Top Banner
Conditional Probabilities Conditional Probabilities over Probabilistic and over Probabilistic and Nondeterministic Systems Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.
29

Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

Mar 30, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

Conditional Probabilities over Conditional Probabilities over Probabilistic and Nondeterministic Probabilistic and Nondeterministic

SystemsSystems

M. E. Andrés and

P. van Rossum

Radboud Universiteit Nijmegen, The Netherlands.

Page 2: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

2TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers Conditional Probabilities pCTL

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 3: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

3TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers Conditional Probabilities pCTL

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 4: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

4TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

MotivationMotivation

Model Checking

Modelj=

Temporal Logics

'

P[§ DeadL]§ DeadL

P+[§DeadL]P+[§ DeadL j¤ SingU]

· 0:1

· 0:1

· 0:1(+ cond prob) cpCTL

(+ nondet) pCTL

(+ prob) pCTL

LTL – CTL

NEW

Page 5: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

5TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

MotivationMotivation

Conditional ProbabilitiesAnonymity

Strong AnonymityProbable innocence

What we doDefine cpCTLModel Checker for cpCTLPresent a Notion of Counterexamples

Deterministic CaseNondeterministic Case

Risk assessmentP[dyke breaks| it rains heavily]

Diagnosability P[A failed|error message E]

Page 6: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

6TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers pCTL Conditional Probabilities

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 7: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

7TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Probabilistic and Nondeterministic

Example

Background – MDPsBackground – MDPs

The Model (MDP)

®0®®®

TEXPH3:1:2®£ ±2

² S is the¯nitestatespaceof thesystem² s0 2 S is the initial state² L : S ! }(P ) is a labeling function² ¿: S ! }(Distr(S))

MDP =(S,s0;L ;¿), where:

Finite Paths Paths

s0s2s0s2s3...

s0s2(s3)!

s0(s1)!...

Page 8: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

8TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Background – SchedulersBackground – Schedulers

Schedulers resolve the Nondeterminism!

Schedulers: FinitePath ! Distr(S)

²P [s0s2s5]= 18

²P [s0s2s6]= 0

S2 ! ¼2

S2 ! ¼3

²P [s0s2s5]= 0²P [s0s2s6]= 1

40

S214! ¼2

S234! ¼3

Page 9: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

9TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Background – pCTLBackground – pCTL

SyntaxisState

Pathª :=©U©j §©j ¤© Semantic

¾j= ÁUà , Á holds until at somepoint à holds¾j= §Á , ¾j= trueUÁ¾j= ¤Á , ¾j= : § : Á

©:= P j ©^©j : ©j 8ª j 9ª j P ./ a[ª ]

a2 [0;1]

./ 2 f<;· ;>;¸ g

s j= var , var 2 L(S)s j= Á^Ã , s j= Á and s j= Ãs j= : Á , s 6j= Ás j= 8Á , ¾j= Á for all f. paths¾starting fromss j= 9Á , ¾j= Á for any f. path ¾starting fromss j= P · a[Á] , max´ P s;´ [Á] , P+

s [Á] · a

Page 10: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

10TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Example

6j=

Background – computing satisfactionBackground – computing satisfaction

34+

140 =

0;775 34+14(12¡ ®) +

14®= 0;875

Page 11: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

11TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Background – Conditional ProbabilitiesBackground – Conditional Probabilities

Standard Conditional Probabilities

P (A j B) =P (A \ B)P (B)

Max and Min Conditional Probabilities

P +(¢ 1 j ¢ 2) = sup´2Sch> 0

¢ 2

P ´ (¢ 1 j ¢ 2) P ¡ (¢ 1 j ¢ 2) = inf´2Sch> 0

¢ 2

P ´ (¢ 1 j ¢ 2)

Conditional Probabilities over MDPs

P ´ (¢ 1j¢ 2) =P ´ (¢ 1 \ ¢ 2)P ´ (¢ 2)

² (­ s;Bs;P ´ ) is theprobability space² ¢ 1;¢ 2 2 Bs are two sets of paths² P ´ (¢ 2) > 0

² (­ ;F;P ) is a probability space² A;B 2 F are two events² P (B) > 0

Page 12: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

12TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers pCTL Conditional Probabilities

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 13: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

13TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

s j= P · a[ÁjÃ]P s [Á^Ã]P s [Ã]

· a

Our Logic – cpCTLOur Logic – cpCTL

pCTL cpCTL

ª :=©U©j §©j ¤©

j

©:= P j ©^©j : ©j 8ª j 9ª j P ./ a[ª ]

Interpretation

P+s [ÁjÃ]

s j= P · a[ÁjÃ] max´2Sch> 0

P s;´ [Á^Ã]P s;´ [Ã]

· a

P [AjB]=P [A \ B]P [B]

Page 14: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

14TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

max´P s0;´

[§ B ^¤ P ]

P s0;´[¤ P ]

· 0;99

cpCTL - ExamplecpCTL - Example

S0 j= P · 0;99[§ B j¤P ]

²P s0;´¼2[§ B j¤P ]= P [s0s1]+P [s0s2s3]

P [s0s1]+P [s0s2s3]+P [s0s2s4]= 1¡ 2®

7

max(1¡ 2®7; 3031) · 0;99

²P s0 ;´¼3[§ B j¤P ]= P [s0s1]

P [s0s1]+P [s0s2s6]= 30

31

Page 15: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

15TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers pCTL Conditional Probabilities

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 16: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

16TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Model Checking IssuesModel Checking Issues

Fully probabilistic case

Can be reduced to a pCTL* problem, using

P +s [ÁjÃ] 6=

P +s [Á^Ã]P +s [Ã]

Observation

Probabilistic and Nondeterministic case

pCTL cpCTLDeterministic Schedulers Deterministic Schedulers

History Independent Schedulers

Semi History Independent Schedulers

Bellman Equations NO Bellman Equations

P +s [ÁjÃ]=max

´

P s;´ [Á^Ã]

P s;´ [Ã]

Page 17: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

17TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Model Checking Issues – Model Checking Issues – Nondeterministic caseNondeterministic case

cpCTL case Deterministic Schedulers (Not trivial) Semi History Independent Schedulers No Bellman equations

Theorem: Deterministic Schedulers

P ´ [ÁjÃ]= P+[ÁjÃ] and P ´0[ÁjÃ]= P ¡ [ÁjÃ]

Thereexists Deterministic schedulers ´ and ´0 such that

Coming…

Page 18: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

18TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Model Checking Issues – Model Checking Issues – Nondeterministic caseNondeterministic case

Semi History Independent Schedulers Why?If P +

s0[§ B j§ P ]= P s0 ;´

[§ B j§ P ]then ´ satis es

´(¾) =

8<

:

¼3 if ¾= s0¼5 if ¾= s0s3¼1 if ¾= s0s3s0

Definition´ is ' -semi History Independent if

² ´ takes always the samedecision before the system reaches '² ´ takes always the samedecision after the system reaches '

P ´ [ÁjÃ]= P+[ÁjÃ] and P ´0[ÁjÃ]= P ¡ [ÁjÃ]Thereexists deterministic and sHI schedulers ´ and ´0 such that

Theorem: sHI Schedulers

Stopping condition

Page 19: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

19TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Local Bellman equation

Model Checking Issues – Model Checking Issues – Nondeterministic caseNondeterministic case

P +s2[§ P ]=

¼2

¼3

P +s [Á]= max

¼2¿(s)

0

@X

t2succ(s)

¼(t) ¢P +t [Á]

1

ABellman Equations

110

¢P+s6[§P ]+

910

¢P+s7[§P ]

(12¡ ®) ¢P +

s3[§ P ]+®¢P +

s4[§ P ]+

12¢P +

s5[§ P ]

P+s2[§P ]=max

8<

:

(12¡ ®) ¢P+

s3[§P ]+®¢P+

s4[§P ]+ 1

2 ¢P+s5[§P ]

110 ¢P

+s6[§P ]+ 9

10 ¢P+s7[§P ]

M aximum over all outgoingdistributions ¼of s

RecursiveComputation

Page 20: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

20TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Model Checking Issues – Model Checking Issues – Nondeterministic caseNondeterministic case

Why Not Bellman equations?

Bellman equation on cpCTL case… P +s0[ÁjÃ]= max

¼2¿(s)

0

@X

t2 succ(s)

¼(t) ¢P +t [ÁjÃ]

1

A

P+s0 [§Bj¤P ] · 0;99

max(1¡ 2®7; 3031) · 0;99

P +s0[§Bj¤P ]= P s0;´¼3

[§Bj¤P ]

If ®¸ 762 then

…but P +s2[§Bj¤P ]= P s2;´¼2

[§Bj¤P ]= 1¡ 2¢®

Page 21: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

21TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers pCTL Conditional Probabilities

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 22: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

22TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Idea

Model Checker - IdeaModel Checker - Idea

P +s [ÁjÃ]=max

´

µP s;´ [Á^Ã]

P s;´ [Ã]

{By deterministic and sHI Theorem}

P +s [ÁjÃ]=max

µP s;´1

[Á^Ã]P s;´1

[Ã];¢¢¢;

P s;´k[Á^Ã]

P s;´k[Ã]

where f ´1;´2; : : : ;´kg is the set of all deterministic and sHI schedulers

What we actually computef (s;Á;Ã) =

©(P s;´1

[Á^Ã];P s;´1[Ã]);¢¢¢;(P s;´k

[Á^Ã];P s;´k[Ã])

ª

P +s [ÁjÃ]=max

³ nabj (a;b) 2 f (s;Á;Ã) ^b6= 0

o[ f0g

´

Page 23: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

23TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Model Checker - ExampleModel Checker - Example

Optimizations Reusing information

Ussing pCTL algorithms after reaching the stopping condition

Example¡Case P+

s [Á1UÁ2jÃ1UÃ2]¢

f (s;Á1UÁ2;Ã1UÃ2) = f (P +s [Ã1UÃ2];P

+s [Ã1UÃ2])g if s j= Á2

f (s;Á1UÁ2;Ã1UÃ2) = f (P +s [Á1UÁ2];1)g if s j= : Á2^Ã2

f (s;Á1UÁ2;Ã1UÃ2) = f (0;P ¡s [Ã1UÃ2])g if s j= : Á1^: Á2^: Ã2

f (s;Á1UÁ2;Ã1UÃ2) = f (0;0)g if s j= Á1^: Á2^: Ã1^: Ã2f (s;Á1UÁ2;Ã1UÃ2) =S¼2¿(s)

³ Lt2succ(s)¼(t) ¯ f (t;Á1UÁ2;Ã1UÃ2)

´if s j= Á1^: Á2^Ã1^: Ã2

Page 24: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

24TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Background

Markov Decision Processes and Schedulers pCTL Conditional Probabilities

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 25: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

25TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Why?

CounterexamplesCounterexamples

Counterexamples

Model'j=

Counterexamples for cpCTLA counterexample for P · a[ÁjÃ] is a pair (¢ 1;¢ 2) of measurable sets

of paths satisfying ¢ 1 µ ¢ Á^Ã , ¢ 2 µ ¢ : Ã , and a<P ´ (¢ 1)

1¡ P ´ (¢ 2), for some

scheduler ´.

s j= P · a[ÁjÃ] , for all ´ P s ;´ [Á^Ã]P s ;´ [Ã]

· a

Lemma

where¢ 1 µ ¢ Á^Ã , f ! 2 ­ j ! j= Á^Ãgand ¢ 2 µ ¢ : Ã , f ! 2 ­ j ! j= : Ãg

P ´ [Á^Ã]P ´ [Ã]

> a P ´ (¢ 1)1¡ P ´ (¢ 2)

> a

Page 26: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

26TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

OverviewOverview

Motivation Backgorund

Markov Decision Processes and Schedulers pCTL Conditional Probabilities

Our Logic (cpCTL) Model Checking issues

Fully probabilistic case Probabilistic and Nondeterministic case

Comparison (pCTL vs cpCTL) cpCTL Complications

Model Checker Counterexamples Future work

Page 27: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

27TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Future WorkFuture Work

Implement our Algorithms in a probabilistic model checker.

Investigate features of cpCTL (expressivness –bisimulation issues).

Improve complexity.

Extend cpCTL to cpCTL*.

More research about counterexamples in cpCTL and cpCTL*.

Page 28: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

28TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Thanks for your attention!Thanks for your attention!

Page 29: Conditional Probabilities over Probabilistic and Nondeterministic Systems M. E. Andrés and P. van Rossum Radboud Universiteit Nijmegen, The Netherlands.

29TACAS - April 1TACAS - April 1stst

Budapest, HungaryBudapest, HungaryMiguel E. AndresRadboud University

Why Deterministic Schedulers?Why Deterministic Schedulers?

Lema: Let v1;v2 2 [0;1 ) and w1;w2 2 (0;1 ). Then the functionf : R ! R de ned by f (®) , ®v1+(1¡ ®)v2

®w1+(1¡ ®)w2ismonotonous.

Á ÁÃ Ã

s0

s1 s21¡ ®®

P s0[ÁjÃ]=

®P s 1[Á^Ã]+(1¡ ®)P s 2

[Á^Ã]®P s1

[Ã]+(1¡ ®)P s 2[Ã]