Top Banner
SDAL @ Advanced Ship Design Automation Lab. http://asdal.snu.ac.kr Seoul National Univ. 2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element Naval Architecture & Ocean Engineering SDAL @ Advanced Ship Design Automation Lab. http://asdal.snu.ac.kr Seoul National Univ. Computer Aided Ship Design Part.3 Grillage Analysis of Midship Cargo Hold 2009 Fall Prof. Kyu-Yeul Lee Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering
41

Computer Aided Ship Design Part.3 Grillage Analysis of Midship …ocw.snu.ac.kr/sites/default/files/NOTE/6324.pdf · 2018. 1. 30. · 2009 Fall, Computer Aided Ship Design, Part3

Feb 02, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Naval Arc

    hitectu

    re &

    Ocean E

    ngin

    eering

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    Computer Aided Ship DesignPart.3 Grillage Analysis of Midship

    Cargo Hold

    2009 Fall

    Prof. Kyu-Yeul Lee

    Department of Naval Architecture and Ocean Engineering,Seoul National University of College of Engineering

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Application

    Bar

    Beam

    Shaft

    Summary

    Element Behavior

    Tension

    Bending

    Torsion

    Midship Cargo Hold

    2

    2

    ( )( ) 0

    d u xEA f x

    dx

    4

    4

    ( )( ) 0

    w xEI f x

    x

    Structure

    •Superposition of Stiffness Matrix•Coordinates Transformation

    Truss

    Frame

    Grillage2

    2

    ( )( ) 0

    xGJ f x

    x

    Beam Theory : Sign Convention, Deflection of Beam

    Elasticity : Displacement, Strain, Stress, Force Equilibrium, Compatibility, Constitutive Equation

    :A Sectional Area :

    :

    E

    I

    Young’s Modulus

    Moment of Inertia

    :G Shear Modulus

    :J Polar Moment of Inertia:l Length

    Differential Equation

    Mx F , 0where x

    VariationalMethod

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    22

    20( ) 0

    2

    l EA d wf w dx

    dx

    2

    0( ) 0

    2

    l GJ df dx

    dx

    1 1

    2 2

    1 1

    1 1

    u fEA

    u fl

    0 1( )u x a a x

    11

    2 2

    11

    3

    2 2

    2 2

    2 2

    6 3 6 3

    3 2 32

    6 3 6 3

    3 3 2

    ful l

    Ml l l lEI

    ul l fl

    l l l l M

    2 3

    0 1 2 3( )w x b b x b x b x

    1 1

    2 2

    1 1

    1 1

    MGJ

    Ml

    0 1( )x c c x

    Kd F

    Finite Element Method

    •Discretization•Approximation

    Grillage Modeling

    •Equivalent Force & Moment•3D 2D

    •Boundary condition

    Engineering Concept !

    Solution

    •programming•visulaization

    :u

    Vertical Displacement

    :G Shear Modulus

    : Angle of Twist:w

    Axial Displacement

    2/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Chapter 1. Element : Bar

    3/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Differential Eqn.

    Rao,S.S.,Mechanical Vibrations, Fourth Edition, Prentice Hall, 2004,

    z

    xo

    ac

    bdx dx

    ( , )f x t

    l

    a

    b

    c

    d

    f dx

    P dP

    dx

    Equilibrium position a

    b

    c

    d u

    u du

    Displacedposition

    P

    ( )u x

    x

    l

    ( )f x

    ( )u x

    x0 l

    an example of displacement in x-direction at x

    :density, : Young s Modulus, :sectionalareaE A

    ( , ):external force per unit lengthf x tif is constantAand is time invariantf

    P : the axial forces acting on the cross sections of a small element of the bar of length dx

    4/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Differential Equ.

    A Bar in Axial Vibration

    2

    2

    ( , )( ) ( )

    u x tP dP f dx P A x dx

    t

    F ma

    2

    2

    ( , )( )

    u x tdP f dx A x dx

    t

    2

    2

    ( , ) ( , )( ) ( , ) ( )

    u x t u x tEA x dx f x t dx A x dx

    x x t

    ( , ):external force per unit lengthf x t

    2

    2

    ( )( ) 0

    d u xEA f x

    dx 0

    u

    t

    2 2

    2 2

    ( , ) ( , )( , )

    u x t u x tEA f x t A

    x t

    dynamics (vibration)

    ( ) : .if A x A const

    ( , )( ) ( ) ( )

    ( , )( )

    u x tP A x EA x EA x

    x

    P u x tdP dx EA x dx

    x x x

    ‘constitutive equation’

    “Longitudinal Vibration of a Bar or Rod : Rao,S.S.,Mechanical Vibrations, Fourth Edition, Prentice Hall, 2004, pp597-560

    subjected to

    0

    0

    ( , 0) ( ), 0

    ( , 0) ( ), 0

    u x t u x x l

    ux t u x x l

    t

    I.V.P

    (0, ) 0, 0

    ( , ) 0 or ( , ) 0, 0

    u t t

    u uAE l t l t t

    x x

    at the free end , axial force

    B.V.P

    statics

    :density, : Young s Modulus, :sectionalareaE A

    z

    xo

    ac

    bdx dx

    ( , )f x t

    l

    a

    b

    c

    d

    a

    b

    c

    d

    f dx

    P dP

    u

    u du

    dx

    Equilibrium position

    Displacedposition

    P

    ( )u x

    5/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Variational MethodDifferential Equation

    Boundary condition

    2

    2

    ( )( ) 0

    d u xEA f x

    dx

    2

    200

    l d uEA f u dx

    dx

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    00 , 0

    xx l

    duu EA

    dx

    multiply by and integrateu

    2

    20

    l d uEA u f u dx

    dx

    L.H.S:

    0

    0

    ll d udu du

    EA u EA f u dxdx dx dx

    0

    l du duEA f u dx

    dx dx

    2

    0( )

    2

    l EA duf u dx

    dx

    integration by part

    d du u

    dx dx

    21

    2u u u

    f u fu

    21

    2

    u u u

    x x x

    ( ) ( )b b

    a ah x dx h x dx

    operation

    6/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Rayleigh-Ritz methodDifferential Equation

    Boundary condition

    2

    2

    ( )( ) 0

    d u xEA f x

    dx

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    00 , 0

    xx l

    duu EA

    dx

    Variational Method2

    1 2u a x a x

    2

    2

    1 2 1 20

    2 02

    l EAa a x f a x f a x dx

    1

    n k

    kku a x

    Rayleigh-Ritz method

    assume,

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    solution

    7/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    (solution)

    2 3 32 2

    1 2 1 1 2 2

    4

    2 3 3

    f l l f lEAl a EAl a a EAl a EA a a

    2

    2

    1 2 1 20

    22

    l EAa a x f a x f a x dx

    2 2 2 21 1 2 2 1 20

    4 42

    l EAa a a x a x f a x f a x dx

    3 2 32 2 2

    1 1 2 2 1 2

    0

    42

    2 3 2 3

    l

    EA x x xa x a a x a f a f a

    3 2 32 2 2

    1 1 2 2 1 2

    42

    2 3 2 3

    EA l f l f ll a l a a a a a

    3 2 32 2

    1 1 1 2 1 2 2 2 1 2

    82 2 2

    2 3 2 3

    EA l f l f ll a a l a a l a a a a a a

    3 2 32 2

    1 1 1 2 1 2 2 2 1 2

    4

    3 2 3

    l f l f lEAl a a EAl a a EAl a a EA a a a a

    8/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    (solution)

    2 3 32 2

    1 2 1 1 2 2

    4

    2 3 3

    f l l f lEAl a EAl a a EAl a EA a a

    2

    2

    1 2 1 20

    22

    l EAa a x f a x f a x dx

    22

    1 2

    3 32

    1 2

    02

    40

    3 3

    f lEAl a EAl a

    l f lEAl a EA a

    2

    2

    1 2 1 20

    2 02

    l EAa a x f a x f a x dx

    since

    22

    13

    322

    24

    33

    f ll l

    aEA l

    a f ll

    9/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    (solution)

    1

    2

    2

    f l

    a EA

    fa

    EA

    5 5

    1

    4 4 42

    2

    3 3 3

    2 3

    f l f l

    a

    EAla f l f l

    23

    21

    4 322

    43 2

    3

    3

    f ll

    a l

    EAla f ll l

    5

    4 4

    3 3

    26

    f l f l

    EA

    fEAl f l

    EA

    22

    13

    322

    24

    33

    f ll l

    aEA l

    a f ll

    10/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Rayleigh-Ritz methodDifferential Equation

    Boundary condition

    2

    2

    ( )( ) 0

    d u xEA f x

    dx

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    00 , 0

    xx l

    duu EA

    dx

    Variational Method

    1

    n k

    kku a x

    2

    1 2u a x a x

    Rayleigh-Ritz method

    2

    2

    1 2 1 20

    2 02

    l EAa a x f a x f a x dx

    2( )2

    f l fu x x x

    EA EA

    assume,

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    1

    2

    2

    f l

    a EA

    fa

    EA

    11/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    x

    ( )u xl

    1u 2u( )u x

    1 2( )u x c c x assume: 1 2, (0) , ( )u u u l u

    discretization

    1 element , 2 nodesfinite element method

    12/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    1 2( )u x c c x assume:

    1 2( )u l c c l

    1 2, ( ) 1x x

    or u x u ul l

    1 2, (0) , ( )u u u l u

    1(0)u c 1 1c u

    2 12

    u uc

    l

    2 11( )

    u uu x u x

    l

    1u 2u( )u x 2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    13/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    1 2( ) 1x x

    u x u ul l

    1

    2

    ( ) 1 1 udu x

    udx l l

    ( ) ,u x Nd( )du x

    dx Bd

    1

    2

    ( ) 1ux x

    u xul l

    differentiation with respect to x

    1

    2

    1 11 , ,

    ux xwhere

    ul l l l

    N B d

    1u 2u( )u x2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    14/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    1 2( ) 1x x

    u x u ul l

    ( )u x Nd

    ( )du x

    dx Bd

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    0 0

    ( ) 02

    l lT TEA dx f dx

    d B Bd Nd

    derivation

    1u 2u( )u x

    1

    2

    1 11 , ,

    ux xwhere

    ul l l l

    N B d

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    15/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    (derivation)2

    0( )

    2

    l EA duf u dx

    dx

    T T0 0

    ( )2

    l lT TEA dx f dx

    d B Bd d N

    T T T0 0

    1( )

    2

    l lTEA dx f dx

    d B B d d N

    T T1

    2

    d Kd d F

    T T

    d Kd d F

    T

    d Kd F

    0

    0

    2 0

    1

    1 1

    1

    1 1

    1 1

    1 1

    1 1

    lT

    l

    l

    EA dx

    lEA dx

    l l

    l

    EAdx

    l

    EA

    l

    K B B

    T TT1 1

    2 2 d Kd d K d d F

    T

    0

    1

    2

    ( )l

    f dx

    u

    u

    F N

    d

    1

    1 1

    x x

    l l

    l l

    N

    B

    T T T1 1

    2 2 d Kd d Kd d F

    T T d Kd d K d

    TK Ksymmetry

    0 0

    ( )2

    l lT TEA dx f dx

    d B Bd Nd

    T T T :f f f scalar Nd Nd d N Nd

    16/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    * * * ** *1 2 1 2

    1 1 2 2

    1 2

    ( , ) ( , )( ) ( )

    f x x f x xx x x x

    x x

    (cf. Taylor Series for a Function of Two Variables)

    * *

    1 2 1 2( , ) ( , )f x x f x x

    * *( ) ( ) ( )Tf f f x x x d

    *1 * *1

    *2 2

    , ,x x

    x x

    x x d x x

    * * * ** *1 2 1 2

    1 1 2 2

    1 2

    ( , ) ( , )( ) ( )

    f x x f x xx x x x

    x x

    ** * * *1 11 2 1 2

    *

    1 2 2 2

    ( , ) ( , ) x xf x x f x x

    x x x x

    * *( ) ( )Tf x x x

    * *

    1 2

    *1 1 1

    ** *2 21 2

    2

    ( , )

    ( , )

    f x x

    x x x

    x xf x x

    x

    T

    2 * * 2 * * 2 * ** 2 * * * 21 2 1 2 1 2

    1 1 1 1 2 2 2 22 2

    1 1 2 2

    ( , ) ( , ) ( , )1( ) 2 ( )( ) ( )

    2

    f x x f x x f x xx x x x x x x x R

    x x x x

    Taylor Series for a Function at ),( 21 xxf ),(*

    2

    *

    1 xx

    17/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    * * * ** *1 2 1 2

    1 1 2 2

    1 2

    ( , ) ( , )( ) ( )

    f x x f x xx x x x

    x x

    (cf. Taylor Series for a Function of Two Variables)

    * *

    1 2 1 2( , ) ( , )f x x f x x

    *1 * *1

    *2 2

    , ,x x

    x x

    x x d x x

    2 * * 2 * * 2 * ** 2 * * * 21 2 1 2 1 2

    1 1 1 1 2 2 2 22 2

    1 1 2 2

    ( , ) ( , ) ( , )1( ) 2 ( )( ) ( )

    2

    f x x f x x f x xx x x x x x x x R

    x x x x

    2 * * 2 * * 2 * ** 2 * * * 21 2 1 2 1 2

    1 1 1 1 2 2 2 22 2

    1 1 2 2

    ( , ) ( , ) ( , )1( ) 2 ( )( ) ( )

    2

    f x x f x x f x xx x x x x x x x

    x x x x

    2 * * 2 * * 2 * * 2 * ** 2 * * * * * 21 2 1 2 1 2 1 2

    1 1 1 1 2 2 1 1 2 2 2 22 2

    1 1 2 1 2 2

    ( , ) ( , ) ( , ) ( , )1( ) ( )( ) ( )( ) ( )

    2

    f x x f x x f x x f x xx x x x x x x x x x x x

    x x x x x x

    2 * * 2 * * 2 * * 2 * *

    * * * *1 2 1 * *2 1 2 1 21 1 2 21 1 2 2 1 1 2 22 2

    1 1 2 1 2 2

    ( , ) ( , )( ) (

    ( , ) ( , )1( ) ( ) ( ) ( )

    2)

    f x x f x x f x x f x xx x x x x x x x

    x x x xx x x

    xx

    x

    * * * *

    1 1 2 2 1 1 2 2

    2 2 2 2

    2 2

    1 2 1 1 2 2

    *

    1 1

    *

    2 2

    ( ) ( ) ( )2

    (1

    )x x x x xf f f f

    x

    x

    x x x xx x x

    x

    x

    x x

    Taylor Series for a Function at ),( 21 xxf ),(*

    2

    *

    1 xx

    18/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    * * * ** *1 2 1 2

    1 1 2 2

    1 2

    ( , ) ( , )( ) ( )

    f x x f x xx x x x

    x x

    (cf. Taylor Series for a Function of Two Variables)

    * *

    1 2 1 2( , ) ( , )f x x f x x

    *1 * *1

    *2 2

    , ,x x

    x x

    x x d x x

    2 * * 2 * * 2 * ** 2 * * * 21 2 1 2 1 2

    1 1 1 1 2 2 2 22 2

    1 1 2 2

    ( , ) ( , ) ( , )1( ) 2 ( )( ) ( )

    2

    f x x f x x f x xx x x x x x x x R

    x x x x

    2 * * 2 * * 2 * ** 2 * * * 21 2 1 2 1 2

    1 1 1 1 2 2 2 22 2

    1 1 2 2

    ( , ) ( , ) ( , )1( ) 2 ( )( ) ( )

    2

    f x x f x x f x xx x x x x x x x

    x x x x

    * * * *

    1 1 2 2 1 1 2 2

    2 2 2 2

    2 2

    1 2 1 1 2 2

    *

    1 1

    *

    2 2

    ( ) ( ) ( )2

    (1

    )x x x x xf f f f

    x

    x

    x x x xx x x

    x

    x

    x x

    2 2

    2 *1 1 2 1 1

    *2 22 2

    2

    2

    * *

    1

    1 2

    1 2 2

    1

    2

    f f

    x x x x x

    x xf f

    x x x

    x x x x

    * * *1( ) ( ) ( ) ( )2

    T Tf f f R x x x d d H x d

    Taylor Series for a Function at ),( 21 xxf ),(*

    2

    *

    1 xx

    19/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    * * * ** *1 2 1 2

    1 1 2 2

    1 2

    ( , ) ( , )( ) ( )

    f x x f x xx x x x

    x x

    (cf. Taylor Series for a Function of Two Variables)

    * *

    1 2 1 2( , ) ( , )f x x f x x

    *1 * *1

    *2 2

    , ,x x

    x x

    x x d x x

    2 * * 2 * * 2 * ** 2 * * * 21 2 1 2 1 2

    1 1 1 1 2 2 2 22 2

    1 1 2 2

    ( , ) ( , ) ( , )1( ) 2 ( )( ) ( )

    2

    f x x f x x f x xx x x x x x x x R

    x x x x

    2 2

    2 *1 1 2 1 1

    *2 22 2

    2

    2 1

    * *

    1 1 2

    2

    2

    1

    2

    f f

    x x x x x

    x xf fx

    x

    x x

    x x

    x

    ** * * *1 11 2 1 2

    *

    1 2 2 2

    ( , ) ( , ) x xf x x f x x

    x x x x

    * * *1( ) ( ) ( ) ( )2

    T Tf f f R x x x d d H x d

    Taylor Series for a Function at ),( 21 xxf ),(*

    2

    *

    1 xx

    20/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    1 2( ) 1x x

    u x u ul l

    ( )u x Nd

    ( )du x

    dx Bd

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    0 0

    ( ) 02

    l lT TEA dx f dx

    d B Bd Nd

    derivation

    1u 2u( )u x

    1

    2

    1 11 , ,

    ux xwhere

    ul l l l

    N B d

    T

    0 d Kd F

    -Chapter 1. Element : Bar

    1 1,

    1 1

    EAwhere

    l

    K

    T

    0, ( )

    l

    f dx F N Kd F

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    21/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    x

    ( )u x

    Element : Bar - Finite Element Method

    1u 2u( )u x

    1

    2

    1 1

    1 1

    uEA

    ul

    F

    T

    0, ( )

    l

    f dx F N

    Kd F

    ( ) :f x f const

    constant external force per unit lengthequivalent nodal forces

    equivalent nodal forces

    x

    ( )u xl1 2( )u x c c x assume:

    1 2, (0) , ( )u u u l u

    T

    0( )

    l

    f dx N 0

    1l

    x

    lf dx

    x

    l

    2

    2

    0

    2

    2

    l

    xx

    lf

    x

    l

    1

    2

    f

    f

    F

    1u 2u( )u x

    1

    1

    2f f 1

    1

    2f f

    1

    2

    1

    2

    f l

    f l

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    22/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    x

    ( )u x

    Element : Bar - Finite Element Method

    1u 2u( )u x

    1

    2

    1 1

    1 1

    uEA

    ul

    F

    T

    0, ( )

    l

    f dx F N

    Kd F

    ( ) :f x f const

    constant external force per unit length

    equivalent nodal forces

    x

    ( )u xl1 2( )u x c c x assume:

    1 2, (0) , ( )u u u l u

    x

    ( )u x

    ( ) :f x f const

    boundary conditionequivalent nodal forces free body diagram

    ( )u x

    ( ) :f x f const

    f l

    1u 2u( )u x

    1

    1

    2f f 1

    1

    2f f

    1

    2

    1

    2

    f l

    f l

    1

    2

    f

    f

    F

    1

    2

    1

    2

    f l

    f l

    1

    2

    f lf

    f

    F

    2

    1

    1 1 2

    1 1 1

    2

    0f l

    EA

    ulf l

    and 1 0u

    1 0u 2u( )u x

    1

    1

    2f f 1

    1

    2f f

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    23/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    x

    ( )u x

    ( ) :f x f const

    1

    2f l

    free body diagram

    f l

    1

    2f lf l 1

    4f lequivalent

    nodal forces

    f l

    1

    4f l

    f l

    ( ) :f x f const ( ) :f x f const

    2

    4f l

    Kd F2

    1

    01 1 2

    1 1 1

    2

    f lEA

    ulf l

    1 0u 2u( )u x

    1

    1

    2f f

    1

    1

    2f f

    1 element , 2 nodes

    1 0u 3u( )u x

    1

    3

    4f f

    3

    1

    4f f

    2 element , 3 nodes

    2u

    2

    2

    4f f

    l

    2

    l

    4

    l 2

    4 4

    l

    / 2ll

    F.E.M

    2

    3

    3

    41 1 0 02

    1 1 1 1/ 2 4

    0 1 11

    4

    f l

    EAu f l

    lu

    f l

    superposition of stiffness matrix

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    24/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    x

    ( )u x

    ( ) :f x f const

    Kd F2

    1

    01 1 2

    1 1 1

    2

    f lEA

    ulf l

    1 0u 2u( )u x

    1

    1

    2f f

    1

    1

    2f f

    1 element , 2 nodes

    1 0u 3u( )u x

    1

    3

    4f f

    3

    1

    4f f

    2 element , 3 nodes

    2u

    2

    2

    4f f

    l

    F.E.M

    2

    3

    3

    41 1 0 02

    1 1 1 1/ 2 4

    0 1 11

    4

    f l

    EAu f l

    lu

    f l

    superposition of stiffness matrix

    2

    1 2

    10,

    2

    f lu u

    EA

    1 2( ) 1x x

    u x u ul l

    sol)2

    2

    3

    8

    f lu

    EA

    sol)

    2

    3

    4,

    8

    f lu

    EA

    ,0 x l

    1 0,u

    givenfind

    displacement solution

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    25/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    (solution)1 0u 3u

    ( )u x

    2 element , 3 nodes

    2u

    1 2

    2 3

    1 ,0/ 2 / 2 2

    ( )

    2 1 ,/ 2 / 2 2

    x x lu u x

    l lu x

    x x lu u x l

    l l

    1 1

    1 2( )u x c c x

    1 2, (0) , ( / 2)u u u l u 2 3, (0) , ( )u u u l u

    2 2

    1 2( )u x c c x

    ) 02

    li x ) 2

    lii x l

    1 2, ( ) 1/ 2 / 2

    x xor u x u u

    l l

    1 2( / 2) / 2u l c c l

    1

    1(0)u c1

    1 1c u

    2 12

    / 2

    u uc

    l

    2 11( )

    / 2

    u uu x u x

    l

    0x / 2x l x l

    2 2

    1 2 2( / 2) / 2u l c c l u 2

    1 2 32c u u

    2 3 22

    / 2

    u uc

    l

    2 2

    1 2 3( )u l c c l u

    3 22 3( ) 2

    / 2

    u uu x u u x

    l

    2 3, ( ) 2 1/ 2 / 2

    x xor u x u u

    l l

    26/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Finite Element Method

    x

    ( )u x

    ( ) :f x f const

    Kd F2

    1

    01 1 2

    1 1 1

    2

    f lEA

    ulf l

    1 0u 2u( )u x

    1

    1

    2f f

    1

    1

    2f f

    1 element , 2 nodes

    1 0u 3u( )u x

    1

    3

    4f f

    3

    1

    4f f

    2 element , 3 nodes

    2u

    2

    2

    4f f

    l

    F.E.M

    2

    3

    3

    41 1 0 02

    1 1 1 1/ 2 4

    0 1 11

    4

    f l

    EAu f l

    lu

    f l

    superposition of stiffness matrix

    2

    1 2

    10,

    2

    f lu u

    EA

    1 2( ) 1x x

    u x u ul l

    sol)2

    2

    3

    8

    f lu

    EA

    sol)

    2

    3

    4,

    8

    f lu

    EA

    ,0 x l

    1 0,u

    1 2

    2 3

    1 ,0/ 2 / 2 2

    ( )

    2 1 ,/ 2 / 2 2

    x x lu u x

    l lu x

    x x lu u x l

    l l

    givenfind

    displacement

    given : x

    find : ( )u x

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    Variational Method

    27/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - ComparisonDifferential Equation

    Boundary Condition

    2

    2

    ( )( ) 0

    d u xEA f x

    dx

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    00 , 0

    xx l

    duu EA

    dx

    VariationalMethod

    Rayleigh-Ritz Method

    2( )2

    f l fu x x x

    EA EA

    x

    l ( )u x

    ( ) :f x f const

    2 23

    2 2 2 2 8

    l f l l f l f lu

    EA EA EA

    for example,

    2

    2 1

    2 2

    f l f f lu l l l

    EA EA EA

    Finite Element Method

    mathematical modelingby using Newton’s second law

    1 2( ) 1x x

    u x u ul l

    1 2

    2 3

    1 ,0/ 2 / 2 2

    ( )

    2 1 ,/ 2 / 2 2

    x x lu u x

    l lu x

    x x lu u x l

    l l

    1 0u 2u( )u x

    1

    1

    2f f

    1

    1

    2f f

    1 element , 2 nodes

    1 0u 3u( )u x

    1

    3

    4f f

    3

    1

    4f f

    2 element , 3 nodes

    2u

    2

    2

    4f f

    2

    1 2

    10,

    2

    f lu u

    EA

    2 2

    1 2 3

    3 40, ,

    8 8

    f l f lu u u

    EA EA

    2 2/ 2 1 1

    2 2 4

    l l f l f lu

    l EA EA

    2

    2

    1

    2

    f lu l u

    EA

    2

    2

    3

    2 8

    l f lu u

    EA

    2 2

    3

    4 1

    8 2

    f l f lu l u

    EA EA

    28/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Classification

    ref. Logan D.L., A First Course in the Finite Element Method, Third edition, Brooks/Cole, p.116

    We developed the bar finite element equations by the direct method in Section 3.1 and by the potential energy

    method (one or a number of variational methods) in Section 3.10.

    In fields other than structural/solid mechanics, it is quite probable that a variational principle, analogous to the

    principle or minimum potential energy, for instance, may not be known or even exist. In some flow problems in

    fluid mechanics and in mass transport problems (Chapter 13), we often have only the differential equation and

    boundary conditions available. However, the finite element method can still be applied.

    The methods or weighted residuals applied directly to the differential equation can be used to develop the finite

    element equations. In this section, we describe Galerkin's residual method in general and then apply it to the bar

    element. This development provides the basis for later applications of Galerkin's method to the nonstructural

    heat-transfer element (specifically, the one-dimensional combined conduction, convection, and mass transport

    element described in Chapter 13). Because of the mass transport phenomena, the variational formulation is not

    known (or certainly is difficult to obtain), so Galerkin's method is necessarily applied to develop the finite element

    equations.

    Virtual Work

    Potential Energy Method

    Weighted Residual

    Differential Equation Variational Method sol) Rayleigh-Ritz

    applicable only to structural problem

    sol) F.E.M

    Collocation

    Least Square

    Galerkin

    Integral Form

    discretize

    Algebraic Equation

    29/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    -Chapter 1. Element : Bar

    Galerkin’s Residual Method

    V

    R dV

    1

    2

    1 ,ux x

    whereul l

    N d

    Differential Equation2

    2

    ( )0

    d u xEA

    dx

    ( )u x Nd

    test function

    since it is approximated solution

    2

    2

    ( )d u xEA

    dx 0 Rresidual

    Thus substituting the approximated solution into

    the differential equation results in a residual over

    the whole region of the problem as follows

    In the residual method, we require that a weighted value of

    the residual be a minimum over the whole region. The

    weighting functions allow the weighted integral of

    residuals to go to zero

    0V

    R W dV weighting function or

    the basis functions are chosen to play the role of

    the weighting functions W

    Galerkin Method

    1x x

    l l

    N

    1N 2N

    iN

    0 ,( 1,2)iV

    R N dV i

    1

    0.) ( ) 0ref u v uv xv dx

    basis function

    30/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Galerkin’s Residual Method

    the test functions are chosen to play the role of

    the weighting functions W

    Galerkin Method

    iN

    0 ,( 1,2)iV

    R N dV i weighting function

    residual (test function used)N

    Differential Equation

    2

    2

    ( )0

    d u xEA

    dx

    2

    20

    ( )0 ,( 1,2)

    l

    i

    d u xAE N dx i

    dx

    Bar - Galerkin’s Residual Method

    integration by parts

    00

    0

    ll

    ii

    dNdu duN AE AE dx

    dx dx dx

    1 1 2 2, ( )where u x N u N u Nd 1 2, 1 ,x x

    N Nl l

    1

    2

    1 1 u

    ul l

    1

    002

    1 1,( 1,2)

    ll

    ii

    udN duAE dx N AE i

    udx l l dx

    1 21 2

    dN dNduu u

    dx dx dx since

    111

    002

    1 1l

    l udN duAE dx N AE

    udx l l dx

    122

    002

    1 1l

    l udN duAE dx N AE

    udx l l dx

    1:i

    2 :i

    1 1

    0x l x

    du duN AE N AE

    dx dx

    2 2

    0x l x

    du duN AE N AE

    dx dx

    1 2(0) 1, ( ) 0N N l

    2 2(0) 0, ( ) 1N N l

    sincedu

    AE AE A fdx

    since

    1 0xN f

    2 x lN f

    1f

    2f

    1

    0.) ( ) 0ref u v uv xv dx

    31/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Galerkin’s Residual Method

    the test functions are chosen to play the role of

    the weighting functions W

    Galerkin Method

    iN

    0 ,( 1,2)iV

    R N dV i weighting function

    residual (test function used)N

    Differential Equation

    2

    2

    ( )0

    d u xEA

    dx

    2

    20

    ( )0 ,( 1,2)

    l

    i

    d u xAE N dx i

    dx

    Bar - Galerkin’s Residual Method

    integration by parts

    1 1 2 2, ( )where u x N u N u Nd 1 2, 1 ,x x

    N Nl l

    111

    02

    1 1l udNAE dx f

    udx l l

    122

    02

    1 1l udNAE dx f

    udx l l

    1 1 1 12 20 02 2 2 2

    1 1 1 1 11 1 1 1

    l lu u u uAEAE dx AE dx AE l l

    u u u ul l l l l l

    1 1 1 12 20 02 2 2 2

    1 1 1 1 11 1 1 1

    l lu u u uAEAE dx AE dx AE l l

    u u u ul l l l l l

    1 1

    2

    1 1uAE

    ful

    1 22

    1 1uAE

    ful

    1 1

    2 2

    1 1, , ,

    1 1

    u fEAwhere

    u fl

    K d F Kd F

    1

    0.) ( ) 0ref u v uv xv dx

    32/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach

    the principle of minimum potential energy

    Of all the geometrically possible shapes that a body can assume,the true one, corresponding to the safisfaction of stable equilibrium of the body, is identified by a minimum value of the total potential energy

    the total potential energy Π is defined as the

    sum of the internal strain energy Πin and the potential energy of the external forces Πext

    in ext

    33/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach the total potential energy Π is defined as the

    sum of the internal strain energy Πin and the potential energy of the external forces Πext

    in ext

    1

    2in in x x

    V V

    d dV the strain energy for one-dimensional stress.

    x

    x

    Linear-elastic

    (Hooke’s law)material

    x xE

    0

    x

    in xd d dxdydz

    xd

    0 x

    0

    x

    x xE d dxdydz

    21

    2x xE d dxdydz

    1

    2xdxdydz

    To evaluate the strain energy for a bar,

    we consider only the work done by the internal forces during

    deformation.

    34/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach

    the total potential energy Π is defined as the

    sum of the internal strain energy Πin and the potential energy of the external forces Πext

    in ext

    The potential energy of the external forces, being opposite in sign from the extenal work

    expression because the potential energy of external forces is lost when the work is done by

    the external forces, is given by

    11

    M

    ext b x s ix i

    iV S

    X udV T u dS f u

    l

    1xf2xf

    bX

    xT1S

    x

    ubXbody forces typically from the self-weight of the bar (in units of force per unit volume) moving

    through displacement function

    susurface loading or traction typically from distributed loading acting along the surface of

    the element (in units of force per unit surface area) moving through displacements

    where are the displacements occurring over surface

    xT

    su 1S

    nodal concentrated force moving through nodal displacements iuixf

    35/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach the principle of minimum potential energy

    Of all the geometrically possible shapes that a body can assume,the true one, corresponding to the safisfaction of stable equilibrium of the body, is identified by a minimum value of the total potential energy

    the total potential energy Π is defined as the sum of the internal strain energy Πin and the potential energy of the

    external forces Πext

    in ext 1

    2in x x

    V

    dV 1

    1

    ,M

    ext b x s ix i

    iV S

    X udV T u dS f u

    1. Formulate an expression for the total potential energy.

    2. Assume the displacement pattern to vary with a finite set of undetermined parameters (here

    these are the nodal displacements ), which are substituted into the expression for total

    potential energy.

    3. Obtain a set of simultaneous equations minimizing the total potential energy with respect to

    these nodal parameters. These resulting equations represent the element equations.

    Apply the following steps when using the principle of minimum potential energy

    to derive the finite element equations.

    iu

    36/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach the principle of minimum potential energy

    Of all the geometrically possible shapes that a body can assume,the true one, corresponding to the safisfaction of stable equilibrium of the body, is identified by a minimum value of the total potential energy

    the total potential energy Π is defined as the sum of the internal strain energy Πin and the potential energy of the

    external forces Πext

    in ext 1

    2in x x

    V

    dV 1

    1

    ,M

    ext b x s ix i

    iV S

    X udV T u dS f u

    l

    1xf2xf x

    1 1 2 202

    l

    x x x x

    Adx f u f u

    1. Formulate an expression for the total potential energy.

    Apply the following steps when using the principle of minimum potential

    energy to derive the finite element equations.dV Adx

    2. Assume the displacement pattern to vary with a finite set of undetermined parameters (here these are the nodal

    displacements ) ,which are substituted into the expression for total potential energy.

    we have the axial displacement function expressed in terms of the shape functions and nodal displacements by

    1

    2

    , 1 ,ux x

    whereul l

    N d( )u x Nd

    assume that there is no surface traction and body force and the

    sectional area is constantA

    iu

    1u2u

    37/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach the principle of minimum potential energy

    Of all the geometrically possible shapes that a body can assume,the true one, corresponding to the safisfaction of stable equilibrium of the body, is identified by a minimum value of the total potential energy

    the total potential energy Π is defined as the sum of the internal strain energy Πin and the potential energy of the

    external forces Πext

    in ext 1

    2in x x

    V

    dV 1

    1

    ,M

    ext b x s ix i

    iV S

    X udV T u dS f u

    1 1 2 202

    l

    x x x x

    Adx f u f u

    1

    2

    , 1 ,ux x

    whereul l

    N d( )u x Nd

    assume that there is no surface traction and body force and the

    sectional area is constantA

    1

    2

    1 1x

    udu

    udx l l

    x xE E Bd

    Bd

    T T

    02

    lAE dx Bd Bd d F

    1 T1 1 2 2 1 22

    x

    x x

    x

    ff u f u u u

    f

    d F

    T T T

    02

    LEAdx d B Bd d F

    l

    1xf2xf x

    dV Adx1u2u

    38/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach the principle of minimum potential energy

    Of all the geometrically possible shapes that a body can assume,the true one, corresponding to the safisfaction of stable equilibrium of the body, is identified by a minimum value of the total potential energy

    the total potential energy Π is defined as the sum of the internal strain energy Πin and the potential energy of the

    external forces Πext

    in ext 1

    2in x x

    V

    dV 1

    1

    ,M

    ext b x s ix i

    iV S

    X udV T u dS f u

    1 1 2 202

    l

    x x x x

    Adx f u f u

    assume that there is no surface traction and body force and the

    sectional area is constantA

    1

    2

    , 1 ,ux x

    whereul l

    N d( )u x Nd

    1

    2

    1 1x

    udu

    udx l l

    x xE E Bd

    Bd

    1 T1 1 2 2 1 22

    x

    x x

    x

    ff u f u u u

    f

    d F

    T T T

    02

    lEAdx d B Bd d F

    3. Obtain a set of simultaneous equations minimizing the total potential

    energy with respect to these nodal parameters. These resulting

    equations represent the element equations.

    The minimization of Π with respect to each nodal displacement requires that

    1

    0u

    and

    2

    0u

    l

    1xf2xf x

    dV Adx1u2u

    39/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar - Potential Energy Approach the principle of minimum potential energy

    Of all the geometrically possible shapes that a body can assume,the true one, corresponding to the safisfaction of stable equilibrium of the body, is identified by a minimum value of the total potential energy

    the total potential energy Π is defined as the sum of the internal strain energy Πin and the potential energy of the

    external forces Πext

    in ext 1

    2in x x

    V

    dV 1

    1

    ,M

    ext b x s ix i

    iV S

    X udV T u dS f u

    1

    2

    1 1 u

    ul l

    Bd

    1T 1 22

    1 1 2 2

    x

    x

    x x

    fu u

    f

    f u f u

    d F

    T T T

    02

    lEAdx d B Bd d F

    The minimization of Π with respect to each nodal displacement requires that

    1

    0u

    and

    2

    0u

    11 22

    1

    1 1

    1

    T T Tul

    u uul l

    l

    d B D Bd 1

    1 22

    2

    2 2

    1 1 2 22

    1 11

    1 1

    1( 2 )

    uu u

    ul

    u u u ul

    2 21 1 2 2 1 1 2 22 0

    ( 2 )2

    l

    x x

    EAu u u u dx f u f u

    l

    1 2 1 1 2 12 01

    (2 2 ) ( )2

    l

    x x

    EA EAu u dx f u u f

    u l l

    1 2 2 1 2 22 02

    ( 2 2 ) ( )2

    l

    x x

    EA EAu u dx f u u f

    u l l

    1 2 1

    1 2 2

    ( ) 0

    ( ) 0

    x

    x

    EAu u f

    l

    EAu u f

    l

    In matrix form, we express

    11

    2 2

    1 1

    1 1

    x

    x

    fuEA

    u fl

    11

    22

    1 1, , ,

    1 1

    x

    x

    fuEAwhere

    ful

    K d F Kd F

    40/41

  • SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.krSeoul NationalUniv.

    2009 Fall, Computer Aided Ship Design, Part3 Grillage Analysis of Midship Cargo Hold 01- Bar Element

    Element : Bar

    Bar

    Element

    2

    2

    ( )( ) 0

    d u xEA f x

    dx

    Differential Equation

    Mx F , 0where x

    VariationalMethod

    2

    0( ) 0

    2

    l EA duf u dx

    dx

    1 1

    2 2

    1 1

    1 1

    u fEA

    u fl

    0 1( )u x a a x

    Kd F

    Finite Element Method

    •Discretization•Approximation

    f1 f2

    kNode1 Node 2

    δ1 δ2

    ! Notation

    2

    1

    2

    1

    kk

    kk

    f

    f

    ]][[][ Kf

    EAk

    l

    : , :E Young s Modulus A sectional area

    stiffness matrix

    Galerkin’sWeighted Residual

    Energy Method

    from now on,we will use this!

    41/41