Top Banner
Continuous analogues of matrix factorizations NASC seminar, 9th May 2014 Alex Townsend DPhil student Mathematical Institute University of Oxford (joint work with Nick Trefethen) Many thanks to Gil Strang, MIT. Work supported by supported by EPSRC grant EP/P505666/1.
51

Continuous analogues of matrix factorizations

Feb 23, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Continuous analogues of matrix factorizations

Continuous analogues of matrixfactorizationsNASC seminar, 9th May 2014

Alex TownsendDPhil student

Mathematical InstituteUniversity of Oxford

(joint work with Nick Trefethen)

Many thanks to Gil Strang, MIT. Work supported by supported by EPSRC grant EP/P505666/1.

Page 2: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 3: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 4: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)

∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 5: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 6: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 7: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 8: Continuous analogues of matrix factorizations

IntroductionDiscrete vs. continuous

v = column vector

A = tall skinny matrix

A = square matrix

Av

SVD, QR, LU, Chol

f(x)

[ f1(x) | · · · | fn(x) ]

f(x , y)∫f(s, y)v(s) ds

?

chebfun

quasimatrix

chebfun2

chebop

cmatrix

[Battles & Trefethen, 04]

[Stewart, 98]

[T. & Trefethen, 13]

[Driscoll, Bornemann, &Trefethen, 08]

[T. & Trefethen, 14]

Interested in continuous analogues rather than infinite analogues.

Aside: Infinite analogues are Schmidt, Wiener–Hopf, infinite-dimensional QR, etc.

Alex Townsend @ Oxford 2/24

Page 9: Continuous analogues of matrix factorizations

IntroductionMatrices, quasimatrices, cmatrices

..

matrix

.

quasimatrix

.

cmatrix

.

m × n

.

[a, b] × n

.

[a, b] × [c,d]

..................

A cmatrix is a continuous function of (y , x) ∈ [a, b] × [c,d].

Alex Townsend @ Oxford 3/24

Page 10: Continuous analogues of matrix factorizations

IntroductionMatrices vs. cmatrices

An m × n matrix: entries indexed by {1, . . . ,m} × {1, . . . , n}An [a,b] × [c, d] cmatrix: entries indexed by [a, b] × [c,d]

{1, . . . ,m} subset of R Question

Well-ordered Not well-ordered by < What is the 1st column?

Successor No successor What is the next column?

A null set Null subsets What sparsity makes sense?

Finite Infinite Convergence?

Three heroes: Smoothness pivoting εmach

Alex Townsend @ Oxford 4/24

Page 11: Continuous analogues of matrix factorizations

IntroductionMatrices vs. cmatrices

An m × n matrix: entries indexed by {1, . . . ,m} × {1, . . . , n}An [a,b] × [c, d] cmatrix: entries indexed by [a, b] × [c,d]

{1, . . . ,m} subset of R Question

Well-ordered Not well-ordered by < What is the 1st column?

Successor No successor What is the next column?

A null set Null subsets What sparsity makes sense?

Finite Infinite Convergence?

Three heroes:

Smoothness pivoting εmach

Alex Townsend @ Oxford 4/24

Page 12: Continuous analogues of matrix factorizations

IntroductionMatrices vs. cmatrices

An m × n matrix: entries indexed by {1, . . . ,m} × {1, . . . , n}An [a,b] × [c, d] cmatrix: entries indexed by [a, b] × [c,d]

{1, . . . ,m} subset of R Question

Well-ordered Not well-ordered by < What is the 1st column?

Successor No successor What is the next column?

A null set Null subsets What sparsity makes sense?

Finite Infinite Convergence?

Three heroes: Smoothness

pivoting εmach

Alex Townsend @ Oxford 4/24

Page 13: Continuous analogues of matrix factorizations

IntroductionMatrices vs. cmatrices

An m × n matrix: entries indexed by {1, . . . ,m} × {1, . . . , n}An [a,b] × [c, d] cmatrix: entries indexed by [a, b] × [c,d]

{1, . . . ,m} subset of R Question

Well-ordered Not well-ordered by < What is the 1st column?

Successor No successor What is the next column?

A null set Null subsets What sparsity makes sense?

Finite Infinite Convergence?

Three heroes: Smoothness pivoting

εmach

Alex Townsend @ Oxford 4/24

Page 14: Continuous analogues of matrix factorizations

IntroductionMatrices vs. cmatrices

An m × n matrix: entries indexed by {1, . . . ,m} × {1, . . . , n}An [a,b] × [c, d] cmatrix: entries indexed by [a, b] × [c,d]

{1, . . . ,m} subset of R Question

Well-ordered Not well-ordered by < What is the 1st column?

Successor No successor What is the next column?

A null set Null subsets What sparsity makes sense?

Finite Infinite Convergence?

Three heroes: Smoothness pivoting εmach

Alex Townsend @ Oxford 4/24

Page 15: Continuous analogues of matrix factorizations

Singular value decompositionMatrix factorization

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..................................................A

.U

.

VT

Exists: SVD exists and is (almost) uniqueApplication: A best rank r approx. is Ar = 1st r terms (in 2- & F-norm)Separable model: A =

∑nj=1 σjujvT

j is a sum of outer products

Computation: Bidiagonalize then iterate [Golub & Kahan (1965)]

Alex Townsend @ Oxford 5/24

Page 16: Continuous analogues of matrix factorizations

Singular value decompositionMatrix factorization

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..................................................A

.U

.

VT

Exists: SVD exists and is (almost) unique

Application: A best rank r approx. is Ar = 1st r terms (in 2- & F-norm)Separable model: A =

∑nj=1 σjujvT

j is a sum of outer products

Computation: Bidiagonalize then iterate [Golub & Kahan (1965)]

Alex Townsend @ Oxford 5/24

Page 17: Continuous analogues of matrix factorizations

Singular value decompositionMatrix factorization

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..................................................A

.U

.

VT

Exists: SVD exists and is (almost) uniqueApplication: A best rank r approx. is Ar = 1st r terms (in 2- & F-norm)

Separable model: A =∑n

j=1 σjujvTj is a sum of outer products

Computation: Bidiagonalize then iterate [Golub & Kahan (1965)]

Alex Townsend @ Oxford 5/24

Page 18: Continuous analogues of matrix factorizations

Singular value decompositionMatrix factorization

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..................................................A

.U

.

VT

Exists: SVD exists and is (almost) uniqueApplication: A best rank r approx. is Ar = 1st r terms (in 2- & F-norm)Separable model: A =

∑nj=1 σjujvT

j is a sum of outer products

Computation: Bidiagonalize then iterate [Golub & Kahan (1965)]

Alex Townsend @ Oxford 5/24

Page 19: Continuous analogues of matrix factorizations

Singular value decompositionMatrix factorization

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..................................................A

.U

.

VT

Exists: SVD exists and is (almost) uniqueApplication: A best rank r approx. is Ar = 1st r terms (in 2- & F-norm)Separable model: A =

∑nj=1 σjujvT

j is a sum of outer products

Computation: Bidiagonalize then iterate [Golub & Kahan (1965)]

Alex Townsend @ Oxford 5/24

Page 20: Continuous analogues of matrix factorizations

Singular value decompositionContinuous analogue

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..

u1

.

u2

....

σ1

.

σ2

....

vT2

.

vT1

....A

.U

.

VT

.

At leastformally

Exists: SVD exists if A is continuous and is (almost) unique [Schmidt 1907]Application: A best rank r approx. is fr = 1st r terms (L2-norm) [Weyl 1912]Separable model: A =

∑∞j=1 σjujvT

j is a sum of “outer products”Computation: Avoid bidiagonalization

Alex Townsend @ Oxford 6/24

Page 21: Continuous analogues of matrix factorizations

Singular value decompositionContinuous analogue

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..

u1

.

u2

....

σ1

.

σ2

....

vT2

.

vT1

....A

.U

.

VT

.

At leastformally

Exists: SVD exists if A is continuous and is (almost) unique [Schmidt 1907]

Application: A best rank r approx. is fr = 1st r terms (L2-norm) [Weyl 1912]Separable model: A =

∑∞j=1 σjujvT

j is a sum of “outer products”Computation: Avoid bidiagonalization

Alex Townsend @ Oxford 6/24

Page 22: Continuous analogues of matrix factorizations

Singular value decompositionContinuous analogue

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..

u1

.

u2

....

σ1

.

σ2

....

vT2

.

vT1

....A

.U

.

VT

.

At leastformally

Exists: SVD exists if A is continuous and is (almost) unique [Schmidt 1907]Application: A best rank r approx. is fr = 1st r terms (L2-norm) [Weyl 1912]

Separable model: A =∑∞

j=1 σjujvTj is a sum of “outer products”

Computation: Avoid bidiagonalization

Alex Townsend @ Oxford 6/24

Page 23: Continuous analogues of matrix factorizations

Singular value decompositionContinuous analogue

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..

u1

.

u2

....

σ1

.

σ2

....

vT2

.

vT1

....A

.U

.

VT

.

At leastformally

Exists: SVD exists if A is continuous and is (almost) unique [Schmidt 1907]Application: A best rank r approx. is fr = 1st r terms (L2-norm) [Weyl 1912]Separable model: A =

∑∞j=1 σjujvT

j is a sum of “outer products”

Computation: Avoid bidiagonalization

Alex Townsend @ Oxford 6/24

Page 24: Continuous analogues of matrix factorizations

Singular value decompositionContinuous analogue

A = UΣVT , Σ = diagonal, U,V = orthonormal columns

..

u1

.

u2

....

σ1

.

σ2

....

vT2

.

vT1

....A

.U

.

VT

.

At leastformally

Exists: SVD exists if A is continuous and is (almost) unique [Schmidt 1907]Application: A best rank r approx. is fr = 1st r terms (L2-norm) [Weyl 1912]Separable model: A =

∑∞j=1 σjujvT

j is a sum of “outer products”Computation: Avoid bidiagonalization

Alex Townsend @ Oxford 6/24

Page 25: Continuous analogues of matrix factorizations

Singular value decompositionAbsolute and uniform convergence of the SVD

TheoremLet A be an [a,b] × [c, d] cmatrix that is (uniformly) Lipschitz continuous in bothvariables. Then the SVD of A exists, the singular values are unique with σj → 0as j →∞, and

A =

∞∑j=1

σjujvTj ,

where the series is uniformly and absolutely convergent to A.

Proof.See [Schmidt 1907], [Hammerstein 1923], and [Smithies 1937]. �

If A satisfies the assumptions of the theorem, then A = UΣVT .

Alex Townsend @ Oxford 7/24

Page 26: Continuous analogues of matrix factorizations

Singular value decompositionAlgorithm

1. Compute A = QARA

2. Compute quasimatrix QR,RT

A = QRRR

(Householder triangularization of a quasimatrix [Trefethen 08])

3. Compute SVD

..

≈.

A.

QA.

RA

..=

.......RT

A

.QR

.RR

........=

......................RR

.U

.VT

A = (QAV)Σ(QRU)T

This is a continuous analogue of a discrete algorithm [Ipsen 90].

Alex Townsend @ Oxford 8/24

Page 27: Continuous analogues of matrix factorizations

Singular value decompositionRelated work

Erhard Schmidt

Autonne, Bateman,Hammerstein, Kellogg,Picard, Smithies, Weyl

James Mercer

Aizerman, Braverman,Konig, Rozonoer

Carl Eckart & Gail Young

Golub, Hestenes, Kahan,Kogbetliantz, Reinsch

Alex Townsend @ Oxford 9/24

Page 28: Continuous analogues of matrix factorizations

LU decompositionMatrix factorization

A = P−1LU, P = permutation, L = unit lower-triangular, U = upper-triangular.

..A

.P−1L

.U

.........................................................................................................

P−1L = “psychologically” lower-triangular

Exists: It (almost) exists and with extra conditions is (almost) uniqueApplication: Used to solve dense linear systems Ax = bSeparable model: A =

∑nj=1 `juT

j is a sum of outer products [Pan 2000]

Computation: Gaussian elimination with pivoting

Alex Townsend @ Oxford 10/24

Page 29: Continuous analogues of matrix factorizations

LU decompositionContinuous analogue

A = LU, L = unit lower-triangular, U = upper-triangular.

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

Exists: It (usually) exists and with extra conditions is (almost) uniqueApplication: Can be used to “solve” integral equationsSeparable model: A =

∑∞j=1 `juT

j is a sum of outer productsComputation: Continuous analogue of GECP (GE with complete pivoting)

Alex Townsend @ Oxford 11/24

Page 30: Continuous analogues of matrix factorizations

LU decompositionComputation

The standard point of view:

A different point of view:

..A

.P−1L

.U

.........................................................................................................

A ←− A − A(j, :)A(:, k )/A(j, k ) (GE step for matrices)

A ←− A − A(y0, :)A(:, x0)/A(y0, x0) (GE step for functions)

Each step of GE is a rank-1 update. We use complete pivoting.

Pivoting orders the columns and rows.

Alex Townsend @ Oxford 12/24

Page 31: Continuous analogues of matrix factorizations

LU decompositionComputation

The standard point of view:

A different point of view:..

A.

P−1L.

U.........................................................................................................

A ←− A − A(j, :)A(:, k )/A(j, k ) (GE step for matrices)

A ←− A − A(y0, :)A(:, x0)/A(y0, x0) (GE step for functions)

Each step of GE is a rank-1 update. We use complete pivoting.

Pivoting orders the columns and rows.

Alex Townsend @ Oxford 12/24

Page 32: Continuous analogues of matrix factorizations

LU decompositionComputation

The standard point of view:

A different point of view:..

A.

P−1L.

U.........................................................................................................

A ←− A − A(j, :)A(:, k )/A(j, k ) (GE step for matrices)

A ←− A − A(y0, :)A(:, x0)/A(y0, x0) (GE step for functions)

Each step of GE is a rank-1 update. We use complete pivoting.

Pivoting orders the columns and rows.

Alex Townsend @ Oxford 12/24

Page 33: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

Alex Townsend @ Oxford 13/24

Page 34: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

Alex Townsend @ Oxford 13/24

Page 35: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

y1

y2

Alex Townsend @ Oxford 13/24

Page 36: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

y1

y2

y1

y2

y3

Alex Townsend @ Oxford 13/24

Page 37: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

y1

y2

y1

y2

y3

y1

y2

y3

y4

Alex Townsend @ Oxford 13/24

Page 38: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

y1

y2

y1

y2

y3

y1

y2

y3

y4

y1

y2

y3

y4

y5

Alex Townsend @ Oxford 13/24

Page 39: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?

Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

y1

y2

y1

y2

y3

y1

y2

y3

y4

y1

y2

y3

y4

y5

y1

y2

y3

y4

y5

Alex Townsend @ Oxford 13/24

Page 40: Continuous analogues of matrix factorizations

LU decompositionWhat is a triangular quasimatrix?

..

`1

.

`2

....

uT1

.

uT2

....A

.L

.U

L = unit lower-triangularU = upper-triangular

What is a lower-triangular quasimatrix?Red dots = 0’s, blue squares = 1’sPosition of 0’s is determined by pivoting strategyForward substitution has a continuous analogueMore precisely, L is lower-triangular wrt y1, y2, . . .

y1

y1

y2

y1

y2

y3

y1

y2

y3

y4

y1

y2

y3

y4

y5

y1

y2

y3

y4

y5

Alex Townsend @ Oxford 13/24

Page 41: Continuous analogues of matrix factorizations

LU decompositionAbsolute and uniform convergence of LU

TheoremLet A be an [a,b] × [c, d] continuous cmatrix. Suppose A(·, x) is analytic in the“stadium” of radius 2ρ(b − a) about [a, b] for some ρ > 1 where it is bounded inabsolute value by M (uniformly in x). Then

A =

∞∑j=1

`juTj ,

where the series is uniformly and absolutelyconvergent to A. Moreover,∥∥∥∥∥∥∥A −

k∑j=1

`juTj

∥∥∥∥∥∥∥∞

≤ Mρ−k .

a b

2ρ(b−a)

stadium

Alex Townsend @ Oxford 14/24

Page 42: Continuous analogues of matrix factorizations

LU decompositionA Chebfun2 application

Low rank function approximation

A = chebfun2(@(x,y) cos(10*(x.ˆ2+y))+sin(10*(x+y.ˆ2)));

contour(A, ’.’)

• = pivot locationRank = 125 Rank = 65 Rank = 28

Rank = 5 Rank = 33 Rank = 2

A(y , x) ≈k∑

j=1

`j(y)uj(x),∫ d

c

∫ b

aA(y , x)dydx ≈

k∑j=1

∫ b

a`j(y)dy

∫ d

cuj(x)dx .

Alex Townsend @ Oxford 15/24

Page 43: Continuous analogues of matrix factorizations

LU decompositionA Chebfun2 application

SVD is optimal, but GE can be faster

2D Runge function:

A(y , x) =1

1 + γ(x2 + y2).

0 5 10 15 20 25 3010

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Rank of approximant

Rela

tive e

rror

in L

2

SVD

GE

γ=1

γ=10

γ=100

Wendland’s CSRBFs:

As(y , x) = φ3,s(‖x − y‖2) ∈ C2s .

0 50 100 150 20010

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Rank of approximant

Re

lative

err

or

in L

2

SVD

GE

φ3,1

∈ C2

φ3,3

∈ C6

φ3,0

∈ C0

Alex Townsend @ Oxford 16/24

Page 44: Continuous analogues of matrix factorizations

LU decompositionRelated work

Eugene Tyrtyshnikov

Goreinov, Oseledets,Savostyanov,Zamarashkin

Mario Bebendorf

Gesenhues, Griebel,Hackbusch, Rjasanow

Keith Geddes

Carvajal, Chapman

Petros Drineas

Candes, Greengard,Mahoney, Martinsson,

Rokhlin

Moral of the story: Iterative GE is everywhere, under different guises

Many others: Halko, Liberty, Martinsson, O’Neil, Tropp, Tygert, Woolfe, etc.

Alex Townsend @ Oxford 17/24

Page 45: Continuous analogues of matrix factorizations

Cholesky factorizationMatrix factorization

A = RTR, R = upper-triangular

..A

.RT

.R

.....................

Exists: Exists and is unique if A is a positive-definite matrixApplication: A numerical test for a positive-definite matrixSeparable model: A =

∑nj=1 rjrT

j is a sum of outer products

Computation: Cholesky algorithm, i.e., GECP on a positive definite matrix

Alex Townsend @ Oxford 18/24

Page 46: Continuous analogues of matrix factorizations

Cholesky factorizationContinuous analogue

A = RTR, R = upper-triangular quasimatrix

..

r1

.

r2

.......

rT1

.

rT2

.

At leastformally

Pivoting: Essential. Continuous analogue of pivoted CholeskyExists: Exists and is essentially unique for nonnegative definite functions

DefinitionAn [a,b] × [a,b] continuous symmetric cmatrix A is nonnegative definite if

vTAv =

∫ b

a

∫ b

av(y)A(y , x)v(x)dxdy ≥ 0, ∀v ∈ C[a,b].

Alex Townsend @ Oxford 19/24

Page 47: Continuous analogues of matrix factorizations

Cholesky factorizationConvergence

TheoremLet A be an [a,b] × [a,b] continuous, symmetric, and nonnegative definitecmatrix. Suppose that A(·, x) is analytic in the closed Bernstein ellipse E2ρ(b−a)with foci a and b with ρ > 1 and bounded in absolute value by M, uniformly in y.Then

A =

∞∑j=1

rjrTj ,

where the series is uniformly and absolutelyconvergent to A. Moreover,∥∥∥∥∥∥∥A −

k∑j=1

rjrTj

∥∥∥∥∥∥∥∞

≤32Mkρ−k

4ρ − 1.

a b

stadium

E2ρ(b−a)

Alex Townsend @ Oxford 20/24

Page 48: Continuous analogues of matrix factorizations

Cholesky factorizationComputation

Pivoted Cholesky = GECP on nonnegative definite function1

−1 0 1−1

0

1

−1 0 1−1

0

1

−1 0 1−1

0

1

−1 0 1−1

0

1

−1 0 1−1

0

1

−1 0 1−1

0

1

0 2 4 6 8 10 12 1410

−15

10−10

10−5

100

Step

Piv

ot s

ize

Pivots in Cholesky

Each step is a rank 1 update: A ←− A − A(:, x0)A(x0, :)/A(x0, x0)1Always take the absolute maximum on the diagonal even if there is a tie with an off-diagonal entry.

Alex Townsend @ Oxford 21/24

Page 49: Continuous analogues of matrix factorizations

Cholesky factorizationA Chebfun2 application

A test for symmetric nonnegative definite functions

A = chebfun2(@(x,y) cos(10*x.*y) + y + x.ˆ2 + sin(10*x.*y));

B = A.’ * A;

chol(B)

Inverse multiquadric

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

All the pivots are nonnegative and on the y = x line⇒ nonnegative definite.Alex Townsend @ Oxford 22/24

Page 50: Continuous analogues of matrix factorizations

Demo

Demo

Alex Townsend @ Oxford 23/24

Page 51: Continuous analogues of matrix factorizations

References

Z. Battles & L. N. Trefethen, An extension of MATLAB to continuous functions and operators, SISC, 25 (2004),pp. 1743–1770.

T. A. Driscoll, F. Bornemann, & L. N. Trefethen, The chebop system for automatic solution of differentialequations, BIT, 48 (2008), pp. 701–723.

C. Eckart & G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1 (1936),pp. 211–218.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, SIAM, 2002.

E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willkurlichenFunktionen nach System vorgeschriebener, Math. Ann., 63 (1907), pp. 433–476.

G. W. Stewart, Afternotes Goes to Graduate School, Philadelphia, SIAM, 1998.

T. & L. N. Trefethen, Gaussian elimination as an iterative algorithm, SIAM News, March 2013.

T. & L. N. Trefethen, An extension of Chebfun to two dimensions, to appear in SISC, 2013.

Alex Townsend @ Oxford 24/24