Top Banner
Constantine Yannouleas and Uzi Landman School of Physics, Georgia Institute of Technology TNT 2009, Barcelona ARTIFICIAL FEW-ELECTRON SINGLE AND MOLECULAR QUANTUM DOTS IN LOW MAGNETIC FIELDS: ELECTRONIC SPECTRA, SPIN CONFIGURATIONS, AND HEISENBERG CLUSTERS N=2e: C. Ellenberger et al, Phys. Rev. Lett. 96 , 126806 (2006), T. Ihn et al., Int. J. Mod. Phys. B 21 , 1316 (2007) (single anisotropic dots) N=3e: Yuesong Li et al.: PRB 76 , 245310 (2007) (single anisotropic dots) N=4e: Ying Li et al.: PRB 80 , 045326 (2009) (double quantum dots) Method: Exact Diagonalization (EXD)
23

Constantine Yannouleas and Uzi Landman

Mar 01, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Constantine Yannouleas and Uzi Landman

Constantine Yannouleas and Uzi LandmanSchool of Physics, Georgia Institute of Technology

TNT 2009, Barcelona

ARTIFICIAL FEW-ELECTRON SINGLE AND MOLECULAR QUANTUM DOTS IN LOW MAGNETIC FIELDS:

ELECTRONIC SPECTRA, SPIN CONFIGURATIONS,

AND HEISENBERG CLUSTERS

N=2e: C. Ellenberger et al, Phys. Rev. Lett. 96, 126806 (2006),T. Ihn et al., Int. J. Mod. Phys. B 21, 1316 (2007) (single anisotropic dots)

N=3e: Yuesong Li et al.: PRB 76, 245310 (2007) (single anisotropic dots)

N=4e: Ying Li et al.: PRB 80, 045326 (2009) (double quantum dots)

Method: Exact Diagonalization (EXD)

Page 2: Constantine Yannouleas and Uzi Landman

Vertical QD (Delft)

Lateral QD (Ottawa)

Lateral QD Molecule (Delft)Electrostatic confinement

Page 3: Constantine Yannouleas and Uzi Landman

Vb

QDQD

QD

M

Page 4: Constantine Yannouleas and Uzi Landman

3D Clusters/Superatom: Density functional theory

# Magic numbers: 2, 8, 18, 20, …

# Giant resonances/optical response/ RPA

Yannouleas et al., PRL 63, 255 (1989)

Central potential: Electronic shell effects

Natural atoms

V(r) ~ 1/r

Page 5: Constantine Yannouleas and Uzi Landman

Wigner crystals

… electrons repell each other and try to keep as far apart as possible. The total energy of the system will be decreased through the corresponding modification of the wave function.… “correlation energy” …

N=19e

Wigner molecule in a 2D circular QD.

Electron density (ED) from

Unrestricted Hartree-Fock.

Symmetry breaking (localized orbitals).Concentric rings (1,6,12).

Page 6: Constantine Yannouleas and Uzi Landman

Control parametersCONTROLLING PARAMETERS

Page 7: Constantine Yannouleas and Uzi Landman

TWO-STEP METHODEXACT

DIAGONALIZATION

When possible

(small N):High numerical

accuracy

Physics less

transparentcompared to

“THE TWO-STEP”

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)

Pair correlation functions,

CPDs

WAVE-FUNCTION BASED APPROACHESS

tatic c

orr

.D

yn

am

ica

l corr

.

Page 8: Constantine Yannouleas and Uzi Landman

Applications of EXD approach

(to strongly-correlated 2D electrostatic QDs)

1) Detailed description of excitation spectra(advantage over DFT, etc…)

2) Description of many-body entanglement(advantage over DFT, etc…)

3) Transport properties in QDs (current intensity,

phase lapses in Aharonov-Bohm interferometry)

Slater determinantI ~ 500,000

EXD many-body wave function:

All symmetries conserved: total L, total S, S_z

Page 9: Constantine Yannouleas and Uzi Landman

Single QDETH Zurich (K. Ensslin,

Th. Ihn…)

Excitation spectrum of (elliptic)

Anisotropic Quantum Dot Helium (Pinned WM)

C. Ellenberger et al., Phys. Rev. Lett. 96, 126806 (2006)

(No Zeeman splitting)

N=2e

ηηηη= 0.72

ηηηη=ratio of principal axes

Page 10: Constantine Yannouleas and Uzi Landman

ETH single QD

Page 11: Constantine Yannouleas and Uzi Landman

EXD = Exact diagonalizationETH single QD

Page 12: Constantine Yannouleas and Uzi Landman

hwx=4.23 meV; hwy=5.84 meV;

m*=0.070; κκκκ=12.5; γγγγ=0.86

ETH single QD

ST

WRONG!

Dissociation

of the 2e WM

within the single QD

T - S+ 0

EXD

GenelarizedHeitler-Londonwave function

Page 13: Constantine Yannouleas and Uzi Landman

3 states

Yuesong Li et al., PRB 76, 245310 (2007)N=3e

κκκκ=12.5

ηηηη=1/2

ηηηη=0.72

ηηηη=1

κκκκ=12.5

κκκκ=3 κκκκ=1

ηηηη=1/2

ηηηη=1/2

Electron densities

Pinned Wigner Molecule

Excitation spectra

κκκκ=12.5

κκκκ=12.5

Page 14: Constantine Yannouleas and Uzi Landman

3 states

Yuesong Li et al., PRB 76, 245310 (2007)N=3e

κκκκ=12.5

ηηηη=1/2

ηηηη=0.72

ηηηη=1

κκκκ=12.5

κκκκ=3 κκκκ=1

ηηηη=1/2

ηηηη=1/2

Electron densities

Pinned Wigner Molecule

Excitation spectra

κκκκ=12.5

κκκκ=12.5

Branching Diagram

3 states

Page 15: Constantine Yannouleas and Uzi Landman

α| >+β | >+γ | >

Elliptic QD

localized space orbitals

Formation of three-electron Wigner molecule

Entangled three-qubit W-states

well-separated orbitals --> distinguishable particles

Only in limiting cases:

large Coulomb repulsion – large magnetic field

1) α= 2, β=−1, γ=−1 => (1/2,1/2; 1) 2) α=0, β=1, γ=−1 => (1/2,1/2; 2)3) α=β=γ=1 => (3/2,1/2)

Page 16: Constantine Yannouleas and Uzi Landman

2| > − | > − | >EXD wf ~

Study entanglement by using

Page 17: Constantine Yannouleas and Uzi Landman
Page 18: Constantine Yannouleas and Uzi Landman

Quantum Dot Helium Molecule

EXD calculation

6 states

Ying Li et al.: PRB 80, 045326 (2009)N=4e

Page 19: Constantine Yannouleas and Uzi Landman

Quantum Dot Helium Molecule

EXD calculation

6 states

Ying Li et al.: PRB 80, 045326 (2009)N=4e

Branching Diagram

6 states

Page 20: Constantine Yannouleas and Uzi Landman

States at B=0

Ground State Electron Densities Spin-resolved Pair Correlations

I ~ 100,000 Slater Determinant

Spin functions

κκκκ=2

Page 21: Constantine Yannouleas and Uzi Landman

4-site Heisenberg cluster

11 22

44 33

……

Page 22: Constantine Yannouleas and Uzi Landman

4-site Heisenberg cluster: energies and eigenvectors

Explain EXD spectra

Agree with EXD spin functions

Page 23: Constantine Yannouleas and Uzi Landman

SUMMARY

Under appropriate conditions, 2D electrons in anisotropic single and double quantum dots do localize, forming

pinned Wigner Molecules (PWMs)

The excitation spectra and spin functions of PWMs can be

understood via finite-Heisenberg-cluster Hamiltonians with B-dependent exchange constants J(B).

Spin functions are associated with classes of well known

strongly entangled states, e.g., W-states, Dicke states, etc…

Signatures of the Heisenberg-type spectra do survive even

for weaker localization (corresponding to current availableexperimental lateral quantum dots).