Top Banner
1 Perceptual and Sensory Augmented Computing Computer Vision II, Summer’14 Computer Vision II – Lecture 9 Beyond Kalman Filters 22.05.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de [email protected] Perceptual and Sensory Augmented Computing Computer Vision II, Summer’14 Course Outline Single-Object Tracking Background modeling Template based tracking Color based tracking Contour based tracking Tracking by online classification Tracking-by-detection Bayesian Filtering Kalman filters Particle filters Case studies Multi-Object Tracking Articulated Tracking 2 Perceptual and Sensory Augmented Computing Computer Vision II, Summer’14 Today: Beyond Gaussian Error Models 3 B. Leibe Figure from Isard & Blake Perceptual and Sensory Augmented Computing Computer Vision II, Summer’14 Topics of This Lecture Recap: Kalman Filter Basic ideas Limitations Extensions Particle Filters Basic ideas Propagation of general densities Factored sampling Case study Detector Confidence Particle Filter Role of the different elements 4 B. Leibe Perceptual and Sensory Augmented Computing Computer Vision II, Summer’14 Recap: Tracking as Inference Inference problem The hidden state consists of the true parameters we care about, denoted X. The measurement is our noisy observation that results from the underlying state, denoted Y. At each time step, state changes (from X t-1 to X t ) and we get a new observation Y t . Our goal: recover most likely state X t given All observations seen so far. Knowledge about dynamics of state transitions. 5 B. Leibe Slide credit: Kristen Grauman X 1 X 2 Y 1 Y 2 X t Y t Perceptual and Sensory Augmented Computing Computer Vision II, Summer’14 Recap: Tracking as Induction Base case: Assume we have initial prior that predicts state in absence of any evidence: P(X 0 ) At the first frame, correct this given the value of Y 0 =y 0 Given corrected estimate for frame t: Predict for frame t+1 Correct for frame t+1 6 B. Leibe predict correct Slide credit: Svetlana Lazebnik
8

Computer Vision II Lecture 9

Mar 15, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Computer Vision II Lecture 9

1

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Computer Vision II – Lecture 9

Beyond Kalman Filters

22.05.2014

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

[email protected]

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAA

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Course Outline

• Single-Object Tracking

Background modeling

Template based tracking

Color based tracking

Contour based tracking

Tracking by online classification

Tracking-by-detection

• Bayesian Filtering

Kalman filters

Particle filters

Case studies

• Multi-Object Tracking

• Articulated Tracking 2

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Today: Beyond Gaussian Error Models

3 B. Leibe

Figure from Isard & Blake

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Topics of This Lecture

• Recap: Kalman Filter Basic ideas

Limitations

Extensions

• Particle Filters Basic ideas

Propagation of general densities

Factored sampling

• Case study Detector Confidence Particle Filter

Role of the different elements

4 B. Leibe

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: Tracking as Inference

• Inference problem

The hidden state consists of the true parameters we care about, denoted X.

The measurement is our noisy observation that results from the underlying state, denoted Y.

At each time step, state changes (from Xt-1 to Xt) and we get a

new observation Yt.

• Our goal: recover most likely state Xt given

All observations seen so far.

Knowledge about dynamics of state transitions.

5 B. Leibe Slide credit: Kristen Grauman

X1 X2

Y1 Y2

Xt

Yt

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: Tracking as Induction

• Base case:

Assume we have initial prior that predicts state in absence of

any evidence: P(X0)

At the first frame, correct this given the value of Y0=y0

• Given corrected estimate for frame t:

Predict for frame t+1

Correct for frame t+1

6 B. Leibe

predict correct

Slide credit: Svetlana Lazebnik

Page 2: Computer Vision II Lecture 9

2

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: Prediction and Correction

• Prediction:

• Correction:

7 B. Leibe

1101110 ,,||,,| ttttttt dXyyXPXXPyyXP

Dynamics

model

Corrected estimate

from previous step

Slide credit: Svetlana Lazebnik

ttttt

tttttt

dXyyXPXyP

yyXPXyPyyXP

10

100

,,||

,,||,,|

Observation

model

Predicted

estimate

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: Linear Dynamic Models

• Dynamics model

State undergoes linear tranformation Dt plus Gaussian noise

• Observation model

Measurement is linearly transformed state plus Gaussian noise

8 B. Leibe

1~ ,tt t t dN x D x

~ ,tt t t mN y M x

Slide credit: S. Lazebnik, K. Grauman

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: Constant Velocity Model (1D)

• State vector: position p and velocity v

• Measurement is position only

9 B. Leibe

1

11 )(

tt

ttt

vv

vtpp

t

t

tv

px

noisev

ptnoisexDx

t

t

ttt

1

1

110

1

(greek letters

denote noise

terms)

noisev

pnoiseMxy

t

t

tt

01

Slide credit: S. Lazebnik, K. Grauman

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: Constant Acceleration Model (1D)

• State vector: position p, velocity v, and acceleration a.

• Measurement is position only

10 B. Leibe

1

11

11

)(

)(

tt

ttt

ttt

aa

atvv

vtpp

t

t

t

t

a

v

p

x

noise

a

v

p

t

t

noisexDx

t

t

t

ttt

1

1

1

1

100

10

01

(greek letters

denote noise

terms)

noise

a

v

p

noiseMxy

t

t

t

tt

001

Slide credit: S. Lazebnik, K. Grauman

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: General Motion Models

• Assuming we have differential equations for the motion

E.g. for (undampened) periodic motion of a pendulum

• Substitute variables to transform this into linear system

• Then we have

11 B. Leibe

1, 1, 1 2, 1

2, 2, 1 3, 1

3, 1, 1

( )

( )

t t t

t t t

t t

p p t p

p p t p

p p

1,

2,

3,

t

t t

t

p

x p

p

1 0

0 1

1 0 0

t

t

D t

2

2

d pp

dt

1p p2

dpp

dt

2

3 2

d pp

dt

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: The Kalman Filter

12 B. Leibe

Know prediction of state,

and next measurement

Update distribution

over current state.

Know corrected state from

previous time step, and all

measurements up to the

current one

Predict distribution over

next state.

Time advances: t++

Time update

(“Predict”)

Measurement update

(“Correct”)

Receive measurement

10 ,, tt yyXP

tt ,

Mean and std. dev.

of predicted state:

tt yyXP ,,0

tt ,

Mean and std. dev.

of corrected state:

Slide credit: Kristen Grauman

Page 3: Computer Vision II Lecture 9

3

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Recap: General Kalman Filter (>1dim)

• What if state vectors have more than one dimension?

13 B. Leibe

PREDICT CORRECT

1ttt xDx

td

T

tttt DD

1 tttttt xMyKxx

tttt MKI

1 tm

T

ttt

T

ttt MMMK

More weight on residual

when measurement error

covariance approaches 0.

Less weight on residual as

a priori estimate error

covariance approaches 0.

Slide credit: Kristen Grauman

“residual”

for derivations,

see F&P Chapter 17.3

“Kalman gain”

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Resources: Kalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman

• Electronic and printed references

Book lists and recommendations

Research papers

Links to other sites

Some software

• News

• Java-Based KF Learning Tool On-line 1D simulation

Linear and non-linear

Variable dynamics

14

B. Leibe Slide adapted from Greg Welch

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

15

Remarks

• Try it!

Not too hard to understand or program

• Start simple

Experiment in 1D

Make your own filter in Matlab, etc.

• Note: the Kalman filter “wants to work”

Debugging can be difficult

Errors can go un-noticed

Slide adapted from Greg Welch

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Topics of This Lecture

• Recap: Kalman Filter Basic ideas

Limitations

Extensions

• Particle Filters Basic ideas

Propagation of general densities

Factored sampling

• Case study Detector Confidence Particle Filter

Role of the different elements

16 B. Leibe

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Extension: Extended Kalman Filter (EKF)

• Basic idea

State transition and observation model don’t need to be linear

functions of the state, but just need to be differentiable.

The EKF essentially linearizes the nonlinearity around the

current estimate by a Taylor expansion.

• Properties

Unlike the linear KF, the EKF is in general not an optimal

estimator.

– If the initial estimate is wrong, the filter may quickly diverge.

Still, it’s the de-facto standard in many applications

– Including navigation systems and GPS

17 B. Leibe

1,t t t

t t

x f x u

y h x

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Kalman Filter – Other Extensions

• Unscented Kalman Filter (UKF)

Further development of EKF

Probability density is approximated by nonlinear transform of a

random variable.

More accurate results than the EKF’s Taylor expansion approx.

• Ensemble Kalman Filter (EnKF)

Represents the distribution of the system state using a collection

(an ensemble) of state vectors.

Replace covariance matrix by sample covariance from

ensemble.

Still basic assumption that all prob. distributions involved are

Gaussian.

EnKFs are especially suitable for problems with a large number

of variables.

18 B. Leibe

Page 4: Computer Vision II Lecture 9

4

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Even More Extensions

• Switching Linear Dynamic System (SLDS)

Use a set of k dynamic models A(1),...,A(k), each of which

describes a different dynamic behavior.

Hidden variable zt determines which model is active at time t.

A switching process can change zt according to distribution .

19 B. Leibe Figure source: Erik Sudderth

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Topics of This Lecture

• Recap: Kalman Filter Basic ideas

Limitations

Extensions

• Particle Filters Basic ideas

Propagation of general densities

Factored sampling

• Case study Detector Confidence Particle Filter

Role of the different elements

22 B. Leibe

Today: only main ideas

Formal introduction

next Tuesday

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

When Is A Single Hypothesis Too Limiting?

23 B. Leibe

Update Initial position

x

y

x

y

Prediction

x

y

Measurement

x

y

Figure from Thrun & Kosecka Slide credit: Kristen Grauman

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

When Is A Single Hypothesis Too Limiting?

• Consider this example:

say we are tracking the

face on the right using a

skin color blob to get our

measurement.

24

B. Leibe

Update Initial position

x

y

x

y

Prediction

x

y

Measurement

x

y

Figure from Thrun & Kosecka Slide credit: Kristen Grauman

Video from Jojic & Frey

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

When Is A Single Hypothesis Too Limiting?

• Consider this example:

say we are tracking the

face on the right using a

skin color blob to get our

measurement.

25

B. Leibe

Update Initial position

x

y

x

y

Prediction

x

y

Measurement

x

y

Figure from Thrun & Kosecka Slide credit: Kristen Grauman

Video from Jojic & Frey

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Propagation of General Densities

26 B. Leibe Slide credit: Svetlana Lazebnik Figure from Isard & Blake

Page 5: Computer Vision II Lecture 9

5

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Factored Sampling

• Idea: Represent state distribution non-parametrically

Prediction: Sample points from prior density for the state, P(X)

Correction: Weight the samples according to P(Y |X)

27 B. Leibe

ttttt

tttttt

dXyyXPXyP

yyXPXyPyyXP

10

100

,,||

,,||,,|

Slide credit: Svetlana Lazebnik Figure from Isard & Blake

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Particle Filtering

• (Also known as Sequential Monte Carlo Methods)

• Idea

We want to use sampling to propagate densities over time

(i.e., across frames in a video sequence).

At each time step, represent posterior P(Xt|Yt) with

weighted sample set.

Previous time step’s sample set P(Xt-1|Yt-1) is passed to next

time step as the effective prior.

28 B. Leibe Slide credit: Svetlana Lazebnik

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Particle Filtering

Start with weighted

samples from previous

time step

Sample and shift

according to dynamics

model

Spread due to

randomness; this is pre-

dicted density P(Xt|Yt-1)

Weight the samples

according to observation

density

Arrive at corrected

density estimate

P(Xt|Yt)

38 B. Leibe

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for

visual tracking, IJCV 29(1):5-28, 1998

Slide credit: Svetlana Lazebnik

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Particle Filtering – Visualization

39 B. Leibe

Code and video available from

http://www.robots.ox.ac.uk/~misard/condensation.html

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Particle Filtering Results

40 B. Leibe

http://www.robots.ox.ac.uk/~misard/condensation.html

Figure from Isard & Blake

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Particle Filtering Results

41 B. Leibe

• Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html

Videos from Isard & Blake

Page 6: Computer Vision II Lecture 9

6

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

42

Obtaining a State Estimate

• Note that there’s no explicit state estimate maintained,

just a “cloud” of particles

• Can obtain an estimate at a particular time by querying the

current particle set

• Some approaches

“Mean” particle

– Weighted sum of particles

– Confidence: inverse variance

Really want a mode finder—mean of tallest peak

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Condensation: Estimating Target State

43 B. Leibe

From Isard & Blake, 1998

State samples

(thickness proportional to weight)

Mean of weighted

state samples

Slide credit: Marc Pollefeys Figures from Isard & Blake

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Summary: Particle Filtering

• Pros:

Able to represent arbitrary densities

Converging to true posterior even for non-Gaussian and

nonlinear system

Efficient: particles tend to focus on regions with high probability

Works with many different state spaces

– E.g. articulated tracking in complicated joint angle spaces

Many extensions available

44 B. Leibe

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Summary: Particle Filtering

• Cons / Caveats:

#Particles is important performance factor

– Want as few particles as possible for efficiency.

– But need to cover state space sufficiently well.

Worst-case complexity grows exponentially in the dimensions

Multimodal densities possible, but still single object

– Interactions between multiple objects require special treatment.

– Not handled well in the particle filtering framework

(state space explosion).

45 B. Leibe

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Topics of This Lecture

• Recap: Kalman Filter Basic ideas

Limitations

Extensions

• Particle Filters Basic ideas

Propagation of general densities

Factored sampling

• Case study Detector Confidence Particle Filter

Role of the different elements

46 B. Leibe

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Challenge: Unreliable Object Detectors

• Example:

Low-res webcam footage (320240), MPEG compressed

47

Detector input Tracker output

?

How to get from here… …to here?

Page 7: Computer Vision II Lecture 9

7

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Tracking based on Detector Confidence

• Detector output is often not perfect

Missing detections and false positives

But continuous confidence still contains useful cues.

• Idea employed here:

Use continuous detector confidence to track persons over time. 48

(using ISM detector) (using HOG detector)

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Main Ideas

• Detector confidence particle filter

Initialize particle cloud on

strong object detections.

Propagate particles using

continuous detector confidence

as observation model.

• Disambiguate between

different persons

Train a person-specific classifier

with online boosting.

Use classifier output to distinguish

between nearby persons.

49

t

[Breitenstein, Reichlin, Leibe et al., ICCV’09]

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Detector Confidence Particle Filter

• State:

• Motion model (constant velocity)

• Observation model

50

Discrete

detections

Detector

confidence

Classifier

confidence

t

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

When Is Which Term Useful?

51 Discrete detections Detector confidence Classifier confidence

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Each Observation Term Increases Robustness!

52 B. Leibe

CLEAR MOT scores

Detector only

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Each Observation Term Increases Robustness!

53 B. Leibe

CLEAR MOT scores

Detector

+ Confidence

Page 8: Computer Vision II Lecture 9

8

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Each Observation Term Increases Robustness!

54 B. Leibe

CLEAR MOT scores

Detector

+ Classifier

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Each Observation Term Increases Robustness!

55 B. Leibe

False negatives,

false positives,

and ID switches

decrease!

CLEAR MOT scores

Detector

+ Confidence

+ Classifier

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Qualitative Results

57

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

Remaining Issues

• Some false positive initializations at wrong scales…

Due to limited scale range of the person detector.

Due to boundary effects of the person detector.

59 B. Leibe

Perc

eptu

al

and S

enso

ry A

ugm

ente

d C

om

puti

ng

Co

mp

ute

r V

isio

n I

I, S

um

me

r’1

4

References and Further Reading

• A good tutorial on Particle Filters

M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian

Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2),

pp. 174-188, 2002.

• The CONDENSATION paper

M. Isard and A. Blake, CONDENSATION - conditional density

propagation for visual tracking, IJCV 29(1):5-28, 1998

B. Leibe 60