Top Banner
72

Configuracion de router packet tracer

Jul 26, 2015

Download

Software

Kurtz Ledezma
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Configuracion de router packet tracer
Page 2: Configuracion de router packet tracer

§ Los protocolos de ruteo determinan la ruta óptima a través de la red usando algoritmos de ruteo e información de transporte sobre estas rutas.

§ Los protocolos de ruteo funcionan en la capa de red del modelo de referencia OSI.

§ Usan información específica de la capa de red incluyendo direcciones de red, para mover unidades de información a través de la red.

§ Un protocolo es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red.

Page 3: Configuracion de router packet tracer

Determinación de la ruta: la determinación de la ruta permite a un ruteador seleccionar la interfaz mas apropiada para enviar un paquete. Conmutación de la ruta: la conmutación de la ruta permite a un ruteador a aceptar un paquete en una interfaz y mandarlo por una segunda interfaz.

FUNCIONES DE RUTEO.

Los algoritmos de los protocolos de ruteo actúan en dos funciones primarias:

Page 4: Configuracion de router packet tracer

CAPA 3

Los protocolos viajan por donde decidimos ya sea por una ruta barata o cara. Ejem.: q Enlace con un ISP casero (64 kbps, 128kbps, 256 kbps, 512 kbps, 1 o 2 mbps.), ó

q un ISP con enlaces empresariales E1 2048 mbps, E3 34 mbps etc.

Page 5: Configuracion de router packet tracer

Los protocolos de Ruteo son:

Ø rip v1 y rip v2,

Ø igrp, eigrp,

Ø ospf

Ø bgp4

Los Protocolos de Ruteo se clasifican en estáticos y dinámicos. A su vez los dinámicos se subdividen en base a Vector distancia y al Estado de enlace y costo del mismo

Page 6: Configuracion de router packet tracer

1.- Vector distancia: Rip v1, Rip v2, IGRP propietario de cisco. 2.- Estado de enlace: OSPF, BGP4, EIGRP propietario de cisco.

Page 7: Configuracion de router packet tracer

COMANDOS CONFIGURACION BASICA

Antes tendremos que aprender a configurar las interfaces del router. 1.- Abrir la aplicación Network Visualizer y poner atención en los siguientes pasos: Ø en Ø #configure terminal Ø #int f0/0 o int s0/0 o int s0/1 Ø #ip address + mask Ø #no shutdown Ø # clock rate 56000 solo en DCE Ø #exit

Page 8: Configuracion de router packet tracer

La configuración de rutas estáticas siempre trae complicaciones a la hora de implementarlo cuando hay más de 2 routers en la topología. Las rutas estáticas, a diferencia de las rutas dinámicas que son aprendidas por los routers mediante protocolos de enrutamiento, son asignadas manualmente en el router por el admin para que se produzca el enrutamiento de paquetes a una red destino. El uso de rutas estáticas es recomendable solo en redes pequeñas debido a que normalmente los cambios de topología son mínimos y fáciles de administrar.

RUTAS ESTATICAS

Page 9: Configuracion de router packet tracer

No es recomendable utilizar rutas estáticas en redes medianas o grandes, solo para servicios específicos junto a protocolos de enrutamiento, ya que al no ser escalable un cambio en la topología implicaría modificar manualmente una gran cantidad de rutas estáticas en las tablas de enrutamiento de los dispositivos.

Las rutas estáticas se configuran mediante el comando ip route, en el modo configuración global, utilizando la siguiente sintaxis: Router(config)# ip route « IP destino + máscara de red destino ó subred destino » « IP del siguiente salto ó interfaz de salida »

Page 10: Configuracion de router packet tracer

wan

DCE DTE

.2

192.168.7.0/24

.1

.10 .15

.6

.5

192.168.10.0/24

192.168.5.0/24 ROUTERS Seriales:

192.168.5.10

192.168.5.15

Puerto ethernet:

192.168.7.1

192.168.10.6

Nic´s:

192.168.7.2

192.168.10.5

Page 11: Configuracion de router packet tracer

# ip route 192.168.10.0 255.255.255.0 192.168.5.15 A – B # ip route 192.168.7.0 255.255.255.0 192.168.5.10 B - A

Primero la red que queremos alcanzar estamos en la 7.0 y queremos la 10.0 con su respectiva mascara, y después por el equipo que es el siguiente salto o por donde debemos pasar para alcanzar esa red, salimos de la 5.10 y debemos pasar por la 5.15 para alcanzar la 10.0 y viceversa

Page 12: Configuracion de router packet tracer
Page 13: Configuracion de router packet tracer

Tenemos la siguiente topología y se nos pide que mediante rutas estáticas se produzca el enrutamiento de paquetes entre las redes 192.168.1.0, 192.168.2.0 y 192.168.3.0.

RouterA. Para que los paquetes origen de la red 192.168.1.0 sean enrutados hacia la red 192.168.2.0 y 192.168.3.0 tenemos que configurar 2 rutas estáticas hacia esas redes y asignar la IP del siguiente salto. En este caso, la IP del siguiente salto para las 2 rutas estáticas es la misma.

RouterA(config)# ip route 192.168.2.0 255.255.255.0 10.0.0.1

RouterA(config)# ip route 192.168.3.0 255.255.255.0 10.0.0.1

Page 14: Configuracion de router packet tracer

En el caso del RouterB, para que los paquetes de la red 192.168.2.0 sean enrutados hacia la red 192.168.1.0 y 192.168.3.0, también hay que configurar 2 rutas estáticas pero esta vez la IP del siguiente salto va a ser diferente ya que el enrutamiento se realiza por diferentes interfaces.

RouterB(config)# ip route 192.168.1.0 255.255.255.0 10.0.0.2 RouterB(config)# ip route 192.168.3.0 255.255.255.0 11.0.0.2

Page 15: Configuracion de router packet tracer

La configuracián del RouterC es muy similar a la del RouterA, hay que configurar las 2 rutas estáticas para acceder a la red 192.168.1.0 y 192.168.2.0 utilizando la misma IP del siguiente salto.

RouterC(config)# ip route 192.168.2.0 255.255.255.0 11.0.0.1 RouterC(config)# ip route 192.168.1.0 255.255.255.0 11.0.0.1

Page 16: Configuracion de router packet tracer

Si solo tenemos como información las IPs de las redes que tenemos que alcanzar y no tenemos la IP del siguiente salto, utilizamos la interfaz de salida del router local para nuestra configuración.

RouterA(config)# ip route 192.168.2.0 255.255.255.0 s0/0 RouterA(config)#ip route 192.168.3.0 255.255.255.0 s0/0 RouterB(config)# ip route 192.168.1.0 255.255.255.0 s0/0 RouterB(config)# ip route 192.168.3.0 255.255.255.0 s0/1 RouterC(config)# ip route 192.168.2.0 255.255.255.0 s0/1 RouterC(config)# ip route 192.168.1.0 255.255.255.0 s0/1

Page 17: Configuracion de router packet tracer

Comprobación de Rutas Estáticas: Podemos comprobar la configuración y el funcionamiento de las rutas estáticas mediante el comando ping. Para comprobar la configuración en caso de fallas usar el comando show ip route para ver las tablas de enrutamiento. Las marcadas con "C" son las redes directamente conectadas y las marcadas con "S" son las rutas estáticas. RouterA#show ip route C 10.0.0.0/8 is directly connected, Serial0/0 C 192.168.1.0/24 is directly connected, FastEthernet0/0 S 192.168.2.0/24 [1/0] via 10.0.0.1 S 192.168.3.0/24 [1/0] via 10.0.0.1

Page 18: Configuracion de router packet tracer

RouterB#show ip route C 10.0.0.0/8 is directly connected, Serial0/0 C 11.0.0.0/8 is directly connected, Serial0/1 C 192.168.2.0/24 is directly connected, FastEthernet0/0 S 192.168.1.0/24 [1/0] via 10.0.0.2 S 192.168.3.0/24 [1/0] via 11.0.0.2 RouterC#show ip route C 11.0.0.0/8 is directly connected, Serial0/1 C 192.168.3.0/24 is directly connected, FastEthernet0/0 S 192.168.1.0/24 [1/0] via 11.0.0.1 S 192.168.2.0/24 [1/0] via 11.0.0.1

Page 19: Configuracion de router packet tracer

RIP= ROUTER INTERNET PROTOCOL V1, V2 • Trabaja en base a saltos (vector distancia), que para rip v1 son hasta un máximo de 15 lo cual no funciona para redes mas grandes, ya que al salto 16 se considera infinito y además de destino inalcanzable.

• No pasa mascaras de red, es decir, si hago subredes no funciona. RIPv2 establece una serie de mejoras muy importantes con su antecesor que son las siguientes:

RUTEO RIP

Page 20: Configuracion de router packet tracer

• Autenticación para la transmisión de información de RIP entre vecinos.

• Utilización de mascaras de red, con lo que ya es posible utilizar VLSM.

• Utilización de máscaras de red en la elección del siguiente salto, lo cual nos puede permitir la utilización de arquitecturas de red discontinuas.

• Envío de actualizaciones de tablas de RIP mediante la dirección de multicast 224.0.0.9. PERO…

Page 21: Configuracion de router packet tracer

Además cada 30 segundos hay intercambio de tablas y a los 180 segundos lo clasifica como destino no alcanzable lo marca y lo desecha. Los enlaces dedicados son el medio para que 2 routers compartan información.

Limitación en el tamaño máximo de la red. Con RIPv2 sigue existiendo la limitación de 15 saltos como tamaño máximo de la red, lo cual implica que no nos permite la utilización de RIPv2 en redes de un tamaño más grande.

Page 22: Configuracion de router packet tracer

192.168.4.0

192.168.1.0

192.168.8.0

Page 23: Configuracion de router packet tracer

192.168.4.0

192.168.1.0

192.168.8.0 192.168.12.0

192.168.200.0

Page 24: Configuracion de router packet tracer

La configuración de las tablas de ruteo usando el protocolo rip será de la siguiente forma: #router rip #network 192.168.4.0 #network 192.168.1.0 A Config. en #network 192.168.8.0 B cada router

las redes directamente conectadas.

Page 25: Configuracion de router packet tracer
Page 26: Configuracion de router packet tracer

TABLA DE RUTEO router rip A TO B : network 192.168.2.0 network 10.0.0.0 A TO C : network 192.168.3.0

network 11.0.0.0 B TO A : network 192.168.1.0 network 10.0.0.0 B TO C: network 192.168.3.0

network 11.0.0.0 C TO A : network 192.168.2.0

network 11.0.0.0 network 192.168.1.0 network 10.0.0.0

Page 27: Configuracion de router packet tracer

Configurar el nombre del Router Dentro de config term, escribimos: #hostname LAB_A Poner un banner de Bienvenida >banner motd #”BIENVENIDO A MI ROUTER”# Habilitar el password al nivel 1 de consola >line console 0 >password uaem >login Habilitar password para pasar al 2º. Nivel pero haciendo un sh run se puede observar el password. # enable password cisco

Page 28: Configuracion de router packet tracer

# enable secret cisco encripta el password, ya no se ve. # int f0/0 # description ESTA ES DE LA RED DE COMPUTO Un Router nos permite hacer o tener 5 conexiones remotas al mismo tiempo. Para habilitar el telnet hacemos lo siguiente. (con login cerramos todo lo que empieze con line). # line vty 0 4 # password cisco # login Ejecutar en host remoto para saber cuantas, cuales y quienes estan conectados remotamente a nuestro router. # sh sesions # sh users

Page 29: Configuracion de router packet tracer

Para realizar un telnet debemos conocer la ip y teclear: # ó c: telnet 192.168.3.1 # ip host LAB_A 192.168.1.1 Hace telnet por # ip host LAB_B 192.168.2.1 nombre sin teclear la

IP , tan solo LAB _A. # ip host LAB_A 192.168.1.1 # ip host LAB_C 192.168.3.1 # ip host LAB_B 192.168.2.1 # ip host LAB_C 192.168.3.1

#configure terminal // conf t modo abreviado #service password encryption

Page 30: Configuracion de router packet tracer

Con la creación de IGRP a principios de los ochentas, Cisco Systems fue la primera compañía en resolver los problemas asociados con el uso de RIP para rutear paquetes entre routers interiores. IGRP determina la mejor ruta a través de una red examinando el ancho de banda y la demora de las redes entre los routers. IGRP converge más rápido que RIP, por lo tanto se evitan los ciclos de ruteo causados por el desacuerdo entre routers sobre cual es el próximo salto a ser tomado.

PROTOCOLO DE RUTEO IGRP, EIGRP (INTERIOR GATEWAY ROUTING PROTOCOL)

Page 31: Configuracion de router packet tracer

Más aún, el IGRP no tiene limitación en cuanto a contador de saltos. Por lo anterior, el IGRP es utilizado en redes de gran tamaño, complejas y con diversidad de topologías.

EIGRP es un protocolo de enrutamiento propietario de cisco basado en IGRP (protocolo de enrutamiento con clase) y que admite VLSM para maximizar el espacio de direccionamiento.

Page 32: Configuracion de router packet tracer

Eigrp es mas rápido y se dice que es hibrido porque ofrece lo mejor de los algoritmos de vector-distancia y del estado de enlace. Una red se compone de varios dispositivos, protocolos y medios que permiten la comunicación de datos. Cuando un componente de red no funciona correctamente puede afectar toda la red. Las razones por las que surgen problemas en la red son:

Page 33: Configuracion de router packet tracer

q Se introducen comandos de forma incorrecta. q Se construyen o colocan las listas de acceso de forma incorrecta. q Los routers, switch u otros dispositivos de red están configurados de forma incorrecta. q Las conexiones físicas son de mala calidad. IGRP tiene un numero de saltos máximo de 255.

Page 34: Configuracion de router packet tracer

PROTOCOLO EIGRP Cisco lanzó también una nueva versión de IGRP para manipular redes de alto crecimiento y misión-crítica. Esta nueva versión es conocida como EIGRP (Enhanced IGRP) y combina la facilidad de uso de los protocolos de ruteo de vector de distancia tradicional con las capacidades de reruteo rápido de los protocolos estado del enlace.

Page 35: Configuracion de router packet tracer

El EIGRP consume mucho menos ancho de banda que el IGRP, porque éste es capaz de limitar el intercambio de información de ruteo para incluir solamente la información que ha cambiado. Además, es capaz de manipular información de ruteo de AppleTalk e IPX, además de IP. EIGRP tiene un numero máximo de saltos de 224 suficiente para admitir los internetworks grandes y bien diseñadas. IGRP y EIGRP son compatibles y comparten rutas de forma automática siempre y cuando ambos procesos usen el mismo numero de AS (Autonomous System).

Page 36: Configuracion de router packet tracer

Los routers vecinos se descubren por medio de un protocolo Hello sencillo que es intercambiado por los routers que pertenecen a la misma red fisica estableciendo adyacencias. El protocolo hello utiliza para poder intercambiar paquetes de saludo, una dirección multicast 224.0.0.10, así una vez descubiertos los routers vecinos, EIGRP utiliza un protocolo de transporte fiable para garantizar la entrega correcta y ordenada de la información y las actualizaciones de la tabla de enrutamiento. Un router hace el seguimiento de sus propias rutas conectadas y además de todas las rutas publicas de los routers vecinos.

Page 37: Configuracion de router packet tracer

AS= 100

Page 38: Configuracion de router packet tracer

SINTAXIS:

Router(config)#router igrp 240 // igrp Router(config-router)#network 192.168.16.0 Router(config)# o… Router(config)#router eigrp 240 // eigrp Router(config-router)#network 192.168.16.0 Router(config)#

Page 39: Configuracion de router packet tracer

192.168.5.8/24

192.168.8.2

192.168.7.6/24

192.168.5.2/24 192.168.7.4/24

192.168.8.4 AS=240

PROTOCOLO EIGRP

Page 40: Configuracion de router packet tracer

192.168.11.0

192.168.250.0

192.168.4.0

192.168.1.0

192.168.8.0

192.168.80.0

PROTOCOLO EIGRP

UDS. DEFINAN SU

PROPIO

AS

Page 41: Configuracion de router packet tracer

UTILIZAR VLSM TOMANDO UNA DIRECCION DE RED

192.168.250.0 /24

REQUERIMIENTOS:

PARIS = 49 HOST DINAMARCA = 58 HOST MEXICO= 36 HOST

PARA LOS ENLACES DEJAR LIBRE SIN USAR LA ULTIMA SUBRED Y COMENZAR A UTILIZAR LA ULTIMA SUBRED UTILIZABLE A PARIS, PENULTIMA UTIL A DINAMARCA Y ANTEPENULTIMA A MEXICO.

Page 42: Configuracion de router packet tracer

TODOS LOS SERIALES s0/1 serán DCE con un reloj de 56000 y se les asignaran la 1ª dir. Util y a los s0/0 la ultima dir. Util. CONFIGURAR TODO A LOS ROUTERS ü password nivel1-usuario ü Password nivel2-privilegiado sin encriptar ü Password nivel2-privilegiado encriptarlo ü Configurar las terminales de telnet ü Encriptar todos los passwords ü Nombre a cada Router

Page 43: Configuracion de router packet tracer

PROTOCOLOS DE RED A USAR: 1.  RUTEO ESTATICO 2.  RUTEO RIP 3.  RUTEO EIGRP CON UN AS = 2040

Asignar una descripción a cada interface ejemplo:

Conexión con la lan …??? O conexión con la red de …??pais

Asignar el banner “RED COMERCIAL UAEM”

Para todas las contraseñas usar la misma: comercio

Para las int. Eth0 del router utilizar la ultima dir. Valida y para Los equipos utilizar la primera valida.

(hacer 3 ejercicios) usando 1 protocolo diferente

Page 44: Configuracion de router packet tracer

192.168.11.0

192.168.250.0

192.168.4.0

192.168.1.0

192.168.8.0

192.168.80.0

Page 45: Configuracion de router packet tracer

IGRP 2446 10.1.1.0/24

172.16.1.0/24

IGRP 2446

192.168.1.0/24

Page 46: Configuracion de router packet tracer

Protocolos de Gateway Interior Protocolos de Gateway Exterior

Protocolos de enrutamiento vector distancia

Protocolos de enrutamiento de link-state

Vector Ruta

Con clase RIP IGRP EGP

Sin clase RIP v2 EIGRP OSPFv2 IS-IS BGP4

IPv6 RIPng EIGRP para IPv6

OSPFv3 IS-IS para IPv6

BGPv4 para IPv6

El desarrollo inicial de OSPF comenzó en 1987 por parte del grupo de trabajo de OSPF, el Grupo de trabajo de ingeniería de Internet (IETF).

OSPF ( Open Shortest Path First )

Page 47: Configuracion de router packet tracer

OSPF protocolo de estado de enlace desarrollado como reemplazo del protocolo de enrutamiento vector distancia RIP. RIP fue un protocolo de enrutamiento aceptable, su dependencia en el conteo de saltos como la única medida para elegir el mejor camino rápidamente se volvió inaceptable en redes mayores que necesitan una solución de enrutamiento más sólida. OSPF es un protocolo de enrutamiento sin clase que utiliza el concepto de áreas para realizar la escalabilidad.

Page 48: Configuracion de router packet tracer

Las principales ventajas de OSPF frente a RIP son su rápida convergencia y escalabilidad en implementaciones de redes mucho mayores.

La IETF en la RFC 2328 define la métrica OSPF como:

Ø  un valor arbitrario llamado costo.

El IOS de Cisco utiliza el ancho de banda como la métrica de costo de OSPF.

Cada router OSPF mantiene una base de datos de link-state que contiene las LSA recibidas por parte de todos los demás routers.

Page 49: Configuracion de router packet tracer

Una vez que un router recibió todas las LSA y creó su base de datos de link-state local, OSPF utiliza el algoritmo shortest path first (SPF) de Dijkstra para crear un árbol SPF. El árbol SPF se utiliza para completar la tabla de enrutamiento IP con las mejores rutas para cada red.

El algoritmo de Dijkstra, también llamado algoritmo de caminos mínimos, es un algoritmo para la determinación del camino más corto dado un vértice origen al resto de vértices

Page 50: Configuracion de router packet tracer

La idea subyacente en este algoritmo consiste en ir explorando todos los caminos más cortos que parten del vértice origen y que llevan a todos los demás vértices; cuando se obtiene el camino más corto desde el vértice origen, al resto de vértices que componen el grafo, el algoritmo se detiene.

Page 51: Configuracion de router packet tracer

la distancia administrativa (AD) es la confiabilidad (o preferencia) del origen de la ruta. OSPF tiene una distancia administrativa predeterminada de 110. Como puede ver en la figura, al compararlo con otros protocolos de gateway interior (IGP), se prefiere a OSPF con respecto a IS-IS y RIP.

Encaminamiento (o enrutamiento, ruteo) es la función de buscar un camino entre todos los posibles

Page 52: Configuracion de router packet tracer

Distancias Administrativas Predeterminadas Origen de la Ruta

Distancia Administrativa

Conectado 0

Estatico 1

Ruta de Resumen de Eigrp 5

BGP externo 20

EIGRP interno 90

IGRP 100

OSPF 110

IS-IS 115

RIP

120

EIGRP externo 170

BGP interno 200

Page 53: Configuracion de router packet tracer
Page 54: Configuracion de router packet tracer

R1(config)#router ospf 1 R1(config-router)#

Ø OSPF se habilita con el comando de configuración global router ospf process-id.

Ø El comando process-id es un número entre 1 y 65535 elegido por el administrador de red.

Ø El comando process-id es significativo a nivel local, lo que implica que no necesita coincidir con otros routers OSPF para establecer adyacencias con dichos vecinos. Esto difiere de EIGRP.

Page 55: Configuracion de router packet tracer

El comando network utilizado con OSPF tiene la misma función que cuando se lo utiliza con otros protocolos de enrutamiento IGP: Cualquier interfaz en un router que coincida con la dirección de red en el comando network estará habilitada para enviar y recibir paquetes OSPF.

Router(config-router)# network network-address wildcard-mask area area-id El comando OSPF network utiliza una combinación de network-address y wildcard-mask similar a la que puede utilizar EIGRP. Sin embargo, a diferencia de EIGRP, OSPF requiere la máscara wildcard.

Page 56: Configuracion de router packet tracer

La dirección de red junto con la máscara wildcard se utiliza para especificar la interfaz o rango de interfaces que se habilitarán para OSPF con el comando network. Al igual que con EIGRP, la máscara wildcard puede configurarse en forma inversa a una máscara de subred.

Page 57: Configuracion de router packet tracer
Page 58: Configuracion de router packet tracer

Nota: Al igual que EIGRP, algunas versiones de IOS simplemente le permiten ingresar la máscara de subred en lugar de la máscara wildcard. Luego, IOS convierte la máscara de subred al formato de la máscara wildcard.

Por ejemplo, la interfaz FastEthernet 0/0 de R1 se encuentra en la red 172.16.1.16/28.

La máscara de subred para esta interfaz es /28 ó 255.255.255.240. Lo inverso a la máscara de subred es la máscara wildcard.

Page 59: Configuracion de router packet tracer
Page 60: Configuracion de router packet tracer
Page 61: Configuracion de router packet tracer

wildcard-mask es lo inverso a la máscara de subred y area-id debe configurarse en 0.

Una máscara wildcard es sencillamente una agrupación de 32 bits dividida en cuatro bloques de ocho bits cada uno (octetos), parecida a la mascara de subred, no existe otra relación entre ambas. Por ejemplo, una máscara wildcard puede tener este aspecto: 0.0.0.255, o escrito en binario:

DEFINICIÓN Y OBJETIVO DE LAS MÁSCARAS WILDCARD.

Page 62: Configuracion de router packet tracer

Las máscaras Wildcard se emplean junto con un valor IP para selecionar direcciones IP. La máscara wildcard indica con sus ceros y sus unos qué bits han de compararse o no. Un cero indica que el bit ha de compararse y un uno indica que se ignore. Por ejemplo, suponga que empleamos la IP 192.168.1.0 junto con la máscara wildcard 0.0.0.255 para seleccionar direcciones IP.

Page 63: Configuracion de router packet tracer

192.168.1.1, 192.168.1.23, 192.168.1.145, y se quedarán descartadas IP como: 192.168.2.145, 100.168.1.0, 192.167.1.76.

Los ceros nos están diciendo que debemos comparar los valores de los tres primeros octetos y los unos del cuarto octeto nos dicen que da igual que valor tenga dicho octeto. Por tanto, quedarán seleccionados valores como:

Page 64: Configuracion de router packet tracer

Suponga que tenemos la máscara wildcard 0.0.255.255 y la IP 10.1.0.0, ¿qué valores de la siguiente lista se seleccionarán? Las IPs seleccionadas son a, d y f.

Es decir, con la máscara wildcard 0.0.0.255 todas las IPs que se seleccionen deberán tener los tres primeros octetos de la forma 192.168.1, en tanto que el cuarto octeto, como queda oculto por los unos de la máscara, puede tomar cualquier valor.

Page 65: Configuracion de router packet tracer

Ejemplo 1. Con este ejercicio se pretende consolidar el método de trabajo con máscaras Wildcard. Dada la siguiente IP y máscara wildcard: Decir qué IPs quedarán seleccionadas de entre las siguientes: 202.20.2.1, 102.20.0.0 y 202.20.22.0 Solución: En este caso, la máscara wildcard nos obliga a comparar los dos primeros octetos, que habrán de ser por tanto de la forma 202.20. Los dos últimos octetos son ignorados de modo que pueden tomar valores cualesquiera. Las IPs seleccionadas serán: 202.20.2.1 y 202.20.22.0

Page 66: Configuracion de router packet tracer

RECUPERACION DE CONTRASEÑAS

Abrir el packet tracer y agregar 2 routers y enlazarlos, configurar solo a 1 sus interfaces f0/0 y s0/0 y configurarle contraseña de 1er y 2do. nivel

Grabar la configuración del archivo Running-config al Startup-Config de otra manera al reiniciar el equipo la configuración se perderá. Router# copy running-config startup-config Reiniciar el router con el comando reload.

Page 67: Configuracion de router packet tracer

Al prender el Router o darle enter resulta que nos pide contraseña y no nos la sabemos, lo que tenemos que hacer es apagar y prender el Router fisicamente. Al mostrarse los simbolos ##### indicara el inicio y carga del IOS. Realizamos el rompimiento con las teclas Ctrl + Pausa mostrándonos un prompt así rommon>

PROCEDIMIENTO PARA REASIGNAR UN NUEVO PASSWORD DEJANDO CONFIGURACION DE FABRICA

Page 68: Configuracion de router packet tracer

Tecleamos lo siguiente. rommon> confreg 0x2142 rommon> reset Y el equipo se reinicia e ignora la configuración guardada en la nvram. Ahora ya puedes entrar hasta enable Router# Ahora, como la Ram esta vacía…hay que copiar el startup-config al running-config con los valores que tenia antes ya configurados.

Page 69: Configuracion de router packet tracer

Router# copy startup-config running-config Ahí ya cambiamos la contraseña por una nueva. Router# conf t Pass de 1er. nivel Router(config-if)# line console 0 Router(config-if)# password nuevopass Router(config-if)# login Pass de segundo nivel Router(config-if)# enable password nuevopass

Page 70: Configuracion de router packet tracer

Hasta aquí, seria la recuperacion de la contraseña pero dejando al Router con valores por default listo para configurarlo nosotros. Solo faltaría que desde el modo global, cambiar los valores del registro. Router# config-register 0x2102.

Aplicar el comando reload en el nivel privilegiado para reiniciar antes yes para guardar los datos a la nvram y confirmar el reinicio. Router# reload

Page 71: Configuracion de router packet tracer

Hay que guardar estos datos en la nvram Router# copy running-config startup-config Desde el modo global, cambiar los valores del registro.. Router# config-register 0x2102.

Aplicar el comando reload en el nivel privilegiado para reiniciar antes yes para guardar los datos a la nvram y confirmar el reinicio. Router# reload

Page 72: Configuracion de router packet tracer