Top Banner
Conjugate Gradient and Linear Equality Constraints Lecture III
22

Conjugate Gradient and Linear Equality Constraints

Feb 14, 2016

Download

Documents

Cain

Conjugate Gradient and Linear Equality Constraints. Lecture III. A Slightly More Complicated Problem. Starting with a hyperbolic tangent production function We define the profit function as. As a starting point, we assume Starting with some feasible step s 1. If we let . - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Conjugate Gradient and Linear Equality Constraints

Conjugate Gradient and Linear Equality Constraints

Lecture III

Page 2: Conjugate Gradient and Linear Equality Constraints

A Slightly More Complicated ProblemStarting with a hyperbolic tangent production

function

We define the profit function as

1 2 3 1 2

3 1 2 2 2

3 3 1 2 1 3 2 3

15, , 1 tanh 0.50 0.2624 0.31252

0.3500 0.0025 0.0028

0.0025 0.00035 0.0028 0.000032

f x x x x x

x x x x x

x x x x x x x x

1 2 3 1 2 3 1 2 3max , , , , 0.375 0.450 0.475x x x f x x x x x x

Page 3: Conjugate Gradient and Linear Equality Constraints

As a starting point, we assume

Starting with some feasible step s1

3kB I

21 1 1 1 1( ) ( ) ( )x x xxx s x x s

Page 4: Conjugate Gradient and Linear Equality Constraints

If we let 1 1( ) 0x x s

21 1 1

121 1 1

( ) ( ) 0

( ) ( )

x xx

xx x

x x s

s x x

Page 5: Conjugate Gradient and Linear Equality Constraints

In the hyperbolic tangent formulation

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

150.375 0.2625 0.005 0.00035 0.00028 , ,2

150.450 0.3125 0.00035 0.00560 0.000032 , ,2150.475 0.350 0.00028 0.000032 0.00500 , ,2

x

x x x h x x x

x x x x h x x x

x x x h x x x

1 2 3 1 2 3 1 2

2 2 3 3 1 2 1 3 2 3

, , sech 0.50 0.2624 0.3125 0.3500 0.0025

0.0028 0.0025 0.00035 0.0028 0.000032

h x x x x x x x x

x x x x x x x x x x

Page 6: Conjugate Gradient and Linear Equality Constraints

Let us start by considering

1 1 1 1x

11.258721.494801.71050

x x

Page 7: Conjugate Gradient and Linear Equality Constraints

Given that B1 is the identity matrix

Thus, in this case we have

1 3 1

1.258721.494801.71050

xs I x

2 1 1

1 1.25872 2.258721 1.49480 2.494801 1.71050 2.71050

x x s

Page 8: Conjugate Gradient and Linear Equality Constraints

Next, to update the Hessian matrix following the BFGS algorithm we have

1 1

1

1

( ) ( )

0.16973( ) 0.20692

0.20127

1.258721.494801.71050

0.16973 1.25872 1.428450.20692 1.49480 1.701720.20127 1.71050 1.91177

k x k k x k

x

x

y x s x

x s

x

y

Page 9: Conjugate Gradient and Linear Equality Constraints

Thus, following the BFGS update for the Hessian matrix

1

1

1 1' '' '

1.03315 0.04038 0.039540.04038 1.04915 0.048300.03954 0.04830 1.04636

k k k k k k k kk k k k k

B B B s s B y ys B s y s

B

Page 10: Conjugate Gradient and Linear Equality Constraints

Updating the solution, next we have the gradient at the new solution as

1 1 2

0.16973( ) ( ) 0.20692

0.20127x xx s x

Page 11: Conjugate Gradient and Linear Equality Constraints

Updating the point of approximation

3 2 2

2.25872 0.150297 2.108422.49480 0.183235 2.311362.71050 0.178212 2.53229

x x s

Page 12: Conjugate Gradient and Linear Equality Constraints

Updating the gradient

2 2 3

0.10095( ) ( ) 0.12524

0.10956x xx s x

2 2 2 2

0.06878( ) ( ) 0.08168

0.09172x xy x s x

Page 13: Conjugate Gradient and Linear Equality Constraints

New Hessian

2

0.8567 0.1783 0.15320.1783 0.7783 0.19150.1532 0.1915 0.8407

B

Page 14: Conjugate Gradient and Linear Equality Constraints

R-Codefr <- function(b){-15/2*(1+tanh(-0.50+0.2625*b[1]+0.3125*b[2]+0.3500*b[3]- 0.0025*b[1]*b[1]-0.0028*b[2]*b[2]-0.0025*b[3]*b[3]+ 0.00035*b[1]*b[2]+0.00028*b[1]*b[3]+0.000032*b[2]*b[3])) +0.375*b[1]+0.450*b[2]+0.475*b[3]}

dfr <- function(b){ dd <- cosh(0.50-0.2625*b[1]-0.3125*b[2]-

0.3500*b[3]+0.0025*b[1]*b[1]+0.0028*b[2]*b[2]+ 0.0025*b[3]*b[3]-0.00035*b[1]*b[2]-0.00028*b[1]*b[3]-0.000032*b[2]*b[3]) as.matrix(cbind(0.375+(15/2)*(-0.2625+0.00500*b[1]-0.00035*b[2]-0.00028*b[3])/

(dd*dd), 0.450+(15/2)*(-0.3125-0.00035*b[1]+0.00560*b[2]-0.000032*b[3])/(dd*dd), 0.475+(15/2)*(-0.3500-0.00028*b[1]-0.000032*b[2]+0.0050*b[3])/(dd*dd)))}

b0 <- cbind(1.0,1.0,1.0)

res.fr <- optim(b0,fr,dfr,method="BFGS")

print(res.fr)

Page 15: Conjugate Gradient and Linear Equality Constraints

Results$par [,1] [,2] [,3][1,] 1.062955 0.4756912 4.537824

$value[1] -11.46800

$countsfunction gradient 28 23

$convergence[1] 0

$messageNULL

Page 16: Conjugate Gradient and Linear Equality Constraints

Starting with a simple 2*3 example, assume that we have the matrix equation

Note that by row operations the A matrix can be transformed to

1

2

3

1 1 1 50 1 1 6

xAx b x

x

1 1 1 1 1 1 0 20 1 0 1 1 0 1 1

Page 17: Conjugate Gradient and Linear Equality Constraints

This expression implies the following homogeneous relationships:

Setting x3=1 yields

1 3

2 3

2 00

x xx x

1

2

21

xx

Page 18: Conjugate Gradient and Linear Equality Constraints

Or in vector form:

Next we confirm that z is the nullspace.

211

z

Page 19: Conjugate Gradient and Linear Equality Constraints

We do this by confirming that both vectors of the matrix are orthogonal to the nullspace:

21 1 1 1 2 1 1 0

1

20 1 1 1 0 1 1 0

1

Page 20: Conjugate Gradient and Linear Equality Constraints

Implications of the nullspace:Start by defining a feasible solution:

5 1 1 1 1 1 5 1 0 2 116 0 1 0 1 1 6 0 1 1 6

111 1 1 11 6 0 5

60 1 1 6 0 6

0

Ax

Page 21: Conjugate Gradient and Linear Equality Constraints

Next, we would like to generate another feasible point based on this solution and the nullspace matrix:

Letting yields p = 5

1

*2

3

11 26 10 1

xx x Zp x p

x

1

*2

3

11 2 11 10 16 1 5 6 5 10 1 0 5 5

xx x Zp x

x

Page 22: Conjugate Gradient and Linear Equality Constraints

Checking the original solution:

11 1 1 1 1 5 5

10 1 1 0 1 5 6

5