Top Banner
May 22 Friday, 2015 @ 2From 15:30-15:45 McKibben型空気圧ゴム筋の 線形モデル予測制御に関する 実験的考察 奈良先端科学技術大学院大学 浦邉 研太郎 電気通信大学 小木曽 公尚 58システム制御情報学会研究発表講演会 SCI’15
17

Considerations on model predictive control of McKibben pneumatic artificial muscle

Jul 25, 2015

Download

Engineering

Kiminao Kogiso
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

1. May 22 Friday, 2015 @ 2 From 15:30-15:45 McKibben 58 SCI15 2. 2 3. 3 [1] B. Tondu et al., 2000. [1] m D L0 . P0 P [HUR ][ ] McKibben () () 4. 4 [2] T. V. Minh et al., 2010. [3] A. P-Arrese et al., 2010. , . [4] G. Andrikopoulos et al., 2014. () [2] [3] [4] [5,6] [5] Kogiso et al., 2013. [6] , 2015. 5. 5 x(t) = f (x(t), u(t)) y(t) = h(x(t)) x(t) 2 S x := [ P]T if 12[5] proportional directional control valve L M M L l0 air compressor Fig. 1. Illustration of considered PAM system. equilibrium where neither players want to deviate from respective utility values. The resulting parameters are a l (or might be a global) optimum to the optimization prob and then the model of the PAM system can be automatic identied. II. PHYSICAL MODELING OF THE PAM SYSTEM This paper considers a PAM system with a vertic suspended weight and a proportional directional con valve, as illustrated in Fig. 1. A model of the considered P system is in a switched system with 32 nonlinear subsyst f : 3 3 , x(t) = f(x(t), u(t)) if x(t) X, y(t) = 1 0 0 0 0 1 x(t), where the state variable x 3 and output vari (measured by sensors) y 2 are respectively dene m(t) = (t) mi(t) (1 (t)) mo(t) mi(t) = 8 >>>>>>>>>>< >>>>>>>>>>: A0 Ptankp T r k R 2 k+1 k+1 k 1 if P(t) 2 k+1 k k 1 Ptank, A0 Ptankp T q 2k R(k 1) P (t) Ptank 1 k r 1 P (t) Ptank k 1 k if P(t) > 2 k+1 k k 1 Ptank, () Ff (t) = 8 >>>< >>>: cvL(t) + ccsgn((t)), if (t) 6= 0, cc, if (t) = 0 and Fo(t) > cc, Fo(t), if (t) = 0 and Fo(t) 2 [ cc, cc], cc, if (t) = 0 and Fo(t) < cc, ML(t) = 8 >>< >>: F(P, , t) Mg Ff (t) K(L0 L(1 (t)))3 , if (t) L L0 L , F(P, , t) Mg Ff (t), otherwise, [Kikuue, IEEE TRO 06] V (t) = D1(t)2 + D2(t) + D3 [Kagawa, CEP 97], [Minh, Mechatronics 10] P(t) = k1 RT V (t) m(t) k2 V (t) V (t) P(t) [Richer, JDSMC 00] F(P, , t) = APg(t) at n a Cq1 1 + eCq2 Pg(t) (t) o2 as [Tondu, IEEE CSM 00], [Kang, ICRA 09] [Itto, IEEE ICIT11] y := [ P]T P 6. 6 control valve inner gas V + + + - PAM with weight 1/s 1/ML Ffric elasticity yPu tank Pout P PAM L 1/s 1/s 1/s 7. 7 J(xt|t, uN t ) = NX j=1 ||t|t+j ||2 2,Q + ||Pt|t+j P||2 2,QP + ||t|t+j||2 2,Q contraction velocityerror of contraction ratio error of pressure Voltage of minimum aperture x(t + 1) = f (x(t), u(t)) if x(t) 2 X y(t) = 1 0 0 0 0 1 x(t) u u(t) u Voltage of max aperture () () 8. 8 (MPC) v.s. PID(PID) MPC Matlab 2014b, fmincon, iMac Core i5 3.2GHz 16GB 50 103 sin (t/20) + 200 [kPa] 150 103 sin (2t/20) + 450 [kPa] 0.04 sin (2.5t/20) + 0.20 [ ] 0.02 sin (t/20) + 0.10 [ ] N = 1, QP = 1, Q = 1 N = 5, Q = 108 , Q = 6.0 104 () 10 [ms] air compressor pressure tank PAM pressure sensor control valve LDM flow meter 9. 9 MPC v.s. PID 0 5 10 15 20 25 30 35 40 100 200 300 400 500 600 700 Time [s] Pressure[kPa] Reference MPC PID 0 5 10 15 20 25 30 35 40 100 200 300 400 500 600 700 Time [s] Pressure[kPa] Reference MPC PID 50 kPa /20 150 kPa 2 /20 MPC 1313 MPC 1306 10. 10 MPC v.s. PID 0 5 10 15 20 25 30 35 40 0 0.05 0.1 0.15 0.2 0.25 0.3 Time [s] ContractionRatio[-] Reference MPC PID 0 5 10 15 20 25 30 35 40 0 0.05 0.10 0.15 0.20 0.25 0.30 Time [s] ContractionRatio[-] Reference MPC PID 0.02 /20 0.04 2.5 /20 MPC 150447 MPC 172652 11. 11 0 5 10 15 20 25 30 35 40 100 200 300 400 500 600 700 Time [s] Pressure[kPa] Simulation Experiment 0 5 10 15 20 25 30 35 40 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Time [s] ContractionRatio[-] Reference Simulation Experiment 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 Time [s] InputVoltage[V] Input sequences 0 5 10 15 20 25 30 35 40 100 200 300 400 500 600 700 Time [s] Pressure[kPa] Reference Simulation Experiment 0 5 10 15 20 25 30 35 40 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Time [s] ContractionRatio[-] Simulation Experiment 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 Time [s] InputVoltage[V] Input sequences (:15 %) (:500 kPa) 12. 12 PID () M 2M torqueend-effect M M M M 2M 13. 13 14. 14 x(t) = f (x(t), u(t)) y(t) = h(x(t)) x(t) 2 S x := [ P]T y := [ F]T if L0 D0 D1 D2 D3 M K R T cc A0 Cq1 Cq2 k1 k2 cv Ptank Pout k : natural diameter of PAM [m] : natural length of PAM [m] : source absolute pressure [Pa] : coecients for PAM volume [m^3] : atmospheric pressure [Pa] : specic heat ratio for air [-] : ideal gas constant [J/kg K] : absolute temperature [K] : coecient of elasticity [N/m^3] : initial angle btw braided thread & cylinder long axis [deg] : correction coecient [-] : correction coecient [1/Pa] : Coulomb friction [N] : viscous friction coecient [Ns/m] : orice area of PDC valve [m^2] : polytropic indexes [-] : mass of weight [kg] , : McKibbne, , Vol. 26, No. 7, 2013. 12 : For the PAM system model, its steady-state behavior is characterized by and its transient behavior is characterized by A0 k1 k2 cv parameters: parameters: Cq2(M)K(M) (M) Cq1(M) cc(M) 15. 15 4 ActiveLink TAA10 FESTO 20-200 FESTO10-250N AirMuscle ActiveLink, TAA10 250 ActiveLink, AMT-S 250 Festo, DMSP-10-200N-RM-CM 200 , : McKibbne, , Vol. 51, No. 4, 2015. 16. 16 0 0.05 0.10 0.15 0.20 0.25 contractionratio 100 200 300 400 500 600 700 pressure [kPa] 100 200 300 400 500 600 700 pressure [kPa] 0 0.05 0.10 0.15 0.20 0.25 contractionratio 100 200 300 400 500 600 700 pressure [kPa] 0 0.05 0.10 0.15 0.20 0.25 contractionratio 0 0.05 0.10 0.15 0.20 0.25 contractionratio 100 200 300 400 500 600 700 pressure [kPa] ActiveLink TAA10 FESTO 20-200 AirMuscle -1709 -3980 -3650-3550 FESTO 10-250 [, 15] 17. 17 ActiveLink TAA10 FESTO 20-200 AirMuscle FESTO 10-250 0 0.1 0.2 0.3 2 3 4 5 6 7 x10 -5 contraction ratio PAMvolume[m3 ] 0 0.05 0.1 0.15 contraction ratio x10 -4 1.8 1.9 2.0 2.1 2.2 2.3 PAMvolume[m3 ] 0 0.05 0.1 0.15 0.2 0.25 0.5 0.7 0.9 1.1 1.3 1.5 x10 -4 contraction ratio PAMvolume[m3 ] 0 0.05 0.1 0.15 0.2 0.25 1 2 3 4 5 6 x10 -5 contraction ratio PAMvolume[m3 ]