Top Banner

of 23

CONTINOUS DISTILLATION COLUMN

Jun 01, 2018

Download

Documents

George Markas
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    1/58

    Continuous ColumnDistillation

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    2/58

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    3/58

    Column diagram

    feed

    F, xF

    bottomsB, xB

    boilupV, yB

    reuxL, xR

    distillateD, xD

    feedstage

    total condenser

    reux drum(accumulat

    or)

    VL

    li!uid"#apor streams

    inside t$e column o%counter&current in directcontact %it$ eac$ ot$er

    partial reboiler

    xR ' xD

    yB  xB

    xD  xB   t  e  m  p  e  r  a   t  u  r  e

    all t$ree externalstreams (F, D, B) can be

    li!uids (usual case) for a binarymixture, t$ecompositions xF, xD,

    xB all refer to t$e

    more #olatile

    component to *eep t$e li!uid o%rate constant, part of t$edistillate must be returnedto t$e top of t$e column asreux

    t$e partial reboiler is t$e laste!uilibrium stage in t$e system

      e  n  r   i  c

       $   i  n  g  s  e  c   t   i  o  n

      s   t  r   i  p  p   i  n  g

      s  e  c   t   i  o  n

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    4/58

    +xternal mass balance

     -B. F ' D / B

    C-B. F xF ' D xD / B xB

    for speci0ed F, xF, xD, xB,t$ere are only 1un*no%ns (D, B)

    B ' F &D

    feedF, xF

    bottoms

    B, xB

    d

    istillateD, xD

    D = x F − x 

    B

     x D− x 

    B

     

     

     

     ÷÷F 

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    5/58

    +xternal energy balance

    • assume column is %ell&insulated, adiabatic

    feedF, xF

    bottoms

    B, xB

    distillateD, xD

    +B. F $F / 2C  / 2R

    ' D $D / B $B

    F, $F are *no%n

    D and B are saturated li!uidsso $D, $B are also *no%n

    un*no%ns. 2C, 2R

    need anot$er e!uation

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    6/58

    Balance on condenser

    distillate

    D, xD

    reuxL3, xR

    #aporV4, y4

    45 -ass balance

     -B. V4 ' D / L3

    C-B. y4 ' xD ' xR (doesn6t $elp)

    un*no%ns. V4, L3

    specify external reux ratio R ' L3"D

    V4 ' D / (L3"D)D ' (4 / R)D

    15 +nergy balance

    V474 / 2C ' (D / L3)$D ' V4$D

    2C ' V4($D 8 74)

    t$en calculate 2R from column energy balance

    $D 9 742C : 3

    2R 9 3

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    7/58

    ;plits;ometimes used instead of

    specifying compositions in productstreams5

    -ost #olatile component (-VC) isben=ene.

    xF ' 35?@FRMVC

    = x DD x F F 

    = 0.99D0.46F 

    FRLVC

    =(1− x 

    B)B

    (1− x F 

    )F = 0.98D0.54F 

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    8/58

    Calculating fractionalreco#eries

    B ' F 8 D ' @13 & 1A4 '

    FRMVC

    = x DD

     x F F 

    = 0.99(281)0.46(620)

    = 0.975

    FRLVC

    =(1− x 

    B)B

    (1− x F )F 

    = 0.98(339)0.54(620)

    = 0.992

    D = x F − x 

    B

     x D− x 

    B

     

     

     

     ÷÷F =

    0.46−0.020.99−0.02

     

     

     

     ÷F =

    0.44

    0.97(620) = 281

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    9/58

    #aporV4, y4

    distillateD, xD

    ;tage&by&stage analysisLe%is&;orel met$od

    reuxL3, x3

    V1y1

    L4x4

    stage 4

    onsider t$e top of t$e distillation column.

    V4, V1 are saturated #apors

    L3, L4 are saturated li!uids

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    10/58

    Relations$ips for stage 4

     -B. L3 / V1 ' L4 / V4C-B. L3x3 / V1y1 ' L4x4 / V4y4

    +B. L3$3 / V171 ' L4$4 /

    V474

    VL+.  4(4,) ' y4"x4

    #aporV4, y4

    distillateD, xD

    reuxL3, x3

    V1y1

    L4x4

    stage 4

     $ere are 4? #ariables.? o% rates (L4, V1, L3,

    V4)

    ? compositions (x4, y1,

    x3, y4)

    ? ent$alpies ($4, 71, $3,

    74)

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    11/58

    Relations$ips for stage 1

     -B. L4 / V ' L1 / V1C-B. L4x4 / Vy ' L1x1 / V1y1

    +B. L4$4 / V7 ' L1$1 / V171

    VL+.  1(1,) ' y1"x1

    can sol#e for ? un*no%ns (L1, x1, V,y)

    V1,y1L4,x4

    and so on proceed do%n t$e column to t$e reboiler5 Verytedious5

    ;implifying assumption.Gf λi (latent $eat of #apori=ation) is not a strong function ofcomposition, t$en eac$ mole of #apor condensing on agi#en stage causes one mole of li!uid to #apori=e5

    stage 1

    V,yL1,x1

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    12/58

    Constant molal o#ero%

     -B. L4 / V ' L1 / V1

    C-H. V & V1 ' L1 & L4 ' 3

    V ' V1 ' V

    L1 ' L4 ' L

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    13/58

    Rectifying column

    B, xB

    D, xD

    F, xF

    Feed enters at t$e bottom, as a

    #apor5

    Eo reboiler re!uired5

    Can gi#e #ery pure distillateI butbottoms stream %ill not be #erypure5

    -ass balance around top of

    column, do%n to and includingstage J.

    L, xR

    stage J

    V J/4,y J/4 L J,x JC-B. V J/4y J/4 ' L Jx J / DxD 

    C-H. y J/4 ' (L"V) x J / (D"V) xD  D ' V & L

    y J/4 ' (L"V) x J / (4 & L"V) xDRelates com ositions of assin  strea

    L i l i f tif i

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    14/58

    Le%is analysis of rectifyingcolumn

    45 Kssume C-H (V J ' V J/4 ' VI L J ' L J&4 ' L)

    15 Eeed speci0ed xDI xD ' y4

    5 ;tage 4. use VL+ to obtain x4

    x4 ' y4" 4(4,)?5 se mass balance to obtain y1

    y1 ' (L"V) x4 / (4 & L"V) xD

    M5 ;tage 1. use VL+ to obtain x1

    x1 ' y1" 1(1,)

    @5 se mass balance to obtain y

    y ' (L"V) x1 / (4 & L"V) xD

    N5 Continue until x ' xB

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    15/58

    Orap$ical analysis of rectifying column

    ation of t$e operating line.

     (L"V) x / (4 & L"V) xD

    pe ' (L"V)ays positive (compare to fash drum

    otting t$e operating line.

    t ' (4 & L"V) xD

    ll. xD ' xR ' x3I t$e passing stream is y4

    perating line starts at t$e point (x3,y4)

    perating line gi#es t$e compositions of all passing streams (x J,y J/4)

    !nd a second point on theoperating line"

    y ' x ' (L"V) x / (4 & L"V) xD ' xDplot xD on y ' x

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

      V  L  +

    yint

     o p5   l  i n

     e

    xD  'x3(x3,y4

    )

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    16/58

    -cCabe&$iele analysis. rectifyingcolumn

    45 lot VL+ line (yi #s5 xi)

    15 Dra% t$e y ' x line

    5 lot xD on y ' x

    ?5 lot yint ' xD (4 8 L"V)

    L"V ≡ internal reux ratio, usually not speci0edinstead, t$e external reux ratio (R) is speci0ed

    M5 Dra% in t$e operating line@5 ;tep oP stages, alternating bet%een VL+ andoperating line,

    starting at (x3

    ,y4

    ) located at y ' x ' xD

    , until you

    reac$ x ' xB

    L

    V =LDV 

    D

    =LD

    (L +D)

    D

    = RR +1

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    17/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    +x5. -eH7&71H rectifying column

      V  L  +

      y  '  x

    yint

     o p5   l  i n

     e

    (x4,y4)

    (x1,y1)

    (x,y)

    (x4,y1)

    (x1,y)

    xB

    15 Dra% y'x line

    5 lot xD on y'x

    ?5 lot yint ' xD (4 & L"V)

    @5 ;tep oP stages from xD to xB

    N5 Count t$e stages

    tifying column %it$ total condenser

    ci0cations. xD ' 35A, R ' 1 E re!uired to ac$ie#e xB ' 354

    L"V ' R"(R/4) ' 1"yint ' xD(4 & L"V)' 35A" ' 351@

    E+V+R Qstep o#er t$e VL+ line5

    lo%est xB possible for t$is op5 line

    45 lot VL+ line

    M5 Dra% in operating line

    xD' x3(x3,y4)

    stage 4

    stage 1

    stage

    E '

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    18/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    Limiting cases. recti0cation

    xD' x3(x3,y4)

      V  L  +

      y  '  x

    stage 4(x4,y4)

    eci0cations.

     ' 35A, #ary R ' L"D

     3' L"D   3 EH R+FLSV   3

    L"V ' 3Eo reuxT

    istance bet%een VL+ and op5 lineeparation on eac$ e!uil5 stage

    ponds to Emin, but no distillateT

    L"V ' 4 otal reuxT

     3' L"D   ∞   HKL R+FLSV ' R"(R/4)  467Upital6s Rule)

    ating line is y'x

    Column operates li*e asingle e!uilibriumstage5()

    3 L"V 43 R ∞

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    19/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    -inimum reux ratio

      V  L  +

      y  '  x

    peci0cations.D ' 35A, #ary R

    L"V ' 3

     $e number of stages Ere!uired to reac$ t$e VL+&

    op5 line intersection pointis ∞5

    L"V ' 4

    3 L"V 4

    3 R ∞

    xB ,min for t$is R

     $is represents xB,min for a

    particular R5

    Gt also represents Rmin for t$is #alue of xB5

    xD' x3(x3,y4)

    Rmin for t$is xB

    Gncreasing R ' L"DDecreasing DDecreasing xB (for 0xed E)

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    20/58

    Hptimum reux ratio

      c  o  s

       t   "   l   b

    external reux ratio, R

    Rmin Ropt

    operating (energy) cost

    Rule&of&t$umb.453M R

    opt

    "Rmin

      451M

    Ractual can be speci0ed as a multiple of Rmin

      W  s   t  a  g  e  s

    min5 $eatre!uired

    capital cost

    total cost

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    21/58

    ;tripping column

    B, xB

    D, xD

    F, xF

    Feed enters at t$e top, as a

    li!uid5

    Eo reux re!uired5

    Can gi#e #ery pure bottomsI butdistillate stream %ill not be #erypure5

    -ass balance around bottom of

    column, up to and includingstage *.

    stage *

    C-B. L*&4x*&4 ' V*y* / BxB 

    V*,y*L*&4,x*&4

    C-H. y* ' (L"V) x*&4 & (B"V) xB  L ' V / B

    y* ' (L"V) x*&4 / (4 & L"V) xB

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    22/58

    Orap$ical analysis of stripping column

    s t$e partial reboiler> Designate t$is as stage E/4, %it$ xE/4 ' xB5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H

         )

    x(MeOH)

      V  L  +

       o   p

     5     l    i   n

       e

    xB  ' xE(xE/4,yE/1)

    uation of t$e operating line.

    ' (L"V) x / (4 & L"V) xB

    pe ' L " Vways positive

     plotting the operating line"y ' x ' (L"V) x / (4 & L"V) xB ' xBplot xB on y ' x

    ding the operating line slope"

    call V"B is t$e boilup ratio)

    Coordinates of t$e reboiler. (xE/4,yE/4)

    (xE/4,yE/4

    )R

    LV = V +BV  =1+ BV 

    b $i l l i i i

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    23/58

    -cCabe&$iele analysis. strippingcolumn

    45 lot VL+ line (yi #s5 xi)

    15 Dra% t$e y ' x line

    5 lot xB on y ' x

    ?5 Dra% in t$e operating line

    M5 ;tep oP stages, alternating bet%een VL+ and

    operating line,starting at (xE/4,yE/1) located at y ' x ' xB, until

    you reac$ x ' xD

    @5 Count t$e stages5

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    24/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    +x5. -eH7&71H stripping column

      V  L  +

      y  '  x

    (35N,4) 

    (xE&1,yE&1)stage 1

    15 Dra% y'x line

    5 lot xB ' xE/4 on y ' x

    ?5 Dra% op5 line

    5 ;tep oP stages starting at R

    @5 ;top %$en you reac$ x ' xD

    olumn %it$ partial reboilerpeci0cations.

    B ' 353N,

    ind E re!uired to ac$ie#e xD ' 35MM

    N5 Count t$e stages5

    (xE/4,

    yE/4)

    (xE,yE/4)R

    (xE,yE) (xE&4,yE)

    (xE&4,yE&4)

    xD,max for t$is

    boilup ratio

    stage

    E+V+R step o#er t$e VL+ line5

    (xE&1,yE&1)

    stage 4

      xB' xE/4(xE/4,yE/1)

    45 lot VL+ line

    xD

     V /B = 2

    L /V =1+B /V =1.5

      y =1=1.5 x −0.05   x =1.05/1.5 = 0.7

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    25/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    Limiting cases. stripping

      V  L  +

      y  '  x

    eci0cations.

     ' 353N, #ary boilup ratio

    istance bet%een VL+ and op5 lineeparation on eac$ e!uil5 stage

    ponds to Emin5 But no bottoms productT

    Be$a#es as if t$ecolumn %asn6t e#en

    t$ere5()

      xB' xE/4

    R

    45

    EH BHGL

      3

    rating line is y'x

     HKL BHGL

    EH BHGL

     HKL BHGL

    V /B

     1≤ L /V ≤ ∞

     ∞ ≥V /B ≥ 0

     L /V = ∞

     L /V =1

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    26/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    -inimum boilup ratio

      V  L  +

      y  '  x

    eci0cations. ' 353N, #ary boilup ratio

     $e number of stages Ere!uired to reac$ t$e VL+&

    op5 line intersection pointis ∞5

     G n c r e a

     s i n g  b o i l u

     p  r a t i

     o

     D e c r e

     a s i n g

      B

     G n c r e a

     s i n g  x D

      ( f o r  0

     x e d  E  )

      yD ,max fort$is boilup ratio

     $is represents yD,max for

    a particular boilup ratio5

    Gt also represents t$eminimum boilup ratio for t$is #alue of yD5

      xB' xE/4

    R

    Eo boilup

     otal boilup

     1≤ L /V ≤ ∞ L /V = ∞

     L /V =1

     ∞ ≥V /B ≥ 0

    - C b $i l l i

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    27/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    -cCabe&$iele analysisof complete distillation column

      V  L  +

      y  '  x

    stage 4

    45 Dra% y'x line

    15 lot xD and xB on y'x

    5 Dra% bot$ op5 lines

    ?5 ;tep oP stages startingat eit$er end, using ne%op5 line as you cross t$eirintersectionM5 ;top %$en youreac$ t$e ot$erendpoint

    otal condenser, partial reboiler;peci0cations.xD ' 35A, R ' 1

    xB ' 353N,

    Find E re!uiredLocate feed stage

    @5 Count stages

    R

     

    stage 1

    xB

    xD

       t  o  p 

      o  p 5    l   i  n

      e

    Feed enterson stage 1

    E+V+R stepo#er t$e VL+line5

    N5 Gdentif feed sta e

     V /B = 2

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    28/58

    • Gf t$e feed enters as a saturated li#uid,

    t$e li!uid o% rate belo% t$e feed

    stage %ill increase.

    • Gf t$e feed enters as a saturated vapor ,

    t$e #apor o% rate abo#e t$e feed stage

    %ill increase.

    Feed condition

    • C$anging t$e feed temperature

    aPects internal o% rates in t$e

    column

    VLfeed

    F

    VL

    and

    • Gf t$e feed as$es as it enters t$e feed stage

    to form a two$phase mixture, M3 X li!uid,

    bot$ t$e li!uid and #apor o% rates %ill

    increase.

    L   = L+F 

    V =V +F 

    F +L +V = L +V 

    L = L+0.5F  V =V +0.5F 

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    29/58

    Feed !uality, !

    +B.

    rearrange.

     -B.

    su%stitute.

    com%ine terms.

    de!ne.! ≡ mol sat6dli!uid

    generated on

    FhF +LhL +V&V  = LhL +V&V 

    FhF + (V −V )&

    V = (L −L)h

    L

    V −V = L −L −F 

    FhF + (L −L−F )&

    V = (L −L)h

    L

    (L −L)(&V −hL) = F (&V −hF )

    L −L

    =&V −h

    &V −hL≡ #

    DiPerent types of feed

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    30/58

    DiPerent types of feed!uality

    saturated li!uid feed ! ' 4

    feed as$es to form 1&p$ase 3: ! : 4

    mixture, !X li!uid

    and

    subcooled li!uid feed! 9 4

    & some #apor condenses on feed plate

    super$eated #apor ! :3

    saturated #apor feed ! '3

    L   = L+F 

    L = L+#F 

    # ≡L − LF  L = L+#F  V =V + (1−#)F 

    V =V +F 

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    31/58

    +!uation of t$e feed line

    rectifying section C-B.

    and

    stripping section C-B.

    intersection of top andbottom operating lines.

    substitute.

    e!uation of t$e feed line.

    Vy ' = Lx 

    ' −1−Bx B

    Vy  (+1 = Lx  ( +Dx D

    (V −V ) y = (L −L) x − (Bx B +Dx D)

     y = −L −L

    V −V  

     ÷ x +

    F) F 

    V −V 

    Bx B+Dx 

    D= F) 

    L −L = #F  V −V = (1−#)F 

     y = − #

    (1−#) x + ) F 

    1−#

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    32/58

    lotting t$e feed line

    %$ere does t$e feed line intersect y'x>

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

      V  L  +

    y ' x' =F

    feed type ! slope, msatYd li!uid !'4 m ' ∞satYd #apor !'3 m ' 3

    1&p$ase li!"#ap 3:!:4m : 3

    subcooled li! !94 m 9 4

    super$eated #ap !:3 3:m:4

    =F

      s  a   t   Y   d

       l   i  !

    satYd #apor

    1  &  p  $  a  

    s  e   

         s      u        b

         c     o     o        l     e

          d         l

            i     !  

     s u p e r $ e a t e d

      # a p

     y = − #(1−#) x + ) F 

    1−# x = − #

    (1−#) x + ) F 

    1−#

     x 1+

    #

    (1−#)   ÷=

     ) F 

    1−#

     x 

    1−#= ) F 

    1−#

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    33/58

    +x5. Complete -eH7&71H column

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H

         )

    x(MeOH)

      y  '  x

    45 Dra% y'x line

    15 lot xD, xB and =F on y'x

    5 Dra% feed line, slope ' &35M

    M5 Dra% bottom op5 line(no calc5 re!uired)

    @5 ;tep oP stages startingat eit$er end, using ne%op5 line as you cross t$efeed line5

    otal condenser, partial reboiler

    peci0cations.D ' 35, xB ' 353?, =F ' 35M, R'4

    eed is a 1&p$ase mixture, M3X li!5ind E and EF,opt5

    5 Dra% top op5 line, slope ' L"V ' 35M

    xB

    xD

    =F

      

     

     4

    @

    1

    M

    ?

    Hperatinglinesintersecton stage ?5

     $is isEF,opt5

    *sing a non$optimal +eed location reduces

    E ' @ / R

    R

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    34/58

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    35/58

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    36/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

        y      (      E     t      O      H      )

    x(EtOH)

    Knot$er type of pinc$ point

      V  L  +

      y  '  x

    45 Dra% y'x line

    15 lot xD, xB and =F on y'x

    5 Dra% feed line, slope ' !"(!&4)

    M5 Don6t cross t$e VL+lineT

    +t$anol&%ater

    xD ' 35A1, xB ' 353N=F ' 35M, ! ' 35M

    Find Rmin

    ?5 Dra% top op5 line to

    intersect %it$ feed line onVL+ line

    xB

    xD

    =F

    @5 Redra% top operatingline as tangent to VL+5

    pinc$point

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    37/58

    Kdditional column inputs"outputs

    bottomsB, xB

    distillateD, xD

    VL

    feed 1

    F1, =1, !1

    V[L[

    feed 4F4, =4, !4

    VL

    distillateD, xD

    bottoms

    B, xB

    feedF, =

    VL

    side&stream;, x; or y;V[L[

    VL

    Column

    %it$ t%ofeeds.

    Column %it$

    t$reeproducts.

    mediate input"output stream c$anges t$e mass balance, re#uiring a new oper 

    =1 9 =4and"or!1 9 !4

    side&streamsmust  be

    saturatedli!uid or#apor

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    38/58

    -ultiple feedstreams

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

      V  L  +

      y  '  x

    45 Dra% y'x line

    15 lot xD, =4, =1 and xB on y'x

    5 Dra% bot$ feed lines

    @5 Dra% bottom operatingline (no calc5 re!uired)

    N5 ;tep oP stages starting

    at eit$er end, using ne% op5line eac$ time you cross an

    5 Dra% top op5 line, slope ' L"V

      

     

     

    4

    R

    1

    M

    ?

    Hptimumlocation for feed4 is stage M5Hptimumlocation for feed1 is stage 5

    tal condenser, partial reboilereci0cations. ' 35, xB ' 353N, =4 ' 35?, =1'35@

    me speci0ed !alues' 45 Find E, EF4,opt, EF1,opt

      xB

    xD

    =1

    =4

    M5 Calculate slope of

    middle operating line, L["V[, and dra% middleoperating line

    =4 ' =1

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    39/58

    ;lope of middle operating line1&feed mass balances.-B. F

    1 / V[ ' L[ / D

    C-B. F1=1 / V[y J/4 ' L[x J / DxDmiddle operating line e!uation.

    y ' (L["V[)x / (DxD & F1=1)"V[

    btain slope from.

    L[ ' F1!1 / L ' F1!1 / (R)(D)  V[ ' L[ / D 8 F1 

    feed 1F1, =1, !1

    D, xD

    V[L[

    stage J

    side&stream;, x; or y;

    D, xD

    V[L[

    stage J

    iddle operating line e!uation.y ' (L["V[)x / (DxD / ;x;)"V[

    side&stream ≡ feed&stream %it$ 8#eo% rate sat6d li! y ' x ' x;

    sat6d #apor y ' x ' y;side&stream mass balances.

     -B. V[& L[' D / ;C-B. V[y J/4 & L[x J ' DxD / ;x;

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    40/58

    -cCabe&$iele analysis of side&streams

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

      V  L  +

    ;aturated li!uid side&stream, xs ' 35@?

     xB

    x

    D

    x;

    =

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    ;aturated #apor side&stream, ys ' 35

      V  L  +

     xB

    x

    D

    y;

    =

    ;ide&stream must correspond exactly  to stage position5

     

     

     

     

     

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    41/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

    artial condensers

    K partial condenser can be used%$en a #apor distillate is desired.

    D, yD

    VL

    L, x3

    V, y4

    partial condenser is an e!uilibrium stage5

    B. Vy J/4 ' Lx J / DyD

    erating line e!uation.

      y ' (L"V)x / DyD ' (L"V)x / (4 & L"V)yD

    yD

     

    C

    4

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    42/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

     otal reboilers

    K total reboiler is simpler (less

    expensi#e) t$an a partial reboilerand is used %$en t$e bottomsstream is readily #apori=ed.

    K total reboiler is not  ane!uilibrium stage5

    xB,yB R

    E

    E&4 

    B, xB

    V L

    stage .

    V, yB

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    43/58

    ;tage e\ciency

    nder real operating conditions, e!uilibrium is approac$ed but

    not ac$ie#ed. Eactual 9 Ee!uil

    o#erall column e\ciency. +o#erall ' Ee!uil"Eactual

    +\ciency can #ary from stage to stage5

    Reboiler e\ciency tray e\ciency

    %$ere yn] is t$e e!uilibrium #apor

    composition (not actually ac$ie#ed) onstage n.

    Can also de0ne -urp$reeli!uid e\ciency.

    x J] ' y J "   J 

    -urp$ree #apor e\ciency.

    /ML

    = x n− x 

    n−1

     x n* − x 

    n−1

    /MV 

    = y n− y 

    n+1

     y n * − y n+1

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    44/58

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H

         )

    x(MeOH)

      y  '  x

    xB

    xD

    =

     

     

    R

     

    +x5. Vapor e\ciency of -eH7&71H column

     otal condenser, partialreboiler

    ;peci0cations.xD ' 35, xB ' 353N, = ' 35M,

    ! ' 35M,R ' 4, +-V,R ' 4, +-V ' 35NM5

    Find E and EF,opt5

     

      

      

     

     

    45 Dra% y'x line

    15 lot xD, =, and xB on y'x

    5 Dra% feed line

    M5 Dra% bottom operating

    line (no calc5 re!uired)@5 Find partial reboiler

    5 Dra% top op5 line, slope ' L"V

    N5 ;tep oP stages, using+-V to adJust vertical step

    si=e5A5 Label real stages5

      

    1

    A

    @

    ?M

    4

    N

    E ' A / R

    EF,opt ' @

     o use +LV, adJust hori)ontal step si=e instead5

    Gntermediate condensers and

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    45/58

    Gntermediate condensers andreboilers

    Gntermediate condensers"reboilers can

    impro#e t$e energy e\ciency of columndistillation.

    45 by decreasing t$e $eat t$at must besupplied at t$e bottom of t$ecolumn, pro#iding part of t$e $eatusing an intermediate re%oiler  instead

    & use a smaller (c$eaper) $eatingelement at t$e bottom of t$e column, orlo%er temperature steam to $eat t$eboilup

    15 by decreasing t$e cooling t$at mustbe supplied at t$e top of t$e column,pro#iding part of t$e cooling using anintermediate condenser  instead

    5 & use a smaller (c$eaper) cooling elementat t$e top of t$e column, and"or a $ig$ertemperature coolant for t$e intermediate

    distillateD, xD

    bottomsB, x

    B

    feed

    F, =

    VL

    VL

    V[L[

    ;, x;

    intermediatereboiler

    y; ' x

    ;

    c$ column section $as its o%n operating line5

    V[[L[[

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    46/58

    V1 L4

    L3, x3

    V4, y4

    D, xD

    stage 0

    ;ubcooled reux

    Gf t$e condenser is located belo% t$e

    top of t$e column, t$e reux stream$as to be pumped to t$e top of t$ecolumn5

    +B. V171 / L3$3 ' V474 / L4$4 

    %$ere 74 ≈ 71 ' 7, but $3  $4 ' $

    (V1 8 V4)7 ' L4$ & L3$3

    c7 ' (L3 / c)$ & L3$3 ' L3($ & $3) / c

    ere L3"V4 ' (L3"D)"(4 / L3"D) ' R"(R / 4)

    C-H is #alid belo% stage 45 Find L"V' L4"V1>

    V4 ' V1 & c and L4 ' L3 / c

    cumping a saturated li!uiddamages t$e pump, by causingca#itation5 $e reux stream (L3)

    s$ould be subcooled5 $is %illcause some #apor to condense5

    ;ubcooled reux causes L"V toincrease5

    !3  ≡ !uality of reuxc =

    h−h0

    & −hL

    0

     = (1−#0

    )L0

    L1

    V 2

    =L0+c

    V 1+c

    =L0+ (1−#

    0)L

    0

    V 1+ (1−#

    0)L

    0

    =2−#

    0( ) L0 /V 11+ (1−#

    0)L

    0/V 

    1

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    47/58

    Hpen steam distillation

    B, xB

    D, xDmostly -eH7

    ;, y;

    L, xR

    stage J

    V J/4,

    y J/4

    L J,

    x J

    -eH7"71H

    feedF, =

    bottomsB, xB

    Gf t$e bottoms stream is primarily%ater, t$en t$e boilup is primarilysteam5

    Can replace reboiler %it$ directsteam heating (;)5

     op operating line and feed lines

    do not c$ange5

    Bottom operating line is diPerent.

     -B. V / B ' L / ;

    C-B. V y J/4 / B xB ' L x J  / ;

    y;

    usually 3

    Hperating line e!uation.

      y ' (L"V) x & (L"V) xB xint. x ' xB

    C-H. B ' L

    mostly 71H

    + H t di till ti f - H7"7 H

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    48/58

    +x5. Hpen steam distillation of -eH7"71H

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

       y     (    M   e    O    H     )

    x(MeOH)

      V  L  +

      y  '  x

    45 Dra% y'x line

    15 lot xD and =F on y'x

    5 Dra% feed line, slope ' !"(!&4)

    @5 Dra% bottom op5 line(no calc5 re!uired)

    N5 ;tep oP stages startingat eit$er end, using ne%op5 line as you cross t$eir

    intersection

    M5 Dra% top op5 line, slope ' L"V

      xB

    xD

    =F5 lot xB on x&axis

      

     

     

    4

    @

    1

    M

    ?

    Kll stages are on t$ecolumn (no partialreboiler)5E ' @ EF,opt '

    ?

    peci0cations.

    D ' 35, xB ' 353N, =F ' 35Meed is a 1&p$ase mixture, M3X li!5tal condenser, open steam, R ' 45

    ind E and EF,opt5

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    49/58

    Column internals

    • Klso called a perforated tray• ;imple, c$eap, easy to clean• Oood for feeds t$at contain suspended solids• oor turndown performance (lo% e\ciency %$en operated belo%

    designed o% rate)I prone to Qweeping

    ;ie#e tray

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    50/58

    D

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    51/58

    Do%ncomers

    Dual&pass tray

    Gn large diameter columns, use multi&

    pass trays to reduce li!uid loading indo%ncomers

    Cross&o% tray (single pass)

      # e r  t  i c a  l  d

     o % n c

     o m e r

     a  l  t e r n a  t e

     s  s  i d e

     s

    Bot$ li!uid and #apor pass t$roug$ $oles Earro% operating range

    Dual&o% tray (no do%ncomer)

    \ i

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    52/58

     ray e\ciency

      e   \  c

       i  e  n  c  y

    #apor o% rate

    %eeping"dumping

    ooding  i n e  \

     c  i e n  t

     

     m a s s 

      t r a n s  f e r

    e  x   c   e  s   s   i   #   e  

     

    e  n  t   r   a  i   n  m  e  n  t   

    design

    point 

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    53/58

    Column distillation #ideos

    Eormal column operation.$ttp.""%%%5youtube5com"%atc$>#'22gtcE=

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    54/58

    C l i i

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    55/58

    Column si=ing

    45 Calculate #apor ood #elocity, ufood (ft"s)

    %$ere Csb,f  is t$e capacity factor, from empirical correlation %it$ o%

    parameter, F

    %$ere

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    56/58

     ray spacing

    C l i i t

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    57/58

    Column si=ing, cont5

    Relations$ip bet%een net area for #apor o%, Knet, in ft1,

    and column diameter, D, in ft.

    %$ere η is t$e fraction of t$e cross&sectional area a#ailable for #aporo% (i5e5, not occupied by t$e do%ncomer)

     $e re!uired column diameter, D, in ft, is also.

    ired column diameter c$anges %$ere t$e mass balance c$anges5build column in sections, %it$ optimum diameter for eac$ section, orbuild column %it$ single diameter.

    if feed is saturated li!uid, design for t$e bottom

    if feed is saturated #apor, design for t$e topbalance section diameters (1&ent$alpy feed, intermediate condenser"re

     3net 

    =  π D2η 

    4

    D =4V M2 

    V ( )3600πηρ 

    V uop

    ≈ 4V 3600πη u

    op

    R4 

    1

    * d l

  • 8/9/2019 CONTINOUS DISTILLATION COLUMN

    58/58

    ac*ed columns

    larger surface area, for better contact bet%een li!uid and #apor preferred for column diameters : 15M[ pac*ing is considerably more expensi#e t$an trays c$ange in #apor"li!uid composition is continuous (unli*e staged column) analysis li*e a staged column. 7+ (' 7eig$t +!ui#alent to a $eoreticallate"ray)

    structuredpac*ing.

    randompac*ing.