833

7.841

2-(2,3,4,5,6-pentamethylphenyl)benzo[d]oxazole (6n)

ESI - 62

Page 63: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180200ppm

16.337

16.995

18.072

110.700

120.198

124.239

124.884

126.290

132.856

133.398

137.583

141.456

150.679

164.762

2-(2,3,4,5,6-pentamethylphenyl)benzo[d]oxazole (6n)

ESI - 63

Page 64: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-1012345678910ppm

2.11

1.02

2.041.001.801.00

6.079

6.942

6.962

7.314

7.327

7.330

7.332

7.340

7.347

7.350

7.353

7.366

7.547

7.553

7.557

7.565

7.570

7.708

7.712

7.731

7.736

7.743

7.747

7.754

7.826

7.830

7.846

7.851

2-(benzo[d][1,3]dioxol-5-yl)benzo[d]oxazole (6o)

ESI - 64

Page 65: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180ppm

101.773

107.696

108.752

110.426

119.725

121.174

122.813

124.514

124.788

142.194

148.239

150.582

150.683

162.879

2-(benzo[d][1,3]dioxol-5-yl)benzo[d]oxazole (6o)

ESI - 65

Page 66: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

3.21

1.01

1.041.023.03

2.00

3.885

6.952

6.959

6.975

6.981

7.282

7.288

7.460

7.482

7.524

7.528

7.536

7.542

8.237

8.247

8.256

8.261

6-methyl-2-phenylbenzo[d]oxazole (6p)

ESI - 66

Page 67: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

2030405060708090100110120130140150160170180ppm

55.930

102.875

110.726

113.735

127.496

128.902

131.421

142.911

145.418

157.414

163.808

6-methyl-2-phenylbenzo[d]oxazole (6p)

ESI - 67

Page 68: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

-101234567891011ppm

3.12

1.151.093.07

1.06

2.00

2.537

7.184

7.188

7.205

7.209

7.415

7.538

7.547

7.554

7.658

7.678

8.253

8.262

8.265

8.271

8.277

5-methoxy-2-phenylbenzo[d]oxazole (6q)

ESI - 68

Page 69: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180ppm

21.829

110.782

119.351

125.825

127.473

128.887

131.298

135.593

151.067

155.682

162.582

5-methoxy-2-phenylbenzo[d]oxazole (6q)

ESI - 69

Page 70: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

01234567891011ppm

2.153.140.96

2.00

7.285

7.296

7.316

7.336

7.362

7.365

7.382

7.385

7.551

7.565

7.569

7.578

7.583

7.589

7.596

7.682

7.685

7.701

7.704

8.305

8.311

8.325

8.329

7-chloro-2-phenylbenzo[d]oxazole (6r)

ESI - 70

Page 71: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

0102030405060708090100110120130140150160170ppm

118.483

125.333

125.429

126.559

127.882

128.997

131.986

143.362

147.396

158.637

163.454

7-chloro-2-phenylbenzo[d]oxazole (6r)

ESI - 71

Page 72: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

01234567891011ppm

1.04

2.02

2.01

1.00

7.471

7.481

7.484

7.493

7.593

7.598

7.603

7.608

7.615

8.144

8.149

8.917

2-(3,5-dichlorophenyl)benzo[d]oxazole-6-carboxylic acid (Tafamidis)

ESI - 72

Page 73: Continuous Flow Synthesis of Benzoxazoles Derivatives by … · 2019. 9. 2. · Electronic Supporting Information Continuous Flow Synthesis of Benzoxazoles Derivatives by Manganese‐Based

020406080100120140160180200ppm

112.442

120.067

121.413

126.048

127.538

130.722

130.795

135.172

139.571

152.248

157.947

166.266

2-(3,5-dichlorophenyl)benzo[d]oxazole-6-carboxylic acid (Tafamidis)

ESI - 73