Top Banner
Digital Integrated Circuits A Design Perspective Introduction to Design Introduction to Design José Leonardo Simancas García Electronic Engineer March 4, 2010
51

Conferencia

Nov 18, 2014

Download

Technology

Jose Simancas

Conferencia presentada durante la semana de la ciencia en la Sede Puerto Colombia de la Universidad Antonio Nariño
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Conferencia

Digital Integrated CircuitsA Design Perspective

Introduction to DesignIntroduction to Design

José Leonardo Simancas GarcíaElectronic Engineer

March 4, 2010

Page 2: Conferencia

What is this conference all about?

Introduction to digital integrated circuits. CMOS devices and manufacturing technology.

CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies.

What will you learn? Understanding, designing, and optimizing digital

circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Page 3: Conferencia

Digital Integrated Circuits Issues in digital design The CMOS inverter Combinational logic structures Sequential logic gates Design methodologies Interconnect: R, L and C Timing Arithmetic building blocks Memories and array structures

Page 4: Conferencia

Introduction

Why is designing digital ICs different today than it was before?

Will it change in future?

Page 5: Conferencia

The First Computer

The BabbageDifference Engine(1832)

25,000 partscost: £17,470

Page 6: Conferencia

ENIAC - The first electronic computer (1946)

Page 7: Conferencia

The Transistor Revolution

First transistorBell Labs, 1948

Page 8: Conferencia

The First Integrated Circuits

Bipolar logic1960’s

ECL 3-input GateMotorola 1966

Page 9: Conferencia

Intel 4004 Micro-Processor

19711000 transistors1 MHz operation

Page 10: Conferencia

Intel Pentium (IV) microprocessor

Page 11: Conferencia

Moore’s Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 18 months

Page 12: Conferencia

Moore’s Law

161514131211109876543210

195

9

196

0

196

1

196

2

196

3

196

4

196

5

196

6

196

7

196

8

196

9

197

0

197

1

197

2

197

3

197

4

197

5

LO

G 2 O

F T

HE

NU

MB

ER

OF

CO

MP

ON

EN

TS

PE

R I

NT

EG

RA

TE

D F

UN

CT

ION

Electronics, April 19, 1965.

Page 13: Conferencia

Evolution in Complexity

Page 14: Conferencia

Transistor Counts

1,000,000

100,000

10,000

1,000

10

100

11975 1980 1985 1990 1995 2000 2005 2010

8086

80286i386

i486Pentium®

Pentium® Pro

K1 Billion 1 Billion

TransistorsTransistors

Source: IntelSource: Intel

ProjectedProjected

Pentium® IIPentium® III

Courtesy, Intel

Page 15: Conferencia

Moore’s law in Microprocessors

40048008

80808085 8086

286386

486Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tran

sistors (M

T)

2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

Courtesy, Intel

Page 16: Conferencia

Die Size Growth

40048008

80808085

8086286

386486 Pentium ® proc

P6

1

10

100

1970 1980 1990 2000 2010Year

Die size (m

m) ~7% growth per year

~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

Courtesy, Intel

Page 17: Conferencia

Frequency

P6Pentium ® proc

486386

28680868085

8080

80084004

0.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Freq

uen

cy (Mh

z)

Lead Microprocessors frequency doubles every 2 yearsLead Microprocessors frequency doubles every 2 years

Doubles every2 years

Courtesy, Intel

Page 18: Conferencia

Power Dissipation

P6Pentium ® proc

486

3862868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Po

wer (W

atts)

Lead Microprocessors power continues to increaseLead Microprocessors power continues to increase

Courtesy, Intel

Page 19: Conferencia

Power will be a major problem

5KW 18KW

1.5KW 500W

40048008

80808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Po

wer (W

atts)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

Courtesy, Intel

Page 20: Conferencia

Power density

400480088080

8085

8086

286386

486Pentium® proc

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Po

wer D

ensity (W

/cm2)

Hot Plate

NuclearReactor

RocketNozzle

Power density too high to keep junctions at low tempPower density too high to keep junctions at low temp

Courtesy, Intel

Page 21: Conferencia

Not Only Microprocessors

Digital Cellular Market(Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

Digital Baseband

(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

(data from Texas Instruments)(data from Texas Instruments)

CellPhone

Page 22: Conferencia

Challenges in Digital Design

“Microscopic Problems”• Ultra-high speed design• Interconnect• Noise, Crosstalk• Reliability, Manufacturability• Power Dissipation• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”• Time-to-Market• Millions of Gates• High-Level Abstractions• Reuse & IP: Portability• Predictability• etc.

…and There’s a Lot of Them!

DSM 1/DSM

?

Page 23: Conferencia

Productivity Trends

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

20031981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2005 2007 2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Logic Tr./ChipTr./Staff Month.

xxx

xxx

x

21%/Yr. compoundProductivity growth rate

x

58%/Yr. compoundedComplexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Lo

gic

Tran

sistor p

er C

hip

(M)

0.01

0.1

1

10

100

1,000

10,000

100,000P

rod

uctivity

(K) T

rans./S

taff - M

o.

Source: Sematech

Complexity outpaces design productivity

Co

mp

lexity

Courtesy, ITRS Roadmap

Page 24: Conferencia

Why Scaling? Technology shrinks by 0.7/generation With every generation can integrate 2x more

functions per chip; chip cost does not increase significantly

Cost of a function decreases by 2x But …

How to design chips with more and more functions? Design engineering population does not double every

two years… Hence, a need for more efficient design methods

Exploit different levels of abstraction

Page 25: Conferencia

Design Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

Page 26: Conferencia

Design Metrics

How to evaluate performance of a digital circuit (gate, block, …)? Cost Reliability Scalability Speed (delay, operating frequency) Power dissipation Energy to perform a function

Page 27: Conferencia

Cost of Integrated Circuits

NRE (non-recurrent engineering) costs design time and effort, mask generation one-time cost factor

Recurrent costs silicon processing, packaging, test proportional to volume proportional to chip area

Page 28: Conferencia

NRE Cost is Increasing

Page 29: Conferencia

Die Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)

Page 30: Conferencia

Cost per Transistor

0.00000010.0000001

0.0000010.000001

0.000010.00001

0.00010.0001

0.0010.001

0.010.01

0.10.111

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

cost: cost: ¢-per-¢-per-transistortransistor

Fabrication capital cost per transistor (Moore’s law)

Page 31: Conferencia

YieldY =

No . of good chips per waferTotal number of chips per wafer

×100

Die cost=Wafer costDies per wafer ×Die yield

Dies per wafer=π × wafer diameter/2 2

die area− π ×wafer diameter

2×die area

Page 32: Conferencia

Defects

die yield =1defects per unit area ×die areaα

−α

is approximately 3

die cost = f die area 4

Page 33: Conferencia

Some Examples (1994)Chip Metal

layersLine width

Wafer cost

Def./ cm2

Area mm2

Dies/wafer

Yield Die cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 601

4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417

Page 34: Conferencia

Reliability―Noise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and ground noise

v(t) VDD

Page 35: Conferencia

DC OperationVoltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOH

VOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

VOH = f(VOL)VOL = f(VOH)VM = f(VM)

Page 36: Conferencia

Mapping between analog and digital signals

VIL

VIH

Vin

Slope = -1

Slope = -1

VOL

VOH

Vout

“ 0” VOL

VIL

VIH

VOH

UndefinedRegion

“ 1”

Page 37: Conferencia

Definition of Noise Margins

Noise margin high

Noise margin low

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Page 38: Conferencia

Noise Budget

Allocates gross noise margin to expected sources of noise

Sources: supply noise, cross talk, interference, offset

Differentiate between fixed and proportional noise sources

Page 39: Conferencia

Key Reliability Properties

Absolute noise margin values are deceptive a floating node is more easily disturbed than a

node driven by a low impedance (in terms of voltage)

Noise immunity is the more important metric – the capability to suppress noise sources

Key metrics: Noise transfer functions, Output impedance of the driver and input impedance of the receiver;

Page 40: Conferencia

Regenerative Property

v0

v1

v3

finv(v)

f(v)

v3

out

v

Regenerative Non-Regenerativev2

v1

f(v)

finv(v)

v3

out

v

Page 41: Conferencia

Regenerative Property

A chain of inverters

v0 v1 v2 v3 v4 v5 v6

2

V (

Volt

)

4

v0

v1v2

t (nsec)0

2 1

1

3

5

6 8 10 Simulated response

Page 42: Conferencia

Fan-in and Fan-out

N

Fan-out N Fan-in M

M

Page 43: Conferencia

The Ideal Gate

Ri = Ro = 0Fanout = NMH = NML = VDD/2 g =

V in

V out

Page 44: Conferencia

An Old-time Inverter

NMH

Vin (V)

NM L

VM

0.0

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0 5.0

Page 45: Conferencia

Delay Definitions

Vout

tf

tpHL tpLH

tr

t

Vin

t

90%

10%

50%

50%

Page 46: Conferencia

Ring Oscillator

v0 v1 v5

v1 v2v0 v3 v4 v5

T = 2 tp N

Page 47: Conferencia

A First-Order RC Network

vout

vin C

R

tp = ln (2) = 0.69 RC

Important model – matches delay of inverter

Page 48: Conferencia

Power Dissipation

Instantaneous power: p(t) = v(t)i(t) = Vsupplyi(t)

Peak power: Ppeak = Vsupplyipeak

Average power:

P ave=1T∫t

tTp t dt=

V supply

T∫t

tTi supply t dt

Page 49: Conferencia

Energy and Energy-Delay

Power-Delay Product (PDP) =

E = Energy per operation = Pav tp

Energy-Delay Product (EDP) =

quality metric of gate = E tp

Page 50: Conferencia

A First-Order RC NetworkVdd

Vout

isupply

CL

E0->1 = CLVdd2

PMOS

NETWORK

NMOS

A1

AN

NETWORK

E0 1 P t dt

0

T∫ Vdd isupply t dt

0

T∫ Vdd CLdVout

0

Vdd

∫ CL Vdd 2= = = =

Ecap Pcap t dt

0

T∫ Vouticap t dt

0

T∫ CLVoutdVout

0

Vdd∫ 1

2---C

LVdd

2= = = =

vout

vin CL

R

Page 51: Conferencia

Summary Digital integrated circuits have come a long

way and still have quite some potential left for the coming decades

Some interesting challenges ahead Getting a clear perspective on the challenges and

potential solutions is the purpose of this conference Understanding the design metrics that govern

digital design is crucial Cost, reliability, speed, power and energy

dissipation