Top Banner

of 26

Connected Chemistry 8 Gas Particle Sandbox

Nov 05, 2015

Download

Documents

azz

netlogo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

globals[ tick-delta ;; how much we advance the tick counter this time through max-tick-delta ;; the largest tick-delta is allowed to be init-avg-speed init-avg-energy ;; initial averages avg-speed avg-energy ;; current average avg-energy-green avg-energy-orange avg-energy-purple particle-size toggle-red-state toggle-green-state min-particle-energy max-particle-energy particles-to-add]breed [ particles particle ]breed [ walls wall ]breed [ flashes flash ]breed [ erasers eraser ]breed [ arrowheads arrowhead ]erasers-own [pressure?]flashes-own [birthday]particles-own[ speed mass energy ;; particles info last-collision color-type]walls-own[ energy valve-1? valve-2? pressure? surface-energy]to setup ca reset-ticks set particle-size 1.0 set max-tick-delta 0.02 set particles-to-add 2 set-default-shape flashes "square" set-default-shape walls "wall" set-default-shape erasers "eraser" set-default-shape arrowheads "default" set min-particle-energy 0 set max-particle-energy 10000 ;;(.5 ) * ( max-dist-in-tick-delta / max-tick-delta ) ^ 2 create-erasers 1 [set hidden? true set pressure? true set size 3 set color white] make-box make-particles ask particles [ apply-speed-visualization] set init-avg-speed avg-speed set init-avg-energy avg-energy update-variables do-plottingendto go mouse-action if mouse-interaction = "none - let the particles interact" [ ask particles [ bounce ] ask particles [ move ] ask particles [ check-for-collision ] ask particles with [any? walls-here] [rewind-to-bounce] ask particles with [any? walls-here] [remove-from-walls]] tick-advance tick-delta calculate-tick-delta ask flashes [apply-flash-visualization] ask particles [apply-speed-visualization] update-variables do-plotting displayendto update-variables if any? particles [ set avg-speed mean [speed] of particles set avg-energy mean [energy] of particles ] if any? particles with [color-type = 55] [set avg-energy-green mean [energy] of particles with [color-type = 55]] if any? particles with [color-type = 25] [set avg-energy-orange mean [energy] of particles with [color-type = 25]] if any? particles with [color-type = 115] [set avg-energy-purple mean [energy] of particles with [color-type = 115]]end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;WALL INTERACTION;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to toggle-red-wall ifelse toggle-red-state = "closed" [ask walls with [valve-1?] [set hidden? true] set toggle-red-state "open"] [ask walls with [valve-1?] [set hidden? false] set toggle-red-state "closed"]endto toggle-green-wall ifelse toggle-green-state = "closed" [ask walls with [valve-2?] [set hidden? true] set toggle-green-state "open"] [ask walls with [valve-2?] [set hidden? false] set toggle-green-state "closed"]end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAS MOLECULES MOVEMENT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to bounce ;; particles procedure ;; get the coordinates of the patch we'll be on if we go forward 1 let bounce-patch nobody let bounce-patches nobody let hit-angle 0 let this-patch patch-here let new-px 0 let new-py 0 let visible-wall nobody set bounce-patch min-one-of walls in-cone ((sqrt (2)) / 2) 180 with [myself != this-patch] [distance myself ] if bounce-patch != nobody [ set new-px [pxcor] of bounce-patch set new-py [pycor] of bounce-patch set visible-wall walls-on bounce-patch if any? visible-wall with [not hidden?] [ set hit-angle towards bounce-patch ifelse (hit-angle = 45) or (hit-angle = 225) [set heading (- heading) ] [set heading (180 - heading) ] if show-wall-hits? [ ask patch new-px new-py [ sprout 1 [ set breed flashes set color gray - 2 set birthday ticks ] ] ] ]]endto rewind-to-bounce ;; particles procedure ;; attempts to deal with particle penetration by rewinding the particle path back to a point ;; where it is about to hit a wall ;; the particle path is reversed 49% of the previous tick-delta it made, ;; then particle collision with the wall is detected again. ;; and the particle bounces off the wall using the remaining 51% of the tick-delta. ;; this use of slightly more of the tick-delta for forward motion off the wall, helps ;; insure the particle doesn't get stuck inside the wall on the bounce. let bounce-patch nobody let bounce-patches nobody let hit-angle 0 let this-patch nobody let new-px 0 let new-py 0 let visible-wall nobody bk (speed) * tick-delta * .49 set this-patch patch-here set bounce-patch min-one-of walls in-cone ((sqrt (2)) / 2) 180 with [self != this-patch] [distance myself ] if bounce-patch != nobody [ set new-px [pxcor] of bounce-patch set new-py [pycor] of bounce-patch set visible-wall walls-on bounce-patch if any? visible-wall with [not hidden?] [ set hit-angle towards bounce-patch ifelse (hit-angle = 45) or (hit-angle = 225) [set heading (- heading) ] [set heading (180 - heading) ] if show-wall-hits? [ ask patch new-px new-py [ sprout 1 [ set breed flashes set color gray - 2 set birthday ticks ] ] ] ]] fd (speed) * tick-delta * .51endto move ;; particles procedure if patch-ahead (speed * tick-delta) != patch-here [ set last-collision nobody ] jump (speed * tick-delta)end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAS MOLECULES COLLISIONS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;from GasLabto calculate-tick-delta ;; tick-delta is calculated in such way that even the fastest ;; particles will jump at most 1 patch delta in a ticks tick. As ;; particles jump (speed * tick-delta) at every ticks tick, making ;; tick delta the inverse of the speed of the fastest particles ;; (1/max speed) assures that. Having each particles advance at most ; one patch-delta is necessary for it not to "jump over" a wall ; or another particles. ifelse any? particles with [speed > 0] [ set tick-delta min list (1 / (ceiling max [speed] of particles )) max-tick-delta ] [ set tick-delta max-tick-delta ]endto check-for-collision ;; particles procedure ;; Here we impose a rule that collisions only take place when there ;; are exactly two particles per patch. We do this because when the ;; student introduces new particles from the side, we want them to ;; form a uniform wavefront. ;; ;; Why do we want a uniform wavefront? Because it is actually more ;; realistic. (And also because the curriculum uses the uniform ;; wavefront to help teach the relationship between particles collisions, ;; wall hits, and pressure.) ;; ;; Why is it realistic to assume a uniform wavefront? Because in reality, ;; whether a collision takes place would depend on the actual headings ;; of the particles, not merely on their proximity. Since the particles ;; in the wavefront have identical speeds and near-identical headings, ;; in reality they would not collide. So even though the two-particles ;; rule is not itself realistic, it produces a realistic result. Also, ;; unless the number of particles is extremely large, it is very rare ;; for three or particles to land on the same patch (for example, ;; with 400 particles it happens less than 1% of the time). So imposing ;; this additional rule should have only a negligible effect on the ;; aggregate behavior of the system. ;; ;; Why does this rule produce a uniform wavefront? The particles all ;; start out on the same patch, which means that without the only-two ;; rule, they would all start colliding with each other immediately, ;; resulting in much random variation of speeds and headings. With ;; the only-two rule, they are prevented from colliding with each other ;; until they have spread out a lot. (And in fact, if you observe ;; the wavefront closely, you will see that it is not completely smooth, ;; because collisions eventually do start occurring when it thins out while fanning.) if count other particles-here in-radius 1 = 1 [ ;; the following conditions are imposed on collision candidates: ;; 1. they must have a lower who number than my own, because collision ;; code is asymmetrical: it must always happen from the point of view ;; of just one particles. ;; 2. they must not be the same particles that we last collided with on ;; this patch, so that we have a chance to leave the patch after we've ;; collided with someone. let candidate one-of other particles-here with [who < [who] of myself and myself != last-collision] ;; we also only collide if one of us has non-zero speed. It's useless ;; (and incorrect, actually) for two particles with zero speed to collide. if (candidate != nobody) and (speed > 0 or [speed] of candidate > 0) [ collide-with candidate set last-collision candidate ask candidate [ set last-collision myself ] ] ]end;; implements a collision with another particles.;;;; THIS IS THE HEART OF THE particles SIMULATION, AND YOU ARE STRONGLY ADVISED;; NOT TO CHANGE IT UNLESS YOU REALLY UNDERSTAND WHAT YOU'RE DOING!;;;; The two particles colliding are self and other-particles, and while the;; collision is performed from the point of view of self, both particles are;; modified to reflect its effects. This is somewhat complicated, so I'll;; give a general outline here:;; 1. Do initial setup, and determine the heading between particles centers;; (call it theta).;; 2. Convert the representation of the velocity of each particles from;; speed/heading to a theta-based vector whose first component is the;; particle's speed along theta, and whose second component is the speed;; perpendicular to theta.;; 3. Modify the velocity vectors to reflect the effects of the collision.;; This involves:;; a. computing the velocity of the center of mass of the whole system;; along direction theta;; b. updating the along-theta components of the two velocity vectors.;; 4. Convert from the theta-based vector representation of velocity back to;; the usual speed/heading representation for each particles.;; 5. Perform final cleanup and update derived quantities.to collide-with [ other-particles ] ;; particles procedure ;;; PHASE 1: initial setup ;; for convenience, grab quantities from other-particles let mass2 [mass] of other-particles let speed2 [speed] of other-particles let heading2 [heading] of other-particles ;; since particles are modeled as zero-size points, theta isn't meaningfully ;; defined. we can assign it randomly without affecting the model's outcome. let theta (random-float 360) ;;; PHASE 2: convert velocities to theta-based vector representation ;; now convert my velocity from speed/heading representation to components ;; along theta and perpendicular to theta let v1t (speed * cos (theta - heading)) let v1l (speed * sin (theta - heading)) ;; do the same for other-particles let v2t (speed2 * cos (theta - heading2)) let v2l (speed2 * sin (theta - heading2)) ;;; PHASE 3: manipulate vectors to implement collision ;; compute the velocity of the system's center of mass along theta let vcm (((mass * v1t) + (mass2 * v2t)) / (mass + mass2) ) ;; now compute the new velocity for each particles along direction theta. ;; velocity perpendicular to theta is unaffected by a collision along theta, ;; so the next two lines actually implement the collision itself, in the ;; sense that the effects of the collision are exactly the following changes ;; in particles velocity. set v1t (2 * vcm - v1t) set v2t (2 * vcm - v2t) ;;; PHASE 4: convert back to normal speed/heading ;; now convert my velocity vector into my new speed and heading set speed sqrt ((v1t ^ 2) + (v1l ^ 2)) set energy (0.5 * mass * speed ^ 2) ;; if the magnitude of the velocity vector is 0, atan is undefined. but ;; speed will be 0, so heading is irrelevant anyway. therefore, in that ;; case we'll just leave it unmodified. if v1l != 0 or v1t != 0 [ set heading (theta - (atan v1l v1t)) ] ;; and do the same for other-particle ask other-particles [ set speed sqrt ((v2t ^ 2) + (v2l ^ 2)) set energy (0.5 * mass * (speed ^ 2)) if v2l != 0 or v2t != 0 [ set heading (theta - (atan v2l v2t)) ] ]end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; mouse interaction procedures;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to mouse-action let snap-xcor 0 let snap-ycor 0 let orig-xcor 0 let orig-ycor 0 let eraser-window-walls nobody let eraser-window-particles nobody ifelse mouse-down? [ set orig-xcor mouse-xcor set orig-ycor mouse-ycor set snap-xcor round orig-xcor set snap-ycor round orig-ycor ask patches with [pxcor = snap-xcor and pycor = snap-ycor] [ set eraser-window-walls walls-on neighbors set eraser-window-walls eraser-window-walls with [not pressure?] set eraser-window-particles particles-on neighbors if mouse-interaction = "draw basic wall" [ ask walls-here [die] sprout 1 [ set breed walls set color gray initialize-this-wall ] ] if mouse-interaction = "draw red removable wall" [ set toggle-red-state "open" toggle-red-wall ask walls-here [die] sprout 1 [ set breed walls set color red initialize-this-wall set valve-1? true ] ] if mouse-interaction = "draw green removable wall" [ set toggle-green-state "open" toggle-green-wall ask walls-here [die] sprout 1 [ set breed walls set color 55 initialize-this-wall set valve-2? true ] ] if mouse-interaction = "big eraser" [ ask erasers [ set hidden? false set shape "eraser" setxy orig-xcor orig-ycor ] ask eraser-window-walls [die] ask eraser-window-particles [die] ] if mouse-interaction = "add purple particles" or mouse-interaction = "add green particles" or mouse-interaction = "add orange particles" [ ask erasers [ set hidden? false set shape "spray paint" setxy orig-xcor orig-ycor ] sprout particles-to-add [ set breed particles setup-particles jump random-float 2 if mouse-interaction = "add purple particles" [set color-type 115 color-particle-and-link] if mouse-interaction = "add orange particles" [set color-type 25 color-particle-and-link] if mouse-interaction = "add green particles" [set color-type 55 color-particle-and-link] apply-speed-visualization ] ] if mouse-interaction = "paint particles purple" or mouse-interaction = "paint particles orange" or mouse-interaction = "paint particles green" [ ask erasers [ set hidden? false set shape "spray paint" setxy orig-xcor orig-ycor ] ask eraser-window-particles [ if mouse-interaction = "paint particles purple" [set color-type 115 color-particle-and-link] if mouse-interaction = "paint particles orange" [set color-type 25 color-particle-and-link] if mouse-interaction = "paint particles green" [set color-type 55 color-particle-and-link] apply-speed-visualization ] ] if mouse-interaction = "speed up particles" [ ask erasers [ set hidden? false set shape "spray paint" setxy orig-xcor orig-ycor ] ask eraser-window-particles [ set energy (energy * 1.1) set energy limited-particle-energy set speed speed-from-energy apply-speed-visualization ] ] if mouse-interaction = "slow down particles" [ ask erasers [ set hidden? false set shape "spray paint" setxy orig-xcor orig-ycor ] ask eraser-window-particles [ set energy (energy / 1.1) set energy limited-particle-energy set speed speed-from-energy apply-speed-visualization ] ] ] ask particles with [any? walls-here] [remove-from-walls] ;; deal with any walls drawn on top of particles ] [ask erasers [set hidden? true]]end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; particle speed and flash visualization procedures;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to apply-flash-visualization set size (size * .95) if (ticks - birthday > 0.4) [ die ]endto apply-speed-visualization if visualize-speed? = "arrows" [ scale-arrowheads] if visualize-speed? = "different shades" [ recolorshade ] if visualize-speed? = "none" [ recolornone ]endto color-particle-and-link let this-link my-out-links let this-color-type color-type set color this-color-type ask this-link [set color this-color-type]endto scale-arrowheads let this-xcor xcor let this-ycor ycor let this-speed speed let this-heading heading let this-arrowhead out-link-neighbors let this-link my-out-links ask this-link [set hidden? false] ask this-arrowhead [ set xcor this-xcor set ycor this-ycor set heading this-heading fd .5 + this-speed / 3 ]endto recolorshade let this-link my-out-links ask this-link [set hidden? true] ifelse speed < 27 [ set color color-type - 3 + speed / 3 ] [ set color color-type + 4.999 ]endto recolornone let this-link my-out-links ask this-link [set hidden? true] set color color-typeend;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; initialization procedures;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to make-box ask patches with [(pycor = min-pycor or pycor = max-pycor or pxcor = min-pxcor or pxcor = max-pxcor) ] [ sprout 1 [set breed walls set color yellow initialize-this-wall set pressure? true] ]endto initialize-this-wall set valve-1? false set valve-2? false set pressure? falseendto make-particles create-particles initial-#-particles [ setup-particles random-position ]endto setup-particles ;; particles procedure set shape "circle" set size particle-size set energy initial-gas-temperature set color-type 115 set color color-type set mass (10) ;; atomic masses of oxygen atoms hatch 1 [set breed arrowheads set hidden? true create-link-from myself [tie]] set speed speed-from-energy set last-collision nobodyend;; Place particles at random, but they must not be placed on top of wall atoms.;; This procedure takes into account the fact that wall molecules could have two possible arrangements,;; i.e. high-surface area ot low-surface area.to random-position ;; particles procedure let open-patches nobody let open-patch nobody set open-patches patches with [not any? turtles-here and pxcor != max-pxcor and pxcor != min-pxcor and pycor != min-pycor and pycor != max-pycor] set open-patch one-of open-patches ;; Reuven added the following "if" so that we can get through setup without a runtime error. if open-patch = nobody [ user-message "No open patches found. Exiting." stop ] setxy ([pxcor] of open-patch) ([pycor] of open-patch)end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; wall penetration error handling procedure;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; if particles actually end up within the wall;;to remove-from-walls let this-wall walls-here with [not hidden?] if count this-wall != 0 [ let available-patches patches with [not any? walls-here] let closest-patch nobody if (any? available-patches) [ set closest-patch min-one-of available-patches [distance myself] set heading towards closest-patch setxy ([pxcor] of closest-patch) ([pycor] of closest-patch) ] ]end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GRAPHS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to do-plotting set-current-plot "Temperature of gases" if any? particles with [color-type = 55] [ set-current-plot-pen "green" plotxy ticks avg-energy-green ] if any? particles with [color-type = 25] [ set-current-plot-pen "orange" plotxy ticks avg-energy-orange ] if any? particles with [color-type = 115] [ set-current-plot-pen "purple" plotxy ticks avg-energy-purple ]end;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;REPORTERS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;to-report speed-from-energy report sqrt (2 * energy / mass)endto-report energy-from-speed report (mass * speed * speed / 2)endto-report limited-particle-energy let limited-energy energy if limited-energy > max-particle-energy [set limited-energy max-particle-energy] if limited-energy < min-particle-energy [set limited-energy min-particle-energy] report limited-energyend; Copyright 2006 Uri Wilensky.; See Info tab for full copyright and license.@#$#@#$#@GRAPHICS-WINDOW32010726437161612.01101110001-1616-1616111ticks30.0BUTTON901016543go/stopgoT1TOBSERVERNILNILNILNIL1BUTTON10108543NILsetupNIL1TOBSERVERNILNILNILNIL1SLIDER104531578initial-#-particlesinitial-#-particles0100611NILHORIZONTALSLIDER1080315113initial-gas-temperatureinitial-gas-temperature150025011NILHORIZONTALPLOT10200315422Temperature of gasestimetemp.0.010.00.0200.0truetrue"" ""PENS"orange" 1.0 0 -955883 true "" """purple" 1.0 0 -8630108 true "" """green" 1.0 0 -10899396 true "" ""CHOOSER165115315160mouse-interactionmouse-interaction"none - let the particles interact" "draw basic wall" "draw red removable wall" "draw green removable wall" "big eraser" "slow down particles" "speed up particles" "paint particles purple" "paint particles green" "paint particles orange" "add green particles" "add purple particles" "add orange particles"7BUTTON165165315198remove/replace green walltoggle-green-wallNIL1TOBSERVERNILNILNILNIL1SWITCH1701031443show-wall-hits?show-wall-hits?01-1000BUTTON10165160198remove/replace red walltoggle-red-wallNIL1TOBSERVERNILNILNILNIL1CHOOSER10115160160visualize-speed?visualize-speed?"none" "different shades" "arrows"1@#$#@#$#@## WHAT IS IT?This model supports a drawing style interface for "sketching" up representations of new systems to explore related to gas behavior and gas particles. This model is part of the "Connected Chemistry" curriculum http://ccl.northwestern.edu/curriculum/ConnectedChemistry/ which explores the behavior of gases.Most of the models in the Connected Chemistry curriculum use the same basic rules for simulating the behavior of gases. Each model highlights different features of how gas behavior is related to gas particle behavior.In all of the models, gas particles are assumed to move and to collide, both with each other and with objects such as walls.In this model, particles can be added, color coded, and sped up or slowed down, by drawing with the mouse cursor in the WORLD & VIEW. Also, additional types of removable and replaceable walls can be added to the WORLD.This model enables students to draw a model of a real world system and then test that model. A wide range of real world systems can be modeled with this simple interface (e.g. diffusion of perfume from an uncapped container, hot gas mixed with a cold gas, mixtures of gases).## HOW IT WORKSThe particles are modeled as hard balls with no internal energy except that which is due to their motion. Collisions between particles are elastic. Collisions with the wall are not.The exact way two particles collide is as follows:1. A particle moves in a straight line without changing its speed, unless it collides with another particle or bounces off the wall.2. Two particles "collide" if they find themselves on the same patch. In this model, two turtles are aimed so that they will collide at the origin.3. An angle of collision for the particles is chosen, as if they were two solid balls that hit, and this angle describes the direction of the line connecting their centers.4. The particles exchange momentum and energy only along this line, conforming to the conservation of momentum and energy for elastic collisions.5. Each particle is assigned its new speed, heading and energy.As the walls of the box are heated, the sides of the walls will change color from a deep red (cool) to a bright red, to pink to a pale pink white (hot). The walls contain a constant heat value throughout the simulation.The exact way particles gain energy from the walls of the box is as follows:1. Particles check their state of energy (kinetic).2. They hit or bounce off the wall.3. They find wall energy and set their new energy to be the average of their old kinetic energy and the wall energy.4. They change their speed and direction after the wall hit.## HOW TO USE ITButtons:SETUP - sets up the initial conditions set on the sliders.GO/STOP - runs and stops the model.MOUSE INTERACTION - when this is set to "none - let the particles interact" the particles will move and interact with each other and the surroundings. When set to any other value you can then click in the WORLD & VIEW to paint, erase, color, or add various objects and properties.Sliders:INITIAL-#-PARTICLES - sets the number of gas particles in the box when the simulation starts.INITIAL-GAS-TEMPERATURE sets the initial temperature of the gas.Switches:SHOW-WALL-HITS? turn visualization of when particles hits the walls (as flashes) on or offChoosers:VISUALIZE-SPEED? allows you to visualize particle speeds. For example, selecting "arrows", creates a representation of each particle velocity using a scalar arrow. Selecting "shades" creates representation of each particle speed using a brighter (faster) or darker (slower) shade of the particle's color.MOUSE-INTERACTION sets the type interaction the user can do with the mouse in the WORLD & VIEW. Possible settings include:"none - let the particles interact" - particles move about"draw basic wall" - adds a gray wall under the mouse cursor"draw red removable wall" - adds a red wall under the mouse cursor which can be alternatively removed and replaced (like a valve) using the REMOVE/REPLACE RED WALL."draw green removable wall" - adds a green wall under the mouse cursor which can be alternatively removed and replaced (like a valve) using the REMOVE/REPLACE GREEN WALL."big eraser" - erases all objects (except the yellow box boundary walls) under the mouse cursor."slow down particles" - increase the current speed of the particles by 10%."speed up particles" - reduces the current speed of the particles by 10%."paint particles green" - recolors the particles under the mouse cursor green (other settings include orange and purple)"add green particles" - adds a couple of new particles under the mouse cursor (other settings include orange and purple)Plots:- 1: TEMPERATURE OF GASES VS. TIME: plots the temperature of the different gases in the model, as indicated by their color (orange particles, green particles, and purple particles)## THINGS TO NOTICEThe mouse interaction can be used while the model is running as well as when it is stopped.## THINGS TO TRYCreate a model of how odors move throughout a room. Why do some people smell the odor before others? Does the layout of furniture, large objects, and walls in the room effect the movement of the odor? How about the temperature of the air in the room?Create a model of diffusion of a perfume from a closed container. How would you represent the different gases (the perfume and the surrounding air)? What shape will the container be? How will you model a removable cap or lid?Create a model of room filled with cold air and a different room filled with warm air. How will represent these different rooms of air? What could you add to show what happens when they mix?Create a model of heat transfer that shows what happens to the energy of one very fast moving gas particle when it hits a bunch of very slow moving gas particles. What does this show happening to the energy of the initial gas particles?## RELATED MODELSSee GasLab ModelsSee other Connected Chemistry models.## CREDITS AND REFERENCESThis model is part of the Connected Chemistry curriculum. See http://ccl.northwestern.edu/curriculum/chemistry.We would like to thank Sharona Levy and Michael Novak for their substantial contributions to this model.## HOW TO CITEIf you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software:* Wilensky, U. (2006). NetLogo Connected Chemistry 8 Gas Particle Sandbox model. http://ccl.northwestern.edu/netlogo/models/ConnectedChemistry8GasParticleSandbox. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.* Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.To cite the Connected Chemistry curriculum as a whole, please use: Wilensky, U., Levy, S. T., & Novak, M. (2004). Connected Chemistry curriculum. http://ccl.northwestern.edu/curriculum/chemistry. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.## COPYRIGHT AND LICENSECopyright 2006 Uri Wilensky.![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png)This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at [email protected].@#$#@#$#@defaulttrue0Polygon -7500403 true true 150 5 40 250 150 205 260 250airplanetrue0Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15arrowtrue0Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150boxfalse0Polygon -7500403 true true 150 285 285 225 285 75 150 135Polygon -7500403 true true 150 135 15 75 150 15 285 75Polygon -7500403 true true 15 75 15 225 150 285 150 135Line -16777216 false 150 285 150 135Line -16777216 false 150 135 15 75Line -16777216 false 150 135 285 75bugtrue0Circle -7500403 true true 96 182 108Circle -7500403 true true 110 127 80Circle -7500403 true true 110 75 80Line -7500403 true 150 100 80 30Line -7500403 true 150 100 220 30butterflytrue0Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225Circle -16777216 true false 135 90 30Line -16777216 false 150 105 195 60Line -16777216 false 150 105 105 60carfalse0Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180Circle -16777216 true false 180 180 90Circle -16777216 true false 30 180 90Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89Circle -7500403 true true 47 195 58Circle -7500403 true true 195 195 58carbontrue0Circle -1184463 true false 68 83 134carbon-activatedtrue0Circle -1184463 true false 68 83 134Line -2674135 false 135 90 135 210carbon2true0Circle -955883 true false 30 45 210circlefalse1Circle -2674135 true true 30 30 240circle 2false0Circle -7500403 true true 16 16 270Circle -16777216 true false 46 46 210clocktrue0Circle -7500403 true true 30 30 240Polygon -16777216 true false 150 31 128 75 143 75 143 150 158 150 158 75 173 75Circle -16777216 true false 135 135 30co2true0Circle -13791810 true false 83 165 134Circle -13791810 true false 83 0 134Circle -1184463 true false 83 83 134cowfalse0Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167Polygon -7500403 true true 73 210 86 251 62 249 48 208Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123eraserfalse0Rectangle -7500403 true true 0 0 300 300face happyfalse0Circle -7500403 true true 8 8 285Circle -16777216 true false 60 75 60Circle -16777216 true false 180 75 60Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240face neutralfalse0Circle -7500403 true true 8 7 285Circle -16777216 true false 60 75 60Circle -16777216 true false 180 75 60Rectangle -16777216 true false 60 195 240 225face sadfalse0Circle -7500403 true true 8 8 285Circle -16777216 true false 60 75 60Circle -16777216 true false 180 75 60Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183fishfalse0Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166Circle -16777216 true false 215 106 30flagfalse0Rectangle -7500403 true true 60 15 75 300Polygon -7500403 true true 90 150 270 90 90 30Line -7500403 true 75 135 90 135Line -7500403 true 75 45 90 45flowerfalse0Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135Circle -7500403 true true 85 132 38Circle -7500403 true true 130 147 38Circle -7500403 true true 192 85 38Circle -7500403 true true 85 40 38Circle -7500403 true true 177 40 38Circle -7500403 true true 177 132 38Circle -7500403 true true 70 85 38Circle -7500403 true true 130 25 38Circle -7500403 true true 96 51 108Circle -16777216 true false 113 68 74Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240heater-afalse0Rectangle -7500403 true true 0 0 300 300Rectangle -16777216 true false 90 90 210 210heater-bfalse0Rectangle -7500403 true true 0 0 300 300Rectangle -16777216 true false 30 30 135 135Rectangle -16777216 true false 165 165 270 270hexfalse0Polygon -7500403 true true 0 150 75 30 225 30 300 150 225 270 75 270hex-valvefalse0Rectangle -7500403 false true 0 0 300 300Polygon -7500403 false true 105 60 45 150 105 240 195 240 255 150 195 60housefalse0Rectangle -7500403 true true 45 120 255 285Rectangle -16777216 true false 120 210 180 285Polygon -7500403 true true 15 120 150 15 285 120Line -16777216 false 30 120 270 120leaffalse0Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195linetrue0Line -7500403 true 150 0 150 300nitrogentrue0Circle -10899396 true false 83 135 134Circle -10899396 true false 83 45 134oxygentrue0Circle -13791810 true false 83 135 134Circle -13791810 true false 83 45 134pentagonfalse0Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120personfalse0Circle -7500403 true true 110 5 80Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90Rectangle -7500403 true true 127 79 172 94Polygon -7500403 true true 195 90 240 150 225 180 165 105Polygon -7500403 true true 105 90 60 150 75 180 135 105plantfalse0Rectangle -7500403 true true 135 90 165 300Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90spray paintfalse0Rectangle -7500403 false true 0 0 300 300Circle -7500403 false true 75 75 150squarefalse0Rectangle -7500403 true true 30 30 270 270square 2false0Rectangle -7500403 true true 30 30 270 270Rectangle -16777216 true false 60 60 240 240starfalse0Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108targetfalse0Circle -7500403 true true 0 0 300Circle -16777216 true false 30 30 240Circle -7500403 true true 60 60 180Circle -16777216 true false 90 90 120Circle -7500403 true true 120 120 60treefalse0Circle -7500403 true true 118 3 94Rectangle -6459832 true false 120 195 180 300Circle -7500403 true true 65 21 108Circle -7500403 true true 116 41 127Circle -7500403 true true 45 90 120Circle -7500403 true true 104 74 152trianglefalse0Polygon -7500403 true true 150 30 15 255 285 255triangle 2false0Polygon -7500403 true true 150 30 15 255 285 255Polygon -16777216 true false 151 99 225 223 75 224truckfalse0Rectangle -7500403 true true 4 45 195 187Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194Rectangle -1 true false 195 60 195 105Polygon -16777216 true false 238 112 252 141 219 141 218 112Circle -16777216 true false 234 174 42Rectangle -7500403 true true 181 185 214 194Circle -16777216 true false 144 174 42Circle -16777216 true false 24 174 42Circle -7500403 false true 24 174 42Circle -7500403 false true 144 174 42Circle -7500403 false true 234 174 42turtletrue0Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99valve-1false0Rectangle -7500403 false true 0 0 300 300Rectangle -7500403 false true 120 120 180 180valve-2false0Rectangle -7500403 false true 0 0 300 300Rectangle -7500403 false true 60 120 120 180Rectangle -7500403 false true 165 120 225 180valve-hexfalse0Rectangle -7500403 false true 0 0 300 300Polygon -7500403 false true 105 60 45 150 105 240 195 240 255 150 195 60valve-trianglefalse0Rectangle -7500403 true true 0 0 300 300Polygon -16777216 true false 150 45 30 240 270 240valvesfalse0Rectangle -7500403 false true 0 0 300 300wallfalse0Rectangle -7500403 true true 0 0 300 300wheelfalse0Circle -7500403 true true 3 3 294Circle -16777216 true false 30 30 240Line -7500403 true 150 285 150 15Line -7500403 true 15 150 285 150Circle -7500403 true true 120 120 60Line -7500403 true 216 40 79 269Line -7500403 true 40 84 269 221Line -7500403 true 40 216 269 79Line -7500403 true 84 40 221 269xfalse0Polygon -7500403 true true 270 75 225 30 30 225 75 270Polygon -7500403 true true 30 75 75 30 270 225 225 270@#$#@#$#@NetLogo 5.0.5-RC1@#$#@#$#@@#$#@#$#@@#$#@#$#@@#$#@#$#@@#$#@#$#@default0.0-0.2 0 0.0 1.00.0 1 1.0 0.00.2 0 0.0 1.0link directiontrue0Line -7500403 true 150 150 90 180Line -7500403 true 150 150 210 180@#$#@#$#@1@#$#@#$#@