Top Banner
83

Continuity Equation

Feb 08, 2016

Download

Documents

Micol

Continuity Equation. Continuity Equation. Net outflow in x direction. Continuity Equation. net out flow in y direction,. Continuity Equation. Net out flow in z direction. Net mass flow out of the element. Continuity Equation. Time rate of mass decrease in the element. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Continuity Equation
Page 2: Continuity Equation

Continuity Equation

Page 3: Continuity Equation

Continuity Equation

dxdydz x

)u( dz dy u - dy dz dx x

)u(u

Net outflow in x direction

Page 4: Continuity Equation

Continuity Equation

net out flow in y direction, 

dxdydz y

)v( dz dx v - dx dz dy y

)v(v

Page 5: Continuity Equation

Continuity Equation

Net out flow in z direction   dxdydz

zwdydxw dx dydz

zww )( - )(

Page 6: Continuity Equation

Net mass flow out of the element 

dxdydz z

)w( y

)v( x

)u(

Page 7: Continuity Equation

Time rate of mass decrease in the element

dxdydzt

-

Net mass flow out of the element =

Time rate of mass decrease in the control volume

dxdydzt

dxdydz zw

yv

xu )( )( )(

Continuity Equation

Page 8: Continuity Equation

sec3m

kgm 0 z

)w( y

)v( x

)u( t

0 . V

t

The above equation is a partial differential equation form of the continuity equation. Since the element is fixed in space, this form of equation is called conservation form.

Page 9: Continuity Equation

0 )( )( )(

0

sec 0 )( )( )( 3

zw

yv

xu

t

mkgm

zw

yv

xu

t

If the density is constant

Page 10: Continuity Equation

0 )( )( )(

0 )( )( )(

zw

yv

xu

zw

yv

xu

This is the continuity equation for incompressible fluid

Page 11: Continuity Equation
Page 12: Continuity Equation

Momentum equation is derived from the fundamental physical principle of Newton second law

Fx = m a = Fg + Fp + Fv

Fg is the gravity force Fp is the pressure force Fv is the viscous force  Since force is a vectar, all these forces will have three components.  

First we will go one component by next component than we will assemble all the components to get full Navier – Stokes Equation.

MOMENTUM EQUATION

[NAVIER STOKES EQUATION]

Page 13: Continuity Equation

 

Fx – Inertial Force

Inertial Force = Mass X Acceleration derivative.  Inertial Force in x direction = m X

represents instantaneous time rate of change of velocity of the fluid element as it moves through point through space.  

DtDu

DtDu

Page 14: Continuity Equation

u ).V( tu

DtDu

zu w

yu v

xu .u

tu

vma

zuw

yuv

xuu

tu

DtDua

vm

DtDu

Inertial force per unit volume in x direction =

Is called Material derivative or

Substantial derivative or

Acceleration derivative

‘u’ is variable

Page 15: Continuity Equation

Inertial force / volume in y direction  

DtDv

zv w

yv v

xv u

tv

Inertial force / volume in z direction    Dt

Dw

zw w

yw v

xw u

tw

DtDuInertial force / volume in x direction

zuw

yuv

xuu

tu

Page 16: Continuity Equation

Body forces act directly on the volumetric mass of the fluid element. The examples for the body forces are

Eg: gravitationalElectricMagnetic forces.

 Body force =  

Body force in y direction

Body force in z direction

xx g

dxdydzdxdydz

vmg

g

yg

zg

Body force per unit volume

Page 17: Continuity Equation

Pressure on left hand face of the element

 Pressure on right hand face of the element

 Net pressure force in X direction is

 

Net pressure force per unit volume in X direction

dydzP

dydzdxxpP

dxdydzxpdydzdx

xpPP

xp

dxdydzdxdydz

xp

Pressure forces per unit volume

Page 18: Continuity Equation

Net pressure force per unit volume in X direction

 

Net pressure force per unit volume in Y direction

 

Net pressure force per unit volume in Z direction  

Net pressure force in all direction

   Net pressure force in 3 direction  

xp

yp

zp

zp

yp

xp

zp

yp

xp

P

Page 19: Continuity Equation

Viscous forces

Page 20: Continuity Equation

Resolving in the X direction Net viscous forces 

dxdy dz z

dxdz dy y

dydz dx

dx

zxzx

zx

yxyx

yxxxxx

xx

Page 21: Continuity Equation

  

  

 

 

 

 

dxdydz z

y

x

F zxyxxxv

a z

y

x

zxyxxx

b z

y

x

zyyyxy

c

zyxzzyzxz

Net viscous force per unit volume in X direction

Net viscous force per unit volume in Y direction

Net viscous force per unit volume in Z direction

Page 22: Continuity Equation

UNDERSTANDING VISCOUS STRESSES

Page 23: Continuity Equation
Page 24: Continuity Equation
Page 25: Continuity Equation
Page 26: Continuity Equation
Page 27: Continuity Equation
Page 28: Continuity Equation
Page 29: Continuity Equation
Page 30: Continuity Equation
Page 31: Continuity Equation

LINEAR STRESSES = ELASTIC CONSTANT X STRAIN RATE

strainlinear of rate average local x 2 x xxxx

Page 32: Continuity Equation

Linear strain in X direction   

xuexx

yveyy

zwezz

 

 

zzyyxxe e e

zw

yv

xu

V divor V . Volumetric strain

Page 33: Continuity Equation

Three dimensional form of Newton’s law of viscosity for compressible flows involves two constants of proportionality.  1. dynamic viscosity.

2. relate stresses to volumetric deformation.  

V divxu2xx

V divyv2yy

V divzw2zz

Page 34: Continuity Equation

 

[ Effect of viscosity ‘ ’ is small in practice.

For gases a good working approximation can be obtained taking

Liquids are incompressible. div V = 0]

3/2

In this the second component is negligible

Page 35: Continuity Equation

SHEAR STRESSES = ELASTIC CONSTANT X STRAIN RATE

n.deformatioangular rate average x 2 x yxxy

xv

yu

yxxy

xw

zu

zxxz

yw

zv

zyyz

Page 36: Continuity Equation

  

z

y

x

F xzxyxxvx

z

y

x

F xzyyyxvy

z

y

x

F zzzyzxvz

Page 37: Continuity Equation

  

zu

xw

zyu

xv

xFvx

y .V

xu 2

.V 2

zv

yw

zyw

yyu

xv

xFvy

.V. 2

yw

zzv

yw

yxw

zu

xFvz

Page 38: Continuity Equation

Having derived equations for inertial force per unit volume, pressure force per unit volume body force per unit volume, and viscous force per unit volume now it is time to assemble together the subcomponents. 

vgfx F F F F

Page 39: Continuity Equation

Assembly of all the components

  

  

 

z

y

x

g xp

DtDu zxyxxx

x

z

y

x

g yp

DtDv yzyyyx

y

zyx

gzp

DtDw zzzyzx

z

X direction:-

Y direction:-

Z direction:-

Page 40: Continuity Equation

xw

zu

z

yu

xv

y

.V xu 2

x g

xp

zu w

yu v

xu u

tu x

X direction:-

Page 41: Continuity Equation

zv

yw

z .V

yv 2

y

yu

xv

x g

yp

zv w

yv v

xv u

tv y

Y direction:-

Page 42: Continuity Equation

.V zw 2

z

zv

yw

y

xw

zu

x g

yp

zw w

yw v

xw u

tw z

Z direction:-

Page 43: Continuity Equation

z

y

x g

x

tDu xzxyxx

x

+

. uV u V. Vu .

Page 44: Continuity Equation

CONVERTING NON CONSERVATION FORM ONN-S EQUATION TO CONSERVATION FORM

  

  

 Navier-stokes equation in the X direction is given by 

zxz

yxy

xxx xg

x

tDu

uV. . . VuuV

VuuVu . . V.

Divergence of the product of scalar times a vector.

Page 45: Continuity Equation

  

t

u tu

tu

t

u tu

tu

Taking RHS of N-S Equation we have

u.V

tu u.V

tu

zu w

yu v

xu u

tu

DtDu

Page 46: Continuity Equation

V . u uV . t

u tu

V . t

u uV . tu

0 u uV . tu

DtDu

CONTINUITY zw

yv

xu

t

since

Is equal to zero

Page 47: Continuity Equation

zxz

yxy

xxx xg

xp uV .

tu

zyz

yyy

xyx yg

yp uV .

tv

zzz

yzy

xzx zg

zp uV .

tw

Page 48: Continuity Equation

CONSERVATION FORM:-

zxz

yxy

xxx xg

xp

zuw

yuw

x

2u tu

zyz

yyy

xyx yg

xp

zvw

y

2v xuv

tv

zzz

yzy

xzx zg

zp

z

2w yvw

xuw

tw

Page 49: Continuity Equation

xg xw

zu

z

yu

xv

y

xu 2 .V

x

xP

zuw

yuv

x

2u tu

SIMPLICATION OF NAVIER STOKES EQUATION

xg xzw2

2zu2

2y

u xyv2

xu 2

zw

yv

xu 3

2 x

xP

zuw

yuw

x

2u tu

If is constant

Page 50: Continuity Equation

xg xzw2

2zu2

2yu

xyv2

xu 2

zw

yv

xu 3

2 x

xP

zuw

yuw

x

2u tu

xg xzw2

2zu2

2yu2

xyv2

2xu2

2 zx

w2 3

2 yxv2

32

2xu2

32

xP

zuw

yuw

x

2u tu

Page 51: Continuity Equation

xzw2

31

xyv2

31

2zu2

2yu2

xu2

311

xP

zuw

yuv

x

2u tu

zw

x 3

1 yv

x 3

1 xu

x 3

1

2yu2

2xu2

xP

zuw

yuv

x

2u tu

zw

yv

xu 3

1 2zu2

2yu2

2xu2

xP

zuw

yuv

x

2u tu

Page 52: Continuity Equation

V. 31

2zu2

2yu2

2xu2

xP

zuw

yuv

x

2u tu

2zu2

2yu2

2xu2

xP

zuw

yuv

x

2u tu

For Incompressible flow

0 V .

Page 53: Continuity Equation

Energy EquationEnergy is not a vector

So we will be having only one energy equation which includes the energy in all the direction.

The rate of Energy = Force X velocity

Energy equation can be got by multiplying the momentum equation with the corresponding component of velocity

Page 54: Continuity Equation

dQ = dE + dW  dE = dQ - dW = dQ + dW [Work done is negative] because work is done on the system.

Work done is given by dot product of viscous force and velocity vector.

for Xdirection

V.vF

dxdydz

zzxu

yyx.u

xxxu

xup

Page 55: Continuity Equation

for Y direction

V.vF

dxdydz yzu yyyv

xyxv

yvp

for Z direction

dxdydz xxw

yzyw

xzxw

zwp

V.vF

Page 56: Continuity Equation

Body force is given by dxdydz V.g

wzg vyg uxg

Page 57: Continuity Equation
Page 58: Continuity Equation

Total work done 

dxdydz V.f

dxdydz

zzzw

yyzw

xxzw

zzyv

yyyv

xxyv

zzxu

yyxu

xxxu

z

wp

yvp

xup

C

Net Heat flux into element = Volumetric Heating + Heat transfer across surface.

Volumetric heating dxdydz .q

Page 59: Continuity Equation

Heat transfer in X direction = dydz dx

x

.xq

xq x q

dxdydz x

.q

dxdydz z

.zq

y

.yq

x

.xq

Heating of fluid element

Page 60: Continuity Equation

dQ = B = dxdydz z

.zq

y

.yq

x

.xq

.q

dQ = B dxdydz zTk

z

yTk

y

xTk

x q

z

wp yvp

xup

zTk

z

yTk

y

xTk

x q

2

2V e DtD

Page 61: Continuity Equation

f.V zzzw

yyzw

xzw

zzyv

yyyv

xxyv

zzxu

yyxu

xxxu

z

wp yvp

xup

zTk

z

yTk

y

xTk

x q

2

2V e DtD

Page 62: Continuity Equation

Energy EquationNonconservation form

z

wp yvp

xup

zTk

z

yTk

y

xTk

x q

2

2V e DtD

f.V

zzzw

yyzw

xxzw

zzyv

yyyv

xxyv

zzxu

yyxu

xxxu

Page 63: Continuity Equation

Non conservation:-

z

wp yvp

xup

zTk

z

yTk

y

xTk

x

q V 2

2V e . 2

2V e DtD

f.V

zzzw

yyzw

xxzw

zzyv

yyyv

xxyv

zzxu

yyxu

xxxu

Page 64: Continuity Equation

Conservation:-

.V p 2zT2

k 2yT2

k

2xT2

k q z

Tpc w

y

Tpcu

x

Tpcu

x

Tpc

.V p 2zT2

k 2yT2

k

2xT2

k q z

wT y

vT x

uT pc x

Tpc

Page 65: Continuity Equation

xfzxz

yxy

xxx

xp

tDuD

fyz

yzyyy

xyx

yp

tDvD

fzz

zzy

zyx

zxzp

tDwD

Momentum Equation     Non conservation form 

X direction

Y direction

Z direction

Page 66: Continuity Equation

Momentum Equation 

Conservation form 

X direction

Y direction

Z direction

xfzxz

yxy

xxx

xpVu

tDuD

)(.

fyz

yzyyy

xyx

ypVv

tDvD

).(

fzz

zzy

zyx

zxzp

VwtDwD

)(.

Page 67: Continuity Equation

Vfz

zzwy

zywx

zxwz

xzz

yzvy

yyvx

yxvz

xzuy

xyuxxxu

zwp

yvp

xup

zTk

zyTk

yxTk

xqVe

tDD

.)()()(

)()()()()()(

)()()(2

2)()()()(

Energy Equation

   Non conservation form

Page 68: Continuity Equation

Vfz

zzwy

zywx

zxwzxz

zyzv

yyyv

xyxv

zxzu

yxyu

xxxu

zwp

yvp

xup

zT

kzy

Tk

yxT

kx

qVeVet

V

.)(

)()()()()(

)()()()()()(2

2.

2

2)()()(])([])([

Energy equation

Conservation form

Page 69: Continuity Equation

FORMS OF THE GOVERNING EQUATIONS PARTICULARLY SUITED FOR CFD

energytotalofFluxVVe

energyInternalofFluxVemomentumofcomponentzofFluxVwmomentumofcomponentyofFluxVvmomentumofcomponentxofFluxVu

fluxMassV

)(2

2

Page 70: Continuity Equation

Solution vectar

)(2

2Ve

wvu

U

Page 71: Continuity Equation

Variation in x direction

xzwxyvxxuxTkupuVe

xzuwxyuv

xxpuu

F

)(2

2

2

Page 72: Continuity Equation

Variation in y direction

zywyyvxyuyTkvpvVe

zyvwyypv

yxvuv

G

)(2

2

2

Page 73: Continuity Equation

Variation in z direction

zzwyzvxxzuzTkwpwVe

xzzpwxyzwv

xzwuw

H

)(2

22

Page 74: Continuity Equation

Source vectar

qzfwyfvxfuzfyfxf

J

)(

0

Page 75: Continuity Equation

Time marching

JzH

yG

xF

tU

Types of time marching

1. Implicite time marching

2. Explicite time marching

Page 76: Continuity Equation

Explicit FDM

Page 77: Continuity Equation

Implicit FDM

Page 78: Continuity Equation

Crank-Nicolson FDM

Page 79: Continuity Equation

Space marching

JzH

yG

xF

Page 80: Continuity Equation
Page 81: Continuity Equation
Page 82: Continuity Equation
Page 83: Continuity Equation