Top Banner
Computer Aided Thermal Computer Aided Thermal Fluid Analysis Fluid Analysis Lecture 10 Lecture 10 Dr. Ming-Jyh Chern Dr. Ming-Jyh Chern ME NTUST ME NTUST
53

Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Dec 17, 2015

Download

Documents

Rosemary Bond
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Computer Aided Thermal Computer Aided Thermal Fluid AnalysisFluid Analysis

Lecture 10Lecture 10

Dr. Ming-Jyh ChernDr. Ming-Jyh Chern

ME NTUSTME NTUST

Page 2: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Road Map for TodayRoad Map for Today

• What is turbulence?What is turbulence?• Reynolds Averaged Navier-Stokes (RAReynolds Averaged Navier-Stokes (RA

NS) equationsNS) equations• Turbulence modelsTurbulence models• Boundary conditions for turbulence mBoundary conditions for turbulence m

odelsodels

Page 3: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

What is turbulence? Part IWhat is turbulence? Part I

Page 4: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

What is turbulence? Part IIWhat is turbulence? Part II

Let us see a movie regarding a turbulent flow in a valve.

Page 5: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

What is turbulence? Part III – What is turbulence? Part III – Its natureIts nature

• RandomRandom

• Effective MixingEffective Mixing

• High Reynolds numberHigh Reynolds number

• 3-D3-D

• Energy DissipationEnergy Dissipation

• Eddy MotionsEddy Motions

Page 6: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

What is turbulence? Energy What is turbulence? Energy CascadeCascade

Page 7: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Reynolds DecompositionReynolds Decomposition

Page 8: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Reynolds Averaged Navier-StoReynolds Averaged Navier-Stokes (RANS) equationskes (RANS) equations

is the so-called Reynolds stress.

Page 9: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Boussinesq’s Assumption Boussinesq’s Assumption

How to determine eddy viscosity t?

Page 10: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Zero equation model Zero equation model

t is assumed to be a constant and depends on various flow fields.

Page 11: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

One equation model One equation model

Page 12: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Two equations model Two equations model

Page 13: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

K-K- turbulence model turbulence model

Page 14: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

K-K- turbulence model turbulence model

Page 15: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Boundary conditions Boundary conditions

Inlet Conditions

Page 16: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Boundary conditions for a Boundary conditions for a solid wallsolid wall

1. Wall function

Page 17: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Boundary conditions for a Boundary conditions for a solid wallsolid wall

1. Wall function

Page 18: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Boundary conditions for a Boundary conditions for a solid wallsolid wall

2. Two Layer Method

Page 19: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Boundary conditions for a Boundary conditions for a solid wallsolid wall

2. Two Layer Method

Page 20: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion FlowFlow

ui0.1 m

0.13 m

1 m

2.5 m

Page 21: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion Flow – establish meshFlow – establish mesh

Page 22: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion Flow – Laminar Flow CaseFlow – Laminar Flow Case

• Working fluids – airWorking fluids – air• Density = 1.205 mDensity = 1.205 m33/s/s• Dynamics viscosity = 1.81e-5 kg/msDynamics viscosity = 1.81e-5 kg/ms• Characteristic length = 0.1 mCharacteristic length = 0.1 m• If we consider a laminar channel flow at If we consider a laminar channel flow at

Re = 100, then the magnitude of inlet velRe = 100, then the magnitude of inlet velocity must be 0.015 m/s. ocity must be 0.015 m/s.

Page 23: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion Flow – Boundary setupFlow – Boundary setup

Inlet boundary

Symmetry boundary

Symmetry boundary

Outlet or constant pressure boundary

Page 24: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion Flow – Results of laminar FlowFlow – Results of laminar Flow

Page 25: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion Flow – Turbulent Flow CaseFlow – Turbulent Flow Case

• Working fluids – airWorking fluids – air• Density = 1.205 mDensity = 1.205 m33/s/s• Dynamics viscosity = 1.81e-5 kg/msDynamics viscosity = 1.81e-5 kg/ms• Characteristic length = 0.1 mCharacteristic length = 0.1 m• If we consider a turbulent channel flow at Re = If we consider a turbulent channel flow at Re =

30,000, then the magnitude of inlet velocity m30,000, then the magnitude of inlet velocity must be 4.5 m/s. ust be 4.5 m/s.

• kk and and at the inlet boundary ( at the inlet boundary (kk = 0.30375, = 0.30375, = 7. = 7.859).859).

Page 26: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Sudden Expansion Example – Sudden Expansion Flow – Results of Turbulent Flow – Results of Turbulent FlowFlow

Contours of k

Page 27: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Simulation of Heat Transfer Simulation of Heat Transfer

• Forced convection or natural Forced convection or natural convection?convection?

• Boundary conditions, a. isothermal Boundary conditions, a. isothermal boundary, b. constant heat flux. boundary, b. constant heat flux.

• Conjugate heat transfer? Heat Conjugate heat transfer? Heat sources should be imposed inside sources should be imposed inside solids. solids.

Page 28: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

ui0.1 m

0.13 m

1 m

2.5 m

T = 313 K

The constant wall temperature is 293 K, except for the orange region at which the temperature is 313 K.

Page 29: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Page 30: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Page 31: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Page 32: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Page 33: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Page 34: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Page 35: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Forced convection Example – Forced convection with isothermal boundarywith isothermal boundary

Isothermal contours

Page 36: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

T = 294 K

T = 293 K

Adiabatic boundaryAdiabatic boundary

g

0.01 m

0.01 m

Page 37: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

3LTTgRa LH

01.0

then

8.9

10216.2

10569.1

293

11

K 1

10 If

5

5

4

L

g

T

TT

Ra

L

LH

Page 38: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

• Boussinesq’s approximation: assume the buoBoussinesq’s approximation: assume the buoyant force yant force ff in N-S equations is in N-S equations is

refTTgf

Page 39: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

Page 40: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

Page 41: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

Page 42: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Natural convection Example – Natural convection with isothermal boundarywith isothermal boundary

Isothermal contours

Page 43: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat Example – Conjugate Heat TransferTransfer

• Heat conduction in a solid and Heat conduction in a solid and convection in a fluid are considered convection in a fluid are considered in conjugate heat transfer. in conjugate heat transfer.

• At least, two materials shall be At least, two materials shall be defined as a fluid and a solid in the defined as a fluid and a solid in the model, respectively. model, respectively.

Page 44: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat Example – Conjugate Heat TransferTransfer

. .

Page 45: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat Example – Conjugate Heat TransferTransfer

T = 294 K

T = 293 K

Adiabatic boundaryAdiabatic boundary

g

0.01 m

0.01 m

air

Al

Page 46: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

1

2

3

Page 47: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

4. Choose a solid material from the table or creat a new one. Do not forget to click apply.

Page 48: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

5. Use C> /NEW / Zone to select cells into cset.

Page 49: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

6. Click Tools/Cell Tools to set Type 2 Solid to Material 2

Page 50: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

7. Use cell list to change cells in cset to the type 2 solid

Page 51: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

8. Check if there are two different kinds of cells. Red one is fluid 1. Green one is solid 2.

Page 52: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

9. Go back to STAR Guide. Click Thermal Options. Click Heat Transfer ON.

10.The rest procedures for simulation of natural convection are as same as the previous example.

Page 53: Computer Aided Thermal Fluid Analysis Lecture 10 Dr. Ming-Jyh Chern ME NTUST.

Example – Conjugate Heat TransferExample – Conjugate Heat Transfer

Iosthermal contours + Velocity vectors