Top Banner
Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004) circuit elements: Josesphson junction: a non-dissipative nonlinear element (inductor) anharmonic oscillator: non-linear energy level spectrum: electronic artificial atom
24

Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Aug 15, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Constructing Non-Linear Quantum Electronic Circuits

Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)

circuit elements:

Josesphson junction:a non-dissipative nonlinear element (inductor)

anharmonic oscillator: non-linear energy level spectrum:

electronicartificial atom

Page 2: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

A Classification of Josephson Junction Based Qubits

current bias flux biascharge bias

Common options of bias (control) circuits:

phase qubit flux qubitcharge qubit(Cooper Pair Box, Transmon)

How is the control circuit important?

How to make use in of Jospehson junctions in a qubit?

Page 3: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

The Cooper Pair Box Qubit

Page 4: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

A Charge Qubit: The Cooper Pair Box

discrete charge on island:

continuous gate charge:

total box capacitance

Hamiltonian:

electrostatic part:

magnetic part:

charging energy

Josephson energy

Page 5: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

completeness

orthogonality

eigenvalues, eigenfunctions

Hamilton Operator of the Cooper Pair Box

basis transformation

Hamiltonian:

commutation relation:

charge number operator:

phase basis:

Page 6: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Solving the Cooper Pair Box HamiltonianHamilton operator in the charge basis N :

solutions in the charge basis:

Hamilton operator in the phase basis δ :

transformation of the number operator:

solutions in the phase basis:

Page 7: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

energy level diagram for EJ=0:

• energy bands are formed

• bands are periodic in Ng

energy bands for finite EJ

• Josephson coupling lifts degeneracy

• EJ scales level separation at charge degeneracy

Energy Levels

Page 8: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Charge and Phase Wave Functions (EJ << EC)

courtesy CEA Saclay

Page 9: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Charge and Phase Wave Functions (EJ ~ EC)

courtesy CEA Saclay

Page 10: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Tuning the Josephson Energysplit Cooper pair box in perpendicular field

SQUID modulation of Josephson energy

J. Clarke, Proc. IEEE 77, 1208 (1989)

consider two state approximation

�𝐻𝐻 = 𝐸𝐸𝐶𝐶( �𝑁𝑁 − 𝑁𝑁𝑔𝑔)2−𝐸𝐸𝐽𝐽,𝑚𝑚𝑚𝑚𝑚𝑚 cos 𝜋𝜋𝜙𝜙𝑒𝑒𝑚𝑚𝑒𝑒𝜙𝜙0

cos �̂�𝛿

Page 11: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Two-State Approximation

Shnirman et al., Phys. Rev. Lett. 79, 2371 (1997)

Restricting to a two-charge Hilbert space:

Page 12: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

A Variant of the Cooper Pair Box

J. Koch et al., Phys. Rev. A 76, 042319 (2007)J. Schreier et al., Phys. Rev. B 77, 180502 (2008)

5 µm

a Cooper pair box with a small charging energy

circuit diagram:

standard CPB: Transmon qubit:

Page 13: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

The Transmon: A Charge Noise Insensitive Qubit

J. Koch et al., Phys. Rev. A 76, 042319 (2007)

Cooper pair box energy levels: Transmon energy levels:

dispersion: relative anharmonicity:

Page 14: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Control of Coupling to Electromagnetic Environment

Decoupling schemes using non-resonant impedance transformers …

coupling to environment (bias wires):

… or resonant impedance transformers

control spontaneous emission by circuit design

decoherence due to energy relaxationstimulated by the vacuum fluctuations of the environment (spontaneous emission)

Page 15: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Realizations of Superconducting Artificial AtomsNECChalmersJPLYale

SaclayYale

DelftNTTIPHT

NISTSanta-BarbaraMaryland

YaleETHZ

NISTSanta-BarbaraMaryland

DelftIPHTNEC

YaleNIST

review: J. Clarke and F. WilhelmNature 453, 1031 (2008)

'artificial molecules' -- coupled superconducting qubits

'artificial atoms‘ -- single superconducting qubits

Page 16: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Realizations of Harmonic Oscillators

Page 17: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Superconducting Harmonic Oscillators

• typical inductor: L = 1 nH

• a wire in vacuum has inductance ~ 1 nH/mm

• typical capacitor: C = 1 pF

• a capacitor with plate size 10 µm x 10 µm and dielectric AlOx (ε = 10) of thickness 10 nm has a capacitance C ~ 1 pF

• resonance frequency

LC

a simple electronic circuit:

Page 18: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

inductor L

+qφ

-q

Realization of H.O.: Lumped Element Resonator

capacitor C

currents andmagnetic fields

charges andelectric fields

a harmonic oscillator

Page 19: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Types of Superconducting Harmonic Oscillators

planar transmission line resonator:

A. Wallraff et al., Nature 431, 162 (2004)

3D cavity:

H. Paik et al., PRL 107, 240501 (2011)

I. Chiorescu et al., Nature 431, 159 (2004)

weakly nonlinear junction:Z. Kim et al., PRL 106, 120501 (2011)

lumped element resonator:

Page 20: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Realization of H.O.: Transmission Line Resonator

• coplanar waveguide resonator• close to resonance: equivalent to lumped element LC resonator

distributed resonator:

ground

signal

couplingcapacitor gap

M. Goeppl et al., Coplanar Waveguide Resonatorsfor Circuit QED, Journal of Applied Physics 104, 113904 (2008)

Page 21: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

1 mm

Realization of Transmission Line Resonator

Si + + --

E B

cross-section of transm. line (TEM mode):

measuring the resonator:

photon lifetime (quality factor) controlled by coupling capacitors Cin/out

coplanar waveguide:

Page 22: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Resonator Quality Factor and Photon Lifetime

Page 23: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Controlling the Photon Life Time

photon lifetime (quality factor)controlled by coupling capacitor Cin/out

1 mm

100µm

100µm

100µm

100µm

Page 24: Constructing Non-Linear Quantum Electronic Circuits...Constructing Non-Linear Quantum Electronic Circuits Review: M. H. Devoret, A. Wallraffand J. M. Martinis, condmat/0411172 (2004)

Quality Factor Measurement

ext. load ext. load

=

M. Goeppl et al., J. Appl. Phys. 104, 113904 (2008)